Lecture 11: Deep Reinforcement Learning

Emile van Krieken
Deep Learning 2020

k VRIJE
divu.github.io VU UNNVERSITEIT

1. (Deep) Q-Learning
2. Actor-Critic methods
3. Model-based RL (World Models)

. VU

REINFORCE:

1L T~p(Te) o, T o

2. 9<—9+ocZthtVelog7Te(at\5t) 64?' >0 ? >0
t=0 . S15 1 ™, S

v 1 S 2.

500 C) aob Om‘O

Discounted reward to-go |
Gy = Z Y g fl
t/=t
: VU¥

NOTATION UPDATE

« Declutter notation:

e Current timestep t:

t =10t =0,5¢ =5, by =
o Next timestep t + 1:
! ’ / /
t+1 = 15 Q41 = A5 541 = 55 b4l =
. VU¥

A problem with RL is that the notation can become very cluttered and hard to understand. To prevent information overflow in
the next slides, we will redefine some symbols.

For variables like the , action, and expected to-go, we just use the symbol without the timestep to refer to

the variable at timestep t.

We do the same for the ‘next' timestep, t+1, but adding the prime character (‘) after the symbol to distinguish it from the
current state.

Discounted to-go
T—1
’_
= Z Y e
t/=t
(-action value function):

T[(7(1) :]Ep('tlrr, ,a)[]

First, we will introduce two very important notions in RL: The . These are defined in terms of the discounted

to-go that we not-coincidentally used in REINFORCE.

-action value function, for good reasons! The
, and afterwards following the policy \pi
expects the agent to follow the

We will start by the harder one: The . Itis also known as the

is the expected discounted to-go, after executing action a in
(M1, 1 cannot stress this enough, so read it again: After the action is executed, the
policy \pi. It will come as no surprise that we will learn in deep Q-learning :)

Optimal Q function: For all and actions a:

*(,a):mﬁx (s, a)

Given Q" (,a)l the optimal policy is

7 (als) = 1 if a = argmax,, Q*(s,a’)
)0 otherwise

Optimal policy is deterministic!

. VU

Next, we will introduce what the optimal policy in Reinforcement Learning is. This is the best policy that we can perform! It is
a policy such that, for all , the is maximized.

What does this policy look like? By expanding the , we see that it is an expectation of the over the

optimal policy.

Now, we note that the optimal policy is necessarily deterministic. Why does it need to be deterministic? Note that the
probability distribution of an expectation needs to sum to 1. Clearly, it is best to put all probability mass on the action that
maximizes the Q-function. That is a deterministic policy!

In other words, the optimal policy is the policy that has a probability of 1 for (or all probability mass on) the action maximizing
the Q-function.

RECURSIVE REWARD TO GO

T—2—t

="+ (2 yres o Y T)

T-1
"ty Y Y Them

t/=t+1
’

’

= +v

Next, we rewrite the discounted reward to go. Simply write out the sum over discounted rewards. Leave one discount factor
out. The sum inside the braces is exactly equal to G_{t+1}!

OPTIMAL Q-FUNCTION

“(5,0) = max Ep (xim, 0)[G] = Ep (gm0 [+ 76T = ™ (s,a)
Expand expectation:
=Ep(ere,) 7+ VEp (ajme, o) [G]]
=Ep(re,0) [T+ VEr(a1) [Bptain,or,an (6]
That’s the !
=Ep(or,ris,0) [+ VEre(argoy [Q (57,)]
. VU¥

We will now look how to make the definition of the recursive, that is, it can be computed using itself.

We just found a recursive definition for G, so plug that in. The resulting expectation is over a sum over the next and
the rest of the discounted G’. Also, we replace the maximum over policies by the optimal policy. After all, we cannot
do better than that! Conveniently, the resulting expression is the definition of the of the optimal policy: The

of the optimal policy IS the optimal)

and action a, and not on the rest of the trajectory.
, and then the rest of the trajectory.

Next, note that the next is only dependent on the current
So, we can split the expectation in two: First we sample the next and

The first thing that happens in the trajectory then is sampling the next action a’. Of course, this happens from the optimal

policy \pi**. So, expand this expectation.
Now, the most inner expectation is exactly the at the next timestep! So let’s plug that in.

We now have a recursive definition of the | But we can simplify it even more.

OPTIMAL Q-FUNCTION

(s, 0) =Bper,vs,a) [/+y]E7T*((1’\) 107(/70/)]]
recall:
1 if a =argmax,, O*(s,a’
*(als) = e e
0 otherwise
so:

No explicit policy in this equation!

Back to that recursive formulation of the optimal . Recall the optimal policy \pi**. This is a deterministic policy, that
simply chooses the action that maximizes the optimal !

This means we can simplify the recursive formulation even further: It chooses the maximizing action a’, so we don’t need that
expectation over actions. Simply take the maximum of the optimal here!

This gives the so-called Bellman optimality equation: A way to define the optimal without any reference to an

external policy.

OPTIMAL Q-FUNCTION

The optimal Q-function:
“(5,0) = Ep(or 0l + ymax Q7(s”, a’)]
Idea: Estimate O (5, @) with NN Qo (5, @)1
Policy:
o (als) = 1 ifa:a:rgma.xa, ols,a’)
0 otherwise
. VU¥

We found that the optimal Q-function satisfies this very nice recursion. So what exactly does it say? The optimal
has that it is equal to the expected next , plus the discounted optimal in the next

We want to find a Q-function for which this equation holds. Why? From this Q-function we can extract the optimal policy,
which takes the action that maximizes the Q-function.

ATARI Q-FUNCTION ESTIMATOR

Convolution Convolution Fully connected Fully connected

Predick Qolsa) for
every action a

Mnih, V., Kovukeuoglu, K. Silver, . et al.
Human-l

reinforcement learning. Nature 518,
529-533 (2015).

CNN estimator Qe (5, a)

. VU

What does a neural network that estimates Q-functions look like? Just like for policies, the neural network usually actually
only receives the , and not the action.

The output layer is important here: It is simply linear! For each action, it outputs a scalar value, which predicts the
This way, we don’t need to run the neural network for each action: We run it once and immediately get
estimations for each action.

BOOTSTRAP ERROR

“(5,0) = Ep(or 0l + ymax O7(s", a')]
So:

*(70)_]Ep[o] ,QJ[I-‘FYH}I&;X *(,7(1/)]:0
Minimize bootstrapped error using regression:

2
angain Qo 5, @B+ mx ol 1)
]
prediction target

Again, recall the recursive definition of the optimal
seen as the fact that the difference between the
+ discounted) should be 0.

. Clearly, subtracting the right-hand side, this definition can be
at the current minus the second term (expected next

We want our estimate O_\theta to approximate the optimal . So, it should also make sure that this

equality holds!

The bootstrapped error is the difference between our estimate of the at the current
and the maximum of the estimated discounted

estimator itself as a target!

In Deep-Q learning, we minimize the squared bootstrapped error, and use regression techniques to optimize this.

minus the expected next
. Why is it called bootstrapped? Because the error uses the

bookskrapped error

Predid:-‘.on

. VU

Here we see the computation graph of Q-learning. Compare it closely with the equation on the previous slide to see if you can
follow the computation. Note that the same set of parameters is used both to compute the prediction and the target.

DEEP Q-LEARNING

Start in state
Deep Q-Learning (v1):

1.0 argmax g ,a’) Choose action
2.5 7 ~p(s7'ls,) Execute ackion
3.0+ 60— aVe | Qgls,a) =" —ymax Qg(s’, a’)
4.5+ s’ !

Updadza Pammaters

b VU

Let’s look at our first version of the Deep Q-learning algorithm. This is an online algorithm, which means that we update our policy (in this case, O-value parameters)
immediately after executing an action, instead of waiting until the trajectory is over.

The algorithm is pretty simple:

1. Choose an action. This happens by taking the action that maximizes the estimated O-value.

2. Execute the action in the . We transition to the next , and receive a reward, just like before.
3. Update the parameters using the bootstrapped error equation. This is a simple gradient descent step.

Repeat this!

EPSILON GREEDY

Deterministic action selection
a 4= arg max Qgl(s,a’)
No exploration, only exploitation!
eAlways go to same restaurant
eNever find anything better!
Solution: epsilon greedy

Take random action with € probability

. VU

Unfortunately, this is a very, very poor algorithm. One of the reasons is that our action selection algorithm is deterministic: We always execute the same action in a state
(namely, the one maximizing the O-value).

Analogy: Say we want to figure out what the best restaurant in town is. With this way of action selection, we’d take the first restaurant that seems nice, exploit that
knowledge, and then always visit that restaurant without ever exploring any alternatives. Obviously, this leads to sub-optimal behaviour as there’s probably a much
better restaurant in town! This problem is called the exploration - exploitation tradeoff.

The most common solution to this problem is epsilon greedy. Instead of always taking the best action, we simply take a random action with epsilon probability.

bookskrapped error

prediction

. VU

Another issue is the following. Let’s see what happens in our backwards pass. How are the parameters theta updated? As you
can see, it happens both through the prediction, and also through the target prediction! This means that by

minimizing the bootstrapped error equation, we change both the prediction and the target. If that seems wrong, from a
machine learning perspective, then you’re most certainly right.

In fact, if you'd try this out, it'd be very hard to get it to work, as there is no clearly defined target for the regression problem.

SIMPLE SOLUTION

bootskrarred error

Precli.cti.ov\

A very simple, though somewhat hacky, solution, is to just remove the gradient from the target, again using that weird bot
symbol we saw before during the first RL lecture. This already helps quite a bit.

DEEP Q-LEARNING

Deep Q-Learning (v2):

L random action with e probability
a= Epsilon-greedy

argmaxys Qg(s,a’) otherwise.

’

2.5 ,Np(,7 l‘ 7a) 5
3.9(—97(XV9(ols,a) f('+yma{x ol ',a’)))
4.5 s’

Time to look at the second version of our Deep Q-learning algorithm. Not much has changed, though.

In the first line, we change how we select actions, from the “greedy” always take the best action, to epsilon-greedy, that takes
a random action with epsilon probability.

We also added a bot symbol to show we don’t put gradients throughout the target of the bellman error.

DEEP Q-LEARNING

Deep Q-learning requires many tricks to get working
eExperience replay

eTarget networks

*Double Q-learning

*Multi-step returns

eGradient clipping

°...

In assignment 5c, you can explore some of these for bonus points!

VU

Unfortunately, Deep Q-learning requires quite a lot of tricks to get working.

The most important one is experience replay. It solves two problems: states are sequentially corelated, and so do not satisfy
the identically and independently distributed (iid) assumption that machine learning requires! Experience replay instead saves
some states to ‘replay' later to train the Q-function. It separates data collection and training the Q-function on it.

There are much more tricks to explore, but we won’t get into that here. In assignment 5c, you can play with these!

SUMMARY: DEEP Q-LEARNING

Deep Q-learning

Estimate optimal Q-function
Minimize bootstrapped error
Requires many tricks to get working

Next: Combine ideas in Actor-critic

VU

ACTOR-CRITIC

Policy gradient:
T-1
— t
VoEp(xj0)[Ry] = Ep(r\e)[zy GtV logme (aist)]
t=0
REINFORCE:

Estimate with Monte Carlo rollout:
T—1
Vol(8) &) v'GiVelogme(atlst)
t=0
High variance :(

VU

Last lecture, we talked about policy gradient methods, in particular about REINFORCE. The problem with this algorithm is that
it has very high variance. This means that the method is very sample inefficient: It will take a very long time to converge, and
requires a lot of data. In this part of the lecture, we will use methods inspired by Deep Q-learning to reduce the variance of
policy gradient methods.

REINFORCE: T
VoE, (o) [Ry] = Ep(r\e)[z V' GVe logme (aglsi)]
=0

Reduce variance with baseline bt:

T-1
VoEp(elo) [Ry] = Epeie)[Y_ v (Gi[= bJ) Vo log o (arls)]
t=0

baseline

A simple important modification is baselines. A baseline is a value that is subtracted from the reward. This is still the unbiased
policy gradient! In the next slide, we'll see why.

Erg (a)0) [0t Ve log e (aifsi)]
Voo (alst)

= athtM)m

VU

So why is subtracting that baseline unbiased? Consider the expectation of the baseline multiplied by the grad-log of the
policy.

Write out the expectation and the derivative, just like in the last lecture when we derived the score function.

Erg(ags0) bt Ve log e (aclse)]
Voo (atlst)

betM m

ag

= thveﬂe[ﬂt| t) =biVe Z”e(at\ t)

e at

=bVel =0

Since the baseline doesn’t depend on the action, we can move it out of the summation. (and also the gradient, because it’s
linear).

Now, we have a sum over probabilities with all possible actions. A probability distribution should sum to 1! And the gradient
of 1is 0.

So, the expected value of the baseline multiplied with the grad-log policy is 0, so we can safely subtract it from the Q-function.

WHAT BASELINE?

REINFORCE with baseline: _;
VoE,(x0)[Ry] =Ep(je) ZY t —b)Ve logme (atlst)]
baseline »
Value function:
ﬂ() :]Ep('cln, t)[d :Eﬂ(atl t)[n(t,at)]

Value function baseline:

VoEp(xie) Ryl = Epxle) Zy ¢ — V™ (54))Ve log e (ayfsy)]

So what value should this baseline be? Usually, we take the , or (compare with the
, Which is also called the -action).
The value function is the expected froma when following the policy. It is related to the Q-function as

follows: It’s the expected when sampling an action from the policy.

REINFORCE VS ACTOR-CRITIC

Act, receive
"(s¢) =0.63

How to reinforce?

REINFORCE: REINFORCE + baseline:
I won! I won. That result is
37% better than
expected!
Increase of random
Random reward wrk expzcbad

VU

So this reduces the variance, but why?

Consider an agent trying to learn . Training chess with REINFORCE would do the following: Perform an action, then see if
in the end we win the game. If so, update based on that: It was a good action! Otherwise, if we lost, we say it was a bad
action. But many things could have happened after taking that action, and it could also be very likely that we would lose after
taking it.

With that baseline, it’s a bit different: again, we reinforce actions that lead to winning. But this time, we subtract that by our
current believe how likely it is we would win from that . If we did not expect to win, then it turns out that the sequence
of actions lead to an unlikely I These actions should be reinforced much more than if we were in a that was
already looking like it was in a winning position, and then indeed winning.

TRAINING VALUE FUNCTION

Like Deep Q-Learning, train neural network Ve with regression.
1. Use rollouts:

T-1
¢ ~ d) - Z(\ cb(t) — G1; target: reward-to-go
t=0
2. Use bootstrapping (lower variance, biased):
T-1
G h—ad (Velse) —[Llt+vVelsei))?
=0
target: bootstra, Fed
exrected reward-to-go
. VU¥

Cool! But we still need to be able to compute that baseline. We'll do this just like in Deep Q-Learning: We'll use a neural

network that’s going to estimate the value function.

There are two options: We can use the rewards-to-go from that
target though.

, just like we’d use for REINFORCE. That’s a high-variance

Instead, we usually use bootstrapping errors, just like in Deep Q-Learning: The target is the next reward plus the value

function in the next

REINFORCE with baseline:
1.T~p(to) |
20— d—oe) Vol = Ll +7Vels)?
t=0
T-1
3.0 0+ g Zyt(Gt — Vg (s1))Ve logme (alst)
t=0
. VU¥

Q-FUNCTIONS IN POLICY GRADIENTS

Recall Q7 (5, @) = Ep (xm,s,) [C]

Policy gradient:
T—1

VoEp(xi0)[Ry] =Ep(je) [Z V' GV log mo (atfst)]
=0

T—1
=Ep(cjo)[)_ v O™ (51, at) Vo log e (ayfse)]
t=0

critic actor

Much lower variance!

Recall how we defined O-functions: The expected reward-to-go G_t from a

continuing to use the corresponding policy).

after performing an action (and then

The reward-to-go G_t is the reward that is used to update our policy in REINFORCE... Within an expectation too!

Therefore, we can actually replace G_t by the O-function. This gives us an actor-critic algorithm, where the policy is an actor,

and the O-function is the critic: It ‘criticizes' taking an action.

This has much lower variance! Why? (next slide!)

REINFORCE VS ACTOR-CRITIC

Act, receive
How to reinforce?
REINFORCE: Actor-critic:
I won! I think I'll win with 0.63
probability!
Random Exrecked
VU¥

What’s the motivation behind actor-critic?

Consider an agent trying to learn . Training chess with REINFORCE would do the following: Perform an action, then see if
in the end we win the game. If so, update based on that: It was a good action! Otherwise, if we lost, we say it was a bad
action. But many things could have happened after taking that action, and it could also be very likely that we would lose after
taking it.

With actor-critic, we instead update an action based on the probability that we will win after taking that action is high. This
probability isn’t like in REINFORCE (randomly winning or losing), so it is no longer a source of variance!

Actor-critic: 11
VoEp(xj0)[Ry] :Ep(r\e)[zyt "(s¢, at)Ve logme (ailse)]
t=0

Reduce variance even more with value function baseline:

T-1
VoEp(xi0)[Ry] = Ep(rie)[D_ v (0™ (51, a) — V™ (5)) Vo log e (aelse)]
t=0

advantage actor
Advantage actor-critic

VU

So that’s already a very useful modification to the policy gradient (sidenote: Both REINFORCE and actor-critic are called policy-
gradient algorithms because (recall last lecture) they estimate the gradient of the expected 1)

A second important modification is the addition of baselines. A baseline is a value that is subtracted from the critic. This is still
the unbiased policy gradient! In the next slide, we’ll see why.

ADVANTAGE VS Q-FUNCTION

Act, receive

How to reinforce?

Actor-critic:

I think I'll win with 63%
probability!

Advantage actor-critic:

I think I'll be 3% more
likely to win.

Exrected increase
[

Expecbed

VU

Now compare advantage actor-critic with normal actor-critic. In advantage actor-critic, we don’t reinforce based on expected
, but based on something a bit different:

The difference between expected in the and the expected
we reinforce actions of which we think it’ll make us 3% more likely to win.

after taking an action! For example, in chess,

COMPUTING THE ADVANTAGE

Advantage actor-critic: T—1

VoEp(xjo)[Ry] :]Ep(ﬂe)[ZYt(T(s¢,ap) = V7(s¢)) Ve log mme (alst)]
0
‘ advantage

Estimate V™ with " ¢ (biased)
Estimate O (5t; at) with Tt+1 + 7V (Se41)

&5t T Str1) = Ter1 YV (se41) — Vg (se)

So how do we compute the advantage in practice? We can use the function estimation that we introduced when

discussing baselines.

, by expanding the
to the discounted

function baseline and the
is and add the in the next

We can actually use this estimation to estimate the
To estimate the , we look what the next
estimate of that

It should be noted that this gives biased estimates. This is because we only estimate the , and can definitely
make mistakes in its predictions. The policy gradient is only equal to actor critic if O is exactly the of the policy, not
for other functions that estimate it! In that sense, actor-critic trades off bias for variance. This is different from REINFORCE
with baselines, which is always unbiased!

In estimating the , there’s additional bias by using the in this way, as it doesn’t take the expectation

over actions.

Advantage actor-critic:
T—1

VoE, (o) [Ry] = ZYt ¢ (5t 741, 5t+1) Vo log e (agse)
=0

where
& (56T 5e1) = T F YV (St41) = Vg (5¢)

critic baseline

Trade off variance (=sample efficiency) for bias

BATCH-MODE ALGORITHM

Advantage actor-critic:

LT~p(Te) L
2. 0 d—oe) (Vols) = Liva+vVe() vpdate

t=0

T-1

3. 0+ 0+ aq Zyt @ (56, Te41,5t41) Ve log e (atfst) Update actor
=0

We will see versions of advantage actor-critic algorithm, starting with the batch-mode algorithm.
Here, in a loop, we sample a trajectory from the MDP, then update the parameters.

First, we update the critic. We just have to train the here, as the Q-function is expressed in terms of the value
function! Training it happens just like in REINFORCE with a baseline using bootstrapping.

Then we update the actor based on the advantage function.

ONLINE ACTOR-CRITIC

Online Actor-Critic:
1.0~ 719(61|) Select actions according to FoLic:.
2.8 ~p(s 15, a)
30— d—oc(Vels) — L0 +vVel)2 Update crilic
4.0+ 0+ O(a/\q)(s I‘/, /)Ve log e (als) Update actor
5.5 s’

. vu¥

This algorithm has a second version, an ‘online-mode’ version. This happens just like in the algorithm of Deep Q-learning.
Namely, that don’t sample a complete trajectory, but update each time after taking an action.

It is not much harder: In a loop, we sample an action from the policy and execute it in the environment. Note that we don’t
need to do something like epsilon-greedy here because actor-critic already uses stochastic policies!

Now, we simply use the resulting next and reward to compute an update for a single transition. Again, first the critic,
then the actor. Then we assign the next to the current and continue looping.

It’s a detail, but the actor update in this algorithm introduces bias compared to the previous algorithm. Can you spot why? (This is not important for the exam or
anything, just interesting :))

Uses only a single sample
And batching over time would give correlated minibatches

A2C: Multiple online agents synchronously act

Collect experiences at each step for minibatch.
Efficient method!

VU¥

VARIANCE REDUCTION

Techniques to reduce variance:
eBaselines:
eReinforce difference with expected value
eUnbiased, fairly low variance
eActor-critic:
eReinforce expected value
eBiased, fairly low variance
eAdvantage actor-critic:

eReinforce increase in expected value

eBiased, low variance
VU#

WORLD MODELS

VU¥

ACTOR-CRITIC

Actor-critic methods
eModel actor: Policy NN
eModel : function NN
What about 3rd RL component: ?

. VU

Actor-critic methods model two out of three RL components. The actor models actions through policy Networks, while
are modelled through the critic, in our case by estimating the

So what about the 3rd RL component: from the ? Can those also be modelled?

WORLD MODEL

World Models

*Model using
neural networks!

eFind good state representations

McCloud, Scott. Understanding
Comics:The Invisible Art Tundra
Publishing, 1993,

Ho, Do, and firgen Schmidhuber VU he
42 "World models." L3

The answer is yes! Modelling the environment using neural networks is often called world models. The goal of world models
is to find representations that describe the current state well. This can be in multiple ways: It can compress and abstract
information, or it can be used to represent knowledge about the world that isn’t directly in the current state.

For example, if you have a robot that can look around, it only sees a part of the world. You’d also want to model what is
outside of what it can see!

WORLD MODEL

World Models

*Model !

Model-based RL using Neural Networks
Use generative model to learn

1.how to represent

2.to what we transition after taking action

3.what reward we receive in

World Models fall within the field of model-based reinforcement learning, by using neural networks to model the

environment.

We use generative modelling (techniques from the last weeks lectures) to create world models.

We have multiple models:

1. A model that learns how to represent individual

2. A model that learns how to transition from one

3. A model that models the reward we receive in a

to another after taking an action (=transition probability)

WORLD MODEL

World Models combine many ideas from this course:
eDeep generative modelling

eVariational Auto-Encoders

eGradient estimation

eActor-critic

World models are also interesting because they combine a lot of ideas of this course and show well how they fit in the deep

learning toolkit!

WORLD MODEL COMPONENTS

Components of our World Model:
o Reward model Pw (717)

Action inputs

' & -
« Transition model Pw (=17, &) —

SN AN AN
. encoder dw (7]5) AAAAAA
. decoder Pw (517)

Hafner, Danijar; et al. “Dream to
Control: Learning Behaviors by Latent
Imagination.” International Conferent
on Learning Representations. 2019.

. VU

Here, we summarize all components of the world model: A model for rewards, a model for

VAE for this.

(both encoding and decoding the

transitions, and a model for
). We will start with that last one first. We use a

VARIATIONAL AUTO-ENCODER

R
1 Encoder |z /—' Decoder

L
— \\
/ . .
Low-dimensional
represeh&ahioh

reconstructed

Ha, David, and Jirgen Schmidhuber.
“World models.”

. VU

We will use a variational autoencoder (VAE) to represent states. For this, we use the latent space of VAEs. This latent space is
useful, because the allow reconstructing the original . Therefore, they are a low-dimensional
representation of the original !

In this case, we’ll be looking at represented as images.

VARIATIONAL AUTO-ENCODER

real recomnstructed

Ho, David, and Jorgen Schmidhuber. V U k
a7 “World models” 2018 2

Since we have a VAE, we can encode a state (=image), then decode it again to get a reconstruction. This gives a visual idea
about how well we have learned to represent the states.

This simple example shows this can work pretty well!

TRAIN VISION MODEL

Training VAE to represent

1.Collect experience by acting in
2.Train VAE to reconstruct

Goal: Learn useful t of t

Compress “t to what’s essential for acting [|

So how do we train a VAE to represent in the ? It’s not so hard: We collect our ‘training data’ by just acting
in the real I Then we use this training data to teach the VAE how to reconstruct using the ELBO loss as
explained in the VAE lectures.

The goal is to learn useful representations of
use the to act well in the

. But how is useful defined? In the end, all we need to do is to be able to

An interesting question is whether the VAE is useful. It has to save a lot of information: Namely, everything
needed to properly reconstruct an image! But our agent ideally gets just a that retrieves from the was is
essential for the agent to act. A common discussion point against using VAEs here is that the needs to do too
much: It should both reconstruct , and be easy to act with!

WORLD MODEL COMPONENTS

Components of our World Model: Action tnputs

model Pw (1T2) L* K \;
Transition model Pw (2|7, @)

. encoder dw (715)

. decoder Pw (£12) ---..

etal. "Dream to
haviors by Latent

Imagination." International Conference

on Learning Representations. 2019.

VU¥%

. Now let’s look at the other two models and
model and transition model, together with action inputs, create a

We have seen how to encode and decode states to get a
how they are trained. It should be noted that the
markov decision process! We will see why next.

The reward model is a univariate Gaussian distribution, while the transition model is a multivariate Gaussian distribution.

TRANSITION DYNAMICS

Transition model (MLP)

Y
t—1 t Py (1l7e) t Zed Py

Oo—» P O—

Reward model (MLP)

Let’s look at the detailed computation graph formed using the world model. We start with some in
timestep t-1, in which we take an action. We use the transition model to determine the distribution over possible next

From this distribution, we sample the next I Note that this is the , hot the original state (for example
an image). Note that the transition model is a neural network, in this case an MLP!

From this newly generated representation, we use the model, also an MLP, to predict the we get in this

We also use the , together with an action, to determine the next transition probability. Note that

here, we make no assumptions on what actions to take, or how we choose these actions!

This loop keeps repeating, just like in MDPs. In general, be sure to compare this to MDPs: World Models use almost the same
probability distributions as in MDPs except that they model them using neural networks instead of using the

itself. The only difference is that the generates the next and together, instead of it being a separate
model like in world models.

WORLD MODEL COMPONENTS

Components of our World Model: Action tnputs

. model P (117 L* . \.
/ & &
«|Transition model Pw (='I7, @)
(z1s) AN\ AN\ A\
3 encoder 9w AAAAAA
. decoder Pw (517) -.--.

TRAIN DYNAMICS MODEL

1.Collect experience by acting in
2.foreach (5,a,7',s')

1.7~ Gy (2]s) VAE Emcoder
2.7~ ap(='s")
3.Maximize logpy(2'lz, a)
4.Maximize log puy, (1']2")

Transition model
Reward model

o -

Hafner,Danir et al.“Dream to
‘ Control: Learning Behaviors by Latent
: Imagination.”nfematonctConforence

AAAAAA
- - - - . . on'tearming Representations 2019,

52

Next goal: How do we train the dynamics of the world model? This too can be done by collecting experiences in the real
. Simply have an agent act in the real to collect the training data.

Experiences can be seen as a list of transitions from a , Where we take an action to get to a new with a reward.

. Training the transition model
from the current

To train the world model, we first have to encode the to the latent
is then easy: simply make sure that the transition model predicts the new
. Similarly, the reward model is trained to predict the real reward from the new

World models can be used to dream trajectories
(more formally, latent imagination)
Use to train RL agents 7o (alz) without interaction with

Hafner, Danijar, et al. “Dream to

Now let’s get to the exciting part: Dreaming! Because World Models are deep generative models, we cannot just train them,
we can also generate new data! Within World Models, this is informally called ‘dreaming’, and more formally ‘latent
imagination’. Dreaming basically means imagining trajectories of

Why is this so useful? It allows us to train policies without any interaction with the at all. The world models
create the to train on, which means we need way fewer interactions with the environment.

: This might be because the takes a
(for example, consider robots!).

We would often like to minimize how often we interact with the
long time to run, or because it is expensive in some way to interact with the

The agents we train on the world model are trained on the instead of the themselves.

Ha, David, and Jirgen Schmidhuber.
“World models.

We can dream up complete segments of a video game. Here, we start off from some real state, then keep using this latent
imagination to dream up a sequence. We can even use our own input here! To play the game ‘in the dream’, visit https://
worldmodels.github.io/

TRAIN AGENTS USING WORLD MODELS

1.Choose initial
2.2~ 9q¢(zls)
3.for T steps:
1.a~me(alz)

2.7 ~py(Zlz @)
3.7~ Py (12
2.0 b —x (Vo) — L0 +7vVe(2)))?
5.0« 0+ g gz, 1,2) Ve logme (alz)

!

Encode initial state A ;'. A ;‘. A ;‘.
A

Hafner, Danijar, et al. "Dream to
Control: Learning Behaviors by Latent

ternational Conference

Transition
Reward

Critic u.pdcd:e
Actor uFdake

6.2

. VU

We will adopt an actor-critic online-mode algorithm to train on world models. Assume we have a trained world model, how
do we train the agent?

We start at an initial
action based on 7.

, which we encode to the latent . Then we loop: use the policy to choose an

Use the action and z to transition to the next ’. Also predict the in that

Then we do an update. These are just like in normal (online-mode) advantage actor-critic, except that it use the
instead of the itself.

Then we loop: Set the next to the current

COMPLETE ALGORITHM

Complete training loop:

1.Collect new experiences by acting in using current policy
2.Train VAE to reconstruct

3.Train transition model

4.Train actor-critic using dreaming

5.Repeat

. VU

We can now train the VAE and the transition model from experiences in the real
resulting world models.

, and train an agent from the

Now how does the whole training algorithm look like? From some initialization, we use the current policy to act in the
. Note that, as the policy use instead of the itself, so we first have to encode
using the VAE encoder.

Next, we train the VAE to reconstruct
experiences.

and the transition model to train the transition dynamics using the new

Finally, with the resulting world model, we train the actor-critic agent.

Importantly, we repeat this multiple times! Why? Initially, our agent is probably pretty bad, and will not be able to explore
that are hard to reach. After the agent has trained a bit, it’s able to reach those new . But now the world model
has no knowledge of such yet, and has to learn how to represent these new !

TRAINING BY DREAMING

Qg
> pw(1170, ao)
7o (alolz0) o (a1lz1)
ol s »

Rl

57

Here, we walk through the computation path when training an actor-critic agent inside a dream.

RECALL: REPARAMETERIZATION IN RL

No differentiable path
from 1 to O

. VU

Recall the discussion on reparameterization from the last part of the previous lecture. We mentioned that we cannot use the
low-variance gradient estimation trick reparameterization in RL because the is not differentiable. So even if we
can make sampling differentiable through reparameterization, this doesn’t solve the non-differentiability of the

TRAINING BY DREAMING

Qg
7o (aol 0)(?
’d
o/i(o 0)0\
0 ¢(0) cb(1)
. VU¥

Now let’s consider the computation graph when dreaming instead of running the true MDP. Notice how relatively few dotted
lines there are? This is because we made the differentiable by modelling it with neural networks! The only non-
differentiable steps are sampling, and we know just the trick to make this differentiable :)

Here, we modified the computation graph to use reparameterization at all sampling steps. Importantly, we can now follow the
graph backward from the functions to the parameters theta of the policy, because everything is differentiable! This
means we cannot just dream our , but also ‘backpropagate’ through the dream to efficiently optimize in it.

TRAIN AGENTS BY BACKPROPAGATING THROUGH WORLD MODELS

By just ensuring we reparameterize the samples of the action and the state transitions, we can do backpropagation through
1.Choose initial state s

the value function to train the agent! This means that the agent gets very accurate and informative gradient information,

instead of the much less informative policy-gradient based methods.
2.2~ qe(zl5) .\/,L _\;L 7\;;
3.for T steps: ‘o “D‘
1.a~7g(alz) Reparameterize sample Contal: earning Sehaviors by Latene

2.:' ~P¢(1/|l7 a)
3.7~ Py (")
4.0 b — (Vo) = L0 +vVe(2))?

N O ANE)

- Imagination." International Conference
on Learning Representations. 2019,
Reparamekerize sample

Actor backrror
6.2+ 2

VU¥

DREAMER

Hafner, Danijar, et al. "Dream to

Imagination.
62

World Models

eKeep a model of environment

*VAE represents states

eTransition model represents dynamics
eTrain agent using world models
*“Dream" trajectories

eNo interaction with environment!

eBackpropagate through dreams

VU¥

