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Deep generative modeling: 

ARMs and Normalizing Flows
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Generative 
model

Autoregressive 
(e.g., PixelCNN)

Implicit models 
(e.g., GANs)

Prescribed models 
(e.g., VAE)

Latent variable 
models

Flow-based  
(e.g., RealNVP, GLOW)
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Training Likelihood Sampling Compression

Autoregressive models 
(e.g., PixelCNN) Stable Exact Slow No

Flow-based models 
(e.g., RealNVP) Stable Exact Fast/Slow No

Implicit models 
(e.g., GANs) Unstable No Fast No

Prescribed models 
(e.g., VAEs) Stable Approximate Fast Yes
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ARMS: AUTOREGRESSIVE MODELS
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There are two main rules in the probability theory:


• Sum rule:


• Product rule: 
p(x, y) = p(y |x) p(x)

REPRESENTING A JOINT DISTRIBUTION
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p(x) = ∑
y

p(x, y)



There are two main rules in the probability theory:


• Sum rule:


• Product rule: 


Before, we used these two rules for latent-variable models:





p(x, y) = p(y |x) p(x)

p(x) = ∫ p(x, z) dz

= ∫ p(x |z) p(z) dz
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There are two main rules in the probability theory:


• Sum rule:


• Product rule: 


Now, we will use the product rule to express the distribution of :





where 

p(x, y) = p(y |x) p(x)

x ∈ ℝD

p(x) = p(x1)
D

∑
d=2

p(xd |x<d)

x<d = [x1, x2, …, xd−1]⊤
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We use the product rule to express the distribution of :





where .


The order of variables isn’t important.


However, modeling all conditionals separately is infeasible…
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We use the product rule to express the distribution of :





where .


The order of variables isn’t important.


However, modeling all conditionals separately is infeasible…


Can we do better that?

x ∈ ℝD

p(x) = p(x1)
D

∑
d=2

p(xd |x<d)

x<d = [x1, x2, …, xd−1]⊤

REPRESENTING A JOINT DISTRIBUTION
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We can assume a finite dependency.


REPRESENTING A JOINT DISTRIBUTION
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We can assume a finite dependency.


For instance, for two last variables:





Now, we can model  by a single model.


➡E.g., we can take a neural network.


p(x) = p(x1)p(x2 |x1)
D

∑
d=3

p(xd |xd−2, xd−1)

p(xd |xd−2, xd−1)
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We can assume a finite dependency.


For instance, for two last variables:





Now, we can model  by a single model.


➡E.g., we can take a neural network.


However, it is still pretty limiting, because we need to decide on the 
length of the dependency. 

p(x) = p(x1)p(x2 |x1)
D

∑
d=3

p(xd |xd−2, xd−1)

p(xd |xd−2, xd−1)

REPRESENTING A JOINT DISTRIBUTION
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Instead, we can use RNNs to model the conditionals:





where  .


p(xd |x<d) = p (xd |RNN(xd−1, hd−1))
hd = RNN(xd−1, hd−1)

AUTOREGRESSIVE MODELS (ARM)
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Instead, we can use RNNs to model the conditionals:





where  .


Advantages:


➡ We don’t need to define dependencies.


➡ A single parameterization.


p(xd |x<d) = p (xd |RNN(xd−1, hd−1))
hd = RNN(xd−1, hd−1)
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Instead, we can use RNNs to model the conditionals:





where  .


Advantages:


➡ We don’t need to define dependencies.


➡ A single parameterization.


RNN are slow, because they’re sequential.

p(xd |x<d) = p (xd |RNN(xd−1, hd−1))
hd = RNN(xd−1, hd−1)
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Instead, we can use RNNs to model the conditionals:





where  .


Advantages:


➡ We don’t need to define dependencies.


➡ A single parameterization.


RNN are slow, because they’re sequential. Can we do better?

p(xd |x<d) = p (xd |RNN(xd−1, hd−1))
hd = RNN(xd−1, hd−1)

AUTOREGRESSIVE MODELS (ARM)
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Let us consider a sequence .


We assume all observed data are D-dimensional.


x = [x1, x2, …, xD]⊤

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES
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Let us consider a sequence .


We assume all observed data are D-dimensional.


We can use 1D convolutional layers to process all signals at once.


Moreover, we can use dilation to learn long-range dependencies.

x = [x1, x2, …, xD]⊤
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Let us consider a sequence .
x = [x1, x2, …, xD]⊤
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We can use 1D convolutional layers to process all signals at once.


Notice:


• Causal convolution  
(i.e., looking only to the “past”)
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We can use 1D convolutional layers to process all signals at once.


Notice:


• Causal convolution  
(i.e., looking only to the “past”)


• Very efficient using current  
DL frameworks.
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We can use 1D convolutional layers to process all signals at once.


Notice:


• Causal convolution  
(i.e., looking only to the “past”)


• Very efficient using current  
DL frameworks. 

• For deep neural networks, NNs learn long-range dependencies.
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We can use 1D convolutional layers to process all signals at once.


Notice:


• Causal convolution  
(i.e., looking only to the “past”)


• Very efficient using current  
DL frameworks. 

• For deep neural networks, NNs learn long-range dependencies.

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

33 Oord, Aaron van den, et al. "Wavenet: A generative model for raw audio." arXiv preprint arXiv:1609.03499 (2016).



We can utilize the very same idea for images, but using 2D convolutions.


We need to remember about causal 
convolutions!


PIXELCNN
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We can utilize the very same idea for images, but using 2D convolutions.


We need to remember about causal 
convolutions!


Moreover, we should think of  
2 or even 3 dimensions (CxHxW).


We can accomplish that by composing two Conv2D layers.
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We can utilize the very same idea for images, but using 2D convolutions.
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We can utilize the very same idea for images, but using 2D convolutions.


We need to remember about causal 
convolutions!


Moreover, we should think of  
2 or even 3 dimensions (CxHxW).


We can accomplish that by composing two Conv2D layers.


The first Conv2D layer covers the upper part.


The second Conv2D layer covers the left part.

PIXELCNN
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We can utilize the very same idea for images, but using 2D convolutions.
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using masking

for kernel weights.

Van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders." NIPS. 2016.



Originally, PixelCNN used the softmax non-linearity at the end to output 
integers between 0 and 255 (i.e., pixel values).


Currently, a mixture of discretized logistic distributions is used:



P(x ∣ π, μ, s) =
K

∑
i=1

πi [σ ((x + 0.5 − μi)/si) − σ ((x − 0.5 − μi)/si)]

PIXELCNN

39 Salimans, Tim, et al. "PixelCNN++: Improving the pixelcnn with discretized logistic mixture likelihood and other 
modifications." arXiv (2017).



Originally, PixelCNN used the softmax non-linearity at the end to output 
integers between 0 and 255 (i.e., pixel values).


Currently, a mixture of discretized logistic distributions is used:



P(x ∣ π, μ, s) =
K

∑
i=1

πi [σ ((x + 0.5 − μi)/si) − σ ((x − 0.5 − μi)/si)]

PIXELCNN

40

sigmoid function

Salimans, Tim, et al. "PixelCNN++: Improving the pixelcnn with discretized logistic mixture likelihood and other 
modifications." arXiv (2017).



Originally, PixelCNN used the softmax non-linearity at the end to output 
integers between 0 and 255 (i.e., pixel values).


Currently, a mixture of discretized logistic distributions is used:
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Learnable as a parameter

Salimans, Tim, et al. "PixelCNN++: Improving the pixelcnn with discretized logistic mixture likelihood and other 
modifications." arXiv (2017).



PIXELCNN

42 Salimans, Tim, et al. "PixelCNN++: Improving the pixelcnn with discretized logistic mixture likelihood and other 
modifications." arXiv (2017).

Sampled Real



Advantages


✓Exact likelihood.


✓Stable training.

AUTOREGRESSIVE MODELS
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Disadvantages


- Very slow sampling.


- No compression.


- Sometimes, low visual quality.



FLOW-BASED MODELS

44



Let us consider a random variable  with .
v ∈ ℝ p(v) = 𝒩(v |0,1)

CHANGE OF VARIABLES
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Let us consider a random variable  with .


Then, we take the following transformation: .


Q: What is the pdf for ?


v ∈ ℝ p(v) = 𝒩(v |0,1)

u = 0.75 ⋅ v + 1

u
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Let us consider a random variable  with .
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Let us consider a random variable  with .


Then, we take the following transformation: .


Q: What is the pdf for ?


A: The pdf is .


In general, we have:





v ∈ ℝ p(v) = 𝒩(v |0,1)

u = 0.75 ⋅ v + 1

u

p(u) = 𝒩(u |1,0.752)

p(u) = p (f −1(u)) ∂f −1(u)
∂u
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Let us consider a random variable  with .
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f −1(u) =
u − 1
0.75

∂f −1(u)
∂u

=
4
3

p(u) = p ( u − 1
0.75 ) 4

3
=

1

2π 0.752
exp {−(u − 1)2/0.752}



Multidimensional case:





where:





p(u) = p (f −1(u)) ∂f −1(u)
∂u

∂f −1(u)
∂u

= det Jf−1(u)
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Jf−1 =

∂f −1
1

∂u1
… ∂f −1

1

∂uD

⋮ ⋱ ⋮
∂f −1

D

∂u1
⋯ ∂f −1

D

∂uD

Jacobian
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Jf−1 =

∂f −1
1

∂u1
… ∂f −1

1

∂uD

⋮ ⋱ ⋮
∂f −1

D

∂u1
⋯ ∂f −1

D

∂uD

Jacobian

How can we utilize this idea?



Let us consider a sequence of invertible transformations .


We can start with a simple distribution, e.g., .


fk : ℝD → ℝD

π(z) = 𝒩(z |0, I)

APPLYING CHANGE OF VARIABLES AND INVERTIBLE TRANSFORMATIONS

54
Rippel, O., & Adams, R. P. (2013). High-dimensional probability estimation with deep density models. arXiv
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Let us consider a sequence of invertible transformations .


We can start with a simple distribution, e.g., .


This results in: 

fk : ℝD → ℝD

π(z) = 𝒩(z |0, I)

p(x) = π (z0)
K

∏
i=1

det
∂fi (zi−1)

∂zi−1

−1

APPLYING CHANGE OF VARIABLES AND INVERTIBLE TRANSFORMATIONS
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Rippel, O., & Adams, R. P. (2013). High-dimensional probability estimation with deep density models. arXiv
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2D EXAMPLE
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{fk}

{f −1
k }



The density model: 
p(x) = π (z0)
K

∏
i=1

det
∂fi (zi−1)

∂zi−1

−1

DENSITY MODELING WITH INVERTIBLE NEURAL NETWORKS
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The density model: 


In order to obtain flexible transformations , we use neural networks.


However, we need to ensure that they are invertible.


p(x) = π (z0)
K

∏
i=1

det
∂fi (zi−1)

∂zi−1

−1

fk
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The density model: 


In order to obtain flexible transformations , we use neural networks.


However, we need to ensure that they are invertible.


Moreover, we cannot use any invertible neural network, because we need 
to remember about the Jacobian!


p(x) = π (z0)
K

∏
i=1

det
∂fi (zi−1)

∂zi−1

−1

fk
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The density model: 


In order to obtain flexible transformations , we use neural networks.


However, we need to ensure that they are invertible.


Moreover, we cannot use any invertible neural network, because we need 
to remember about the Jacobian!


Calculating Jacobian is the main challenge in flow-based models.

p(x) = π (z0)
K

∏
i=1

det
∂fi (zi−1)

∂zi−1

−1

fk

DENSITY MODELING WITH INVERTIBLE NEURAL NETWORKS
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Design the invertible transformations as follows:








where:  and  are arbitrary neural networks.


y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (s (x1:d)) + t (x1:d)
s ( ⋅ ) t ( ⋅ )

REALNVP

62 Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using RealNVP. arXiv preprint arXiv:1605.08803.



Design the invertible transformations as follows:








where:  and  are arbitrary neural networks.


This is invertible by design, because:





y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (s (x1:d)) + t (x1:d)
s ( ⋅ ) t ( ⋅ )

xd+1:D = (yd+1:D − t (y1:d)) ⊙ exp (−s (y1:d))
x1:d = y1:d

REALNVP
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Known as 

affine coupling layer



The invertible transformation:








What about the Jacobian?


y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (s (x1:d)) + t (x1:d)

REALNVP
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The invertible transformation:
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The invertible transformation:








What about the Jacobian?


and 


y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (s (x1:d)) + t (x1:d)

det(J) =
D−d

∏
j=1

exp (s (x1:d))j
= exp

D−d

∑
j=1

s (x1:d)j

REALNVP
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The invertible transformation:








What about the Jacobian?


and 
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yd+1:D = xd+1:D ⊙ exp (s (x1:d)) + t (x1:d)

det(J) =
D−d

∏
j=1

exp (s (x1:d))j
= exp

D−d

∑
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s (x1:d)j

REALNVP
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Easy to calculate!



We can also introduce the idea of autoregressive modeling here as well:

REALNVP
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We can also introduce the idea of autoregressive modeling here as well:
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p(z1)p(z2)p(z3 |z1, z2)p(z4 |z1, z2, z3)
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p(z1)p(z2)p(z3 |z1, z2)p(z4 |z1, z2, z3)



We can also introduce the idea of autoregressive modeling here as well:
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p(z1)p(z2)p(z3 |z1, z2)p(z4 |z1, z2, z3)



Moreover, we can use additional transformations:


1. Permutations of variables (this is invertible).


 this helps to “mix” variables.


2. Divide variables using a checkerboard pattern.


 this helps to learn higher-order dependencies.


3. Use squeezing: reshape input tensor


 reshaping can help to “mix” variables.

→

→

→

REALNVP
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REALNVP
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REALNVP
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A model contains ~1000 convolutions.

A new component: 1x1 convolution instead of a permutation matrix.


GLOW: REALNVP WITH 1X1 CONVOLUTIONS

76
Kingma, D. P., & Dhariwal, P. (2018). GLOW: Generative flow with invertible 1x1 convolutions. NeurIPS 2018



GLOW: SAMPLES
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CelebAHQ



GLOW: LATENT INTERPOLATION
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CelebAHQ



q(z |x) ∝̃ p(x |z) p(z)

VAES WITH NORMALIZING FLOWS
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Variational inference 

with normalizing flows Flow-based priors

Rezende & Mohamed. "Variational 

inference with normalizing flows."

v.d. Berg, Hasenclever, Tomczak, Welling,

“Sylvester normalizing flows for 

variational inference”

Chen, Kingma, Salimans, Duan, Dhariwal, 

Schulman, Abbeel, “Variational lossy 

autoencoder”

Gatopoulos, Tomczak. "Self-Supervised 

Variational Auto-Encoders." 

Kingma, Salimans, Jozefowicz, Chen, 

Sutskever, Welling “Improved variational 

inference with inverse autoregressive flow”

Tomczak, Welling, “Improving variational 

auto-encoders using householder flow”



Thank you!


