
Jakub M. Tomczak

Deep Learning

Deep generative modeling:

ARMs and Normalizing Flows

TYPES OF GENERATIVE MODELS

2

Generative
model

Autoregressive
(e.g., PixelCNN)

Implicit models
(e.g., GANs)

Prescribed models
(e.g., VAE)

Latent variable
models

Flow-based  
(e.g., RealNVP, GLOW)

GENERATIVE MODELS

3

Training Likelihood Sampling Compression

Autoregressive models
(e.g., PixelCNN) Stable Exact Slow No

Flow-based models 
(e.g., RealNVP) Stable Exact Fast/Slow No

Implicit models 
(e.g., GANs) Unstable No Fast No

Prescribed models 
(e.g., VAEs) Stable Approximate Fast Yes

GENERATIVE MODELS

4

Training Likelihood Sampling Compression

Autoregressive models
(e.g., PixelCNN) Stable Exact Slow No

Flow-based models 
(e.g., RealNVP) Stable Exact Fast/Slow No

Implicit models 
(e.g., GANs) Unstable No Fast No

Prescribed models 
(e.g., VAEs) Stable Approximate Fast Yes

ARMS: AUTOREGRESSIVE MODELS

5

There are two main rules in the probability theory:

• Sum rule:

• Product rule:
p(x, y) = p(y |x) p(x)

REPRESENTING A JOINT DISTRIBUTION

6

p(x) = ∑
y

p(x, y)

There are two main rules in the probability theory:

• Sum rule:

• Product rule:

Before, we used these two rules for latent-variable models:

p(x, y) = p(y |x) p(x)

p(x) = ∫ p(x, z) dz

= ∫ p(x |z) p(z) dz

REPRESENTING A JOINT DISTRIBUTION

7

p(x) = ∑
y

p(x, y)

There are two main rules in the probability theory:

• Sum rule:

• Product rule:

Now, we will use the product rule to express the distribution of :

where

p(x, y) = p(y |x) p(x)

x ∈ ℝD

p(x) = p(x1)
D

∑
d=2

p(xd |x<d)

x<d = [x1, x2, …, xd−1]⊤

REPRESENTING A JOINT DISTRIBUTION

8

p(x) = ∑
y

p(x, y)

We use the product rule to express the distribution of :

where .

x ∈ ℝD

p(x) = p(x1)
D

∑
d=2

p(xd |x<d)

x<d = [x1, x2, …, xd−1]⊤

REPRESENTING A JOINT DISTRIBUTION

9

We use the product rule to express the distribution of :

where .

The order of variables isn’t important.

x ∈ ℝD

p(x) = p(x1)
D

∑
d=2

p(xd |x<d)

x<d = [x1, x2, …, xd−1]⊤

REPRESENTING A JOINT DISTRIBUTION

10

We use the product rule to express the distribution of :

where .

The order of variables isn’t important.

However, modeling all conditionals separately is infeasible…

x ∈ ℝD

p(x) = p(x1)
D

∑
d=2

p(xd |x<d)

x<d = [x1, x2, …, xd−1]⊤

REPRESENTING A JOINT DISTRIBUTION

11

We use the product rule to express the distribution of :

where .

The order of variables isn’t important.

However, modeling all conditionals separately is infeasible…

Can we do better that?

x ∈ ℝD

p(x) = p(x1)
D

∑
d=2

p(xd |x<d)

x<d = [x1, x2, …, xd−1]⊤

REPRESENTING A JOINT DISTRIBUTION

12

We can assume a finite dependency.

REPRESENTING A JOINT DISTRIBUTION

13

We can assume a finite dependency.

For instance, for two last variables:

Now, we can model by a single model.

➡E.g., we can take a neural network.

p(x) = p(x1)p(x2 |x1)
D

∑
d=3

p(xd |xd−2, xd−1)

p(xd |xd−2, xd−1)

REPRESENTING A JOINT DISTRIBUTION

14

We can assume a finite dependency.

For instance, for two last variables:

p(x) = p(x1)p(x2 |x1)
D

∑
d=3

p(xd |xd−2, xd−1)

REPRESENTING A JOINT DISTRIBUTION

15

We can assume a finite dependency.

For instance, for two last variables:

Now, we can model by a single model.

➡E.g., we can take a neural network.

p(x) = p(x1)p(x2 |x1)
D

∑
d=3

p(xd |xd−2, xd−1)

p(xd |xd−2, xd−1)

REPRESENTING A JOINT DISTRIBUTION

16

We can assume a finite dependency.

For instance, for two last variables:

p(x) = p(x1)p(x2 |x1)
D

∑
d=3

p(xd |xd−2, xd−1)

REPRESENTING A JOINT DISTRIBUTION

17

We can assume a finite dependency.

For instance, for two last variables:

Now, we can model by a single model.

➡E.g., we can take a neural network.

However, it is still pretty limiting, because we need to decide on the
length of the dependency.

p(x) = p(x1)p(x2 |x1)
D

∑
d=3

p(xd |xd−2, xd−1)

p(xd |xd−2, xd−1)

REPRESENTING A JOINT DISTRIBUTION

18

Instead, we can use RNNs to model the conditionals:

where .

p(xd |x<d) = p (xd |RNN(xd−1, hd−1))
hd = RNN(xd−1, hd−1)

AUTOREGRESSIVE MODELS (ARM)

19

Instead, we can use RNNs to model the conditionals:

where .

Advantages:

➡ We don’t need to define dependencies.

➡ A single parameterization.

p(xd |x<d) = p (xd |RNN(xd−1, hd−1))
hd = RNN(xd−1, hd−1)

AUTOREGRESSIVE MODELS (ARM)

20

Instead, we can use RNNs to model the conditionals:

p(xd |x<d) = p (xd |RNN(xd−1, hd−1))

AUTOREGRESSIVE MODELS (ARM)

21

Instead, we can use RNNs to model the conditionals:

where .

Advantages:

➡ We don’t need to define dependencies.

➡ A single parameterization.

RNN are slow, because they’re sequential.

p(xd |x<d) = p (xd |RNN(xd−1, hd−1))
hd = RNN(xd−1, hd−1)

AUTOREGRESSIVE MODELS (ARM)

22

Instead, we can use RNNs to model the conditionals:

where .

Advantages:

➡ We don’t need to define dependencies.

➡ A single parameterization.

RNN are slow, because they’re sequential. Can we do better?

p(xd |x<d) = p (xd |RNN(xd−1, hd−1))
hd = RNN(xd−1, hd−1)

AUTOREGRESSIVE MODELS (ARM)

23

Let us consider a sequence .

We assume all observed data are D-dimensional.

x = [x1, x2, …, xD]⊤

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

24

Let us consider a sequence .

We assume all observed data are D-dimensional.

We can use 1D convolutional layers to process all signals at once.

Moreover, we can use dilation to learn long-range dependencies.

x = [x1, x2, …, xD]⊤

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

25

Let us consider a sequence .
x = [x1, x2, …, xD]⊤

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

26

We can use 1D convolutional layers to process all signals at once.

Notice:

• Causal convolution  
(i.e., looking only to the “past”)

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

27

We can use 1D convolutional layers to process all signals at once.

Notice:

• Causal convolution  
(i.e., looking only to the “past”)

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

28

We can use 1D convolutional layers to process all signals at once.

Notice:

• Causal convolution  
(i.e., looking only to the “past”)

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

29

We can use 1D convolutional layers to process all signals at once.

Notice:

• Causal convolution  
(i.e., looking only to the “past”)

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

30

We can use 1D convolutional layers to process all signals at once.

Notice:

• Causal convolution  
(i.e., looking only to the “past”)

• Very efficient using current  
DL frameworks.

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

31

We can use 1D convolutional layers to process all signals at once.

Notice:

• Causal convolution  
(i.e., looking only to the “past”)

• Very efficient using current  
DL frameworks. 

• For deep neural networks, NNs learn long-range dependencies.

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

32

We can use 1D convolutional layers to process all signals at once.

Notice:

• Causal convolution  
(i.e., looking only to the “past”)

• Very efficient using current  
DL frameworks. 

• For deep neural networks, NNs learn long-range dependencies.

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

33 Oord, Aaron van den, et al. "Wavenet: A generative model for raw audio." arXiv preprint arXiv:1609.03499 (2016).

We can utilize the very same idea for images, but using 2D convolutions.

We need to remember about causal 
convolutions!

PIXELCNN

34

We can utilize the very same idea for images, but using 2D convolutions.

We need to remember about causal 
convolutions!

Moreover, we should think of  
2 or even 3 dimensions (CxHxW).

We can accomplish that by composing two Conv2D layers.

PIXELCNN

35

We can utilize the very same idea for images, but using 2D convolutions.

We need to remember about causal 
convolutions!

Moreover, we should think of  
2 or even 3 dimensions (CxHxW).

We can accomplish that by composing two Conv2D layers.

The first Conv2D layer covers the upper part.

PIXELCNN

36

We can utilize the very same idea for images, but using 2D convolutions.

We need to remember about causal 
convolutions!

Moreover, we should think of  
2 or even 3 dimensions (CxHxW).

We can accomplish that by composing two Conv2D layers.

The first Conv2D layer covers the upper part.

The second Conv2D layer covers the left part.

PIXELCNN

37 Van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders." NIPS. 2016.

We can utilize the very same idea for images, but using 2D convolutions.

We need to remember about causal 
convolutions!

Moreover, we should think of  
2 or even 3 dimensions (CxHxW).

We can accomplish that by composing two Conv2D layers.

The first Conv2D layer covers the upper part.

The second Conv2D layer covers the left part.

PIXELCNN

38

using masking

for kernel weights.

Van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders." NIPS. 2016.

Originally, PixelCNN used the softmax non-linearity at the end to output
integers between 0 and 255 (i.e., pixel values).

Currently, a mixture of discretized logistic distributions is used:

P(x ∣ π, μ, s) =
K

∑
i=1

πi [σ ((x + 0.5 − μi)/si) − σ ((x − 0.5 − μi)/si)]

PIXELCNN

39 Salimans, Tim, et al. "PixelCNN++: Improving the pixelcnn with discretized logistic mixture likelihood and other
modifications." arXiv (2017).

Originally, PixelCNN used the softmax non-linearity at the end to output
integers between 0 and 255 (i.e., pixel values).

Currently, a mixture of discretized logistic distributions is used:

P(x ∣ π, μ, s) =
K

∑
i=1

πi [σ ((x + 0.5 − μi)/si) − σ ((x − 0.5 − μi)/si)]

PIXELCNN

40

sigmoid function

Salimans, Tim, et al. "PixelCNN++: Improving the pixelcnn with discretized logistic mixture likelihood and other
modifications." arXiv (2017).

Originally, PixelCNN used the softmax non-linearity at the end to output
integers between 0 and 255 (i.e., pixel values).

Currently, a mixture of discretized logistic distributions is used:

P(x ∣ π, μ, s) =
K

∑
i=1

πi [σ ((x + 0.5 − μi)/si) − σ ((x − 0.5 − μi)/si)]

PIXELCNN

41

Learnable as a parameter

Salimans, Tim, et al. "PixelCNN++: Improving the pixelcnn with discretized logistic mixture likelihood and other
modifications." arXiv (2017).

PIXELCNN

42 Salimans, Tim, et al. "PixelCNN++: Improving the pixelcnn with discretized logistic mixture likelihood and other
modifications." arXiv (2017).

Sampled Real

Advantages

✓Exact likelihood.

✓Stable training.

AUTOREGRESSIVE MODELS

43

Disadvantages

- Very slow sampling.

- No compression.

- Sometimes, low visual quality.

FLOW-BASED MODELS

44

Let us consider a random variable with .
v ∈ ℝ p(v) = 𝒩(v |0,1)

CHANGE OF VARIABLES

45

Let us consider a random variable with .

Then, we take the following transformation: .

Q: What is the pdf for ?

v ∈ ℝ p(v) = 𝒩(v |0,1)

u = 0.75 ⋅ v + 1

u

CHANGE OF VARIABLES

46

Let us consider a random variable with .

Then, we take the following transformation: .

Q: What is the pdf for ?

A: The pdf is .

v ∈ ℝ p(v) = 𝒩(v |0,1)

u = 0.75 ⋅ v + 1

u

p(u) = 𝒩(u |1,0.752)

CHANGE OF VARIABLES

47

Let us consider a random variable with .

Then, we take the following transformation: .

Q: What is the pdf for ?

A: The pdf is .

In general, we have:

v ∈ ℝ p(v) = 𝒩(v |0,1)

u = 0.75 ⋅ v + 1

u

p(u) = 𝒩(u |1,0.752)

p(u) = p (f −1(u)) ∂f −1(u)
∂u

CHANGE OF VARIABLES

48

Let us consider a random variable with .

Then, we take the following transformation: .

Q: What is the pdf for ?

A: The pdf is .

In general, we have:

v ∈ ℝ p(v) = 𝒩(v |0,1)

u = 0.75 ⋅ v + 1

u

p(u) = 𝒩(u |1,0.752)

p(u) = p (f −1(u)) ∂f −1(u)
∂u

CHANGE OF VARIABLES

49

f −1(u) =
u − 1
0.75

∂f −1(u)
∂u

=
4
3

Let us consider a random variable with .

Then, we take the following transformation: .

Q: What is the pdf for ?

A: The pdf is .

In general, we have:

v ∈ ℝ p(v) = 𝒩(v |0,1)

u = 0.75 ⋅ v + 1

u

p(u) = 𝒩(u |1,0.752)

p(u) = p (f −1(u)) ∂f −1(u)
∂u

CHANGE OF VARIABLES

50

f −1(u) =
u − 1
0.75

∂f −1(u)
∂u

=
4
3

p(u) = p (u − 1
0.75) 4

3
=

1

2π 0.752
exp {−(u − 1)2/0.752}

Multidimensional case:

where:

p(u) = p (f −1(u)) ∂f −1(u)
∂u

∂f −1(u)
∂u

= det Jf−1(u)

CHANGE OF VARIABLES

51

Multidimensional case:

where:

p(u) = p (f −1(u)) ∂f −1(u)
∂u

∂f −1(u)
∂u

= det Jf−1(u)

CHANGE OF VARIABLES

52

Jf−1 =

∂f −1
1

∂u1
… ∂f −1

1

∂uD

⋮ ⋱ ⋮
∂f −1

D

∂u1
⋯ ∂f −1

D

∂uD

Jacobian

Multidimensional case:

where:

p(u) = p (f −1(u)) ∂f −1(u)
∂u

∂f −1(u)
∂u

= det Jf−1(u)

CHANGE OF VARIABLES

53

Jf−1 =

∂f −1
1

∂u1
… ∂f −1

1

∂uD

⋮ ⋱ ⋮
∂f −1

D

∂u1
⋯ ∂f −1

D

∂uD

Jacobian

How can we utilize this idea?

Let us consider a sequence of invertible transformations .

We can start with a simple distribution, e.g., .

fk : ℝD → ℝD

π(z) = 𝒩(z |0, I)

APPLYING CHANGE OF VARIABLES AND INVERTIBLE TRANSFORMATIONS

54
Rippel, O., & Adams, R. P. (2013). High-dimensional probability estimation with deep density models. arXiv

Let us consider a sequence of invertible transformations .

We can start with a simple distribution, e.g., .

fk : ℝD → ℝD

π(z) = 𝒩(z |0, I)

APPLYING CHANGE OF VARIABLES AND INVERTIBLE TRANSFORMATIONS

55
Rippel, O., & Adams, R. P. (2013). High-dimensional probability estimation with deep density models. arXiv

0 0 0
...

pixel space“latent” space

Let us consider a sequence of invertible transformations .

We can start with a simple distribution, e.g., .

This results in:

fk : ℝD → ℝD

π(z) = 𝒩(z |0, I)

p(x) = π (z0)
K

∏
i=1

det
∂fi (zi−1)

∂zi−1

−1

APPLYING CHANGE OF VARIABLES AND INVERTIBLE TRANSFORMATIONS

56
Rippel, O., & Adams, R. P. (2013). High-dimensional probability estimation with deep density models. arXiv

0 0 0
...

pixel space“latent” space

2D EXAMPLE

57

{fk}

{f −1
k }

The density model:
p(x) = π (z0)
K

∏
i=1

det
∂fi (zi−1)

∂zi−1

−1

DENSITY MODELING WITH INVERTIBLE NEURAL NETWORKS

58

The density model:

In order to obtain flexible transformations , we use neural networks.

However, we need to ensure that they are invertible.

p(x) = π (z0)
K

∏
i=1

det
∂fi (zi−1)

∂zi−1

−1

fk

DENSITY MODELING WITH INVERTIBLE NEURAL NETWORKS

59

The density model:

In order to obtain flexible transformations , we use neural networks.

However, we need to ensure that they are invertible.

Moreover, we cannot use any invertible neural network, because we need
to remember about the Jacobian!

p(x) = π (z0)
K

∏
i=1

det
∂fi (zi−1)

∂zi−1

−1

fk

DENSITY MODELING WITH INVERTIBLE NEURAL NETWORKS

60

The density model:

In order to obtain flexible transformations , we use neural networks.

However, we need to ensure that they are invertible.

Moreover, we cannot use any invertible neural network, because we need
to remember about the Jacobian!

Calculating Jacobian is the main challenge in flow-based models.

p(x) = π (z0)
K

∏
i=1

det
∂fi (zi−1)

∂zi−1

−1

fk

DENSITY MODELING WITH INVERTIBLE NEURAL NETWORKS

61

Design the invertible transformations as follows:

where: and are arbitrary neural networks.

y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (s (x1:d)) + t (x1:d)
s (⋅) t (⋅)

REALNVP

62 Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using RealNVP. arXiv preprint arXiv:1605.08803.

Design the invertible transformations as follows:

where: and are arbitrary neural networks.

This is invertible by design, because:

y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (s (x1:d)) + t (x1:d)
s (⋅) t (⋅)

xd+1:D = (yd+1:D − t (y1:d)) ⊙ exp (−s (y1:d))
x1:d = y1:d

REALNVP

63 Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using RealNVP. arXiv preprint arXiv:1605.08803.

Design the invertible transformations as follows:

where: and are arbitrary neural networks.

This is invertible by design, because:

y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (s (x1:d)) + t (x1:d)
s (⋅) t (⋅)

xd+1:D = (yd+1:D − t (y1:d)) ⊙ exp (−s (y1:d))
x1:d = y1:d

REALNVP

64 Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using RealNVP. arXiv preprint arXiv:1605.08803.

Known as

affine coupling layer

The invertible transformation:

What about the Jacobian?

y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (s (x1:d)) + t (x1:d)

REALNVP

65

The invertible transformation:

What about the Jacobian?

y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (s (x1:d)) + t (x1:d)

REALNVP

66

The invertible transformation:

What about the Jacobian?

and

y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (s (x1:d)) + t (x1:d)

det(J) =
D−d

∏
j=1

exp (s (x1:d))j
= exp

D−d

∑
j=1

s (x1:d)j

REALNVP

67

The invertible transformation:

What about the Jacobian?

and

y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (s (x1:d)) + t (x1:d)

det(J) =
D−d

∏
j=1

exp (s (x1:d))j
= exp

D−d

∑
j=1

s (x1:d)j

REALNVP

68

Easy to calculate!

We can also introduce the idea of autoregressive modeling here as well:

REALNVP

69

We can also introduce the idea of autoregressive modeling here as well:

REALNVP

70

p(z1)p(z2)p(z3 |z1, z2)p(z4 |z1, z2, z3)

We can also introduce the idea of autoregressive modeling here as well:

REALNVP

71

p(z1)p(z2)p(z3 |z1, z2)p(z4 |z1, z2, z3)

We can also introduce the idea of autoregressive modeling here as well:

REALNVP

72

p(z1)p(z2)p(z3 |z1, z2)p(z4 |z1, z2, z3)

Moreover, we can use additional transformations:

1. Permutations of variables (this is invertible).

 this helps to “mix” variables.

2. Divide variables using a checkerboard pattern.

 this helps to learn higher-order dependencies.

3. Use squeezing: reshape input tensor

 reshaping can help to “mix” variables.

→

→

→

REALNVP

73

REALNVP

74

REALNVP

75

A model contains ~1000 convolutions.

A new component: 1x1 convolution instead of a permutation matrix.

GLOW: REALNVP WITH 1X1 CONVOLUTIONS

76
Kingma, D. P., & Dhariwal, P. (2018). GLOW: Generative flow with invertible 1x1 convolutions. NeurIPS 2018

GLOW: SAMPLES

77

CelebAHQ

GLOW: LATENT INTERPOLATION

78

CelebAHQ

q(z |x) ∝̃ p(x |z) p(z)

VAES WITH NORMALIZING FLOWS

79

Variational inference

with normalizing flows Flow-based priors

Rezende & Mohamed. "Variational

inference with normalizing flows."

v.d. Berg, Hasenclever, Tomczak, Welling,

“Sylvester normalizing flows for

variational inference”

Chen, Kingma, Salimans, Duan, Dhariwal,

Schulman, Abbeel, “Variational lossy

autoencoder”

Gatopoulos, Tomczak. "Self-Supervised

Variational Auto-Encoders."

Kingma, Salimans, Jozefowicz, Chen,

Sutskever, Welling “Improved variational

inference with inverse autoregressive flow”

Tomczak, Welling, “Improving variational

auto-encoders using householder flow”

Thank you!

