Deep generative modeling:
ARMs and Normalizing Flows

Jakub M. Tomczak
Deep Learning

VRIJE
UNIVERSITEIT
AN° AMSTERDAM

TYPES OF GENERATIVE MODELS

Generative
model
Autoregressive Flow-based Latent variable
(e.g., PixelCNN) (e.g., RealNVP, GLOW) models
Implicit models Prescribed models
(e.g., GANSs) (e.g., VAE)

: VU

GENERATIVE MODELS

Autoregressive models
(e.g., PixelCNN)

Training

Stable

Likelihood

Sampling

Slow

Compression

Flow-based models
(e.g., RealNVP)

Implicit models

(e.g., GANSs)

Prescribed models
(e.g., VAES)

Stable Exact Fast/Slow No
Unstable No Fast No
Stable Approximate Fast Yes

VU¥

GENERATIVE MODELS

Autoregressive models
(e.g., PixelCNN)

Training

Stable

Likelihood

Sampling

Slow

Compression

Flow-based models
(e.g., RealNVP)

Implicit models
(e.g., GANSs)

Stable

Unstable

No

Fast/Slow

Prescribed models

(e.g., VAES)

Stable

Approximate

Fast

Yes

VU¥

ARMS: AUTOREGRESSIVE MODELS

: VU

REPRESENTING A JOINT DISTRIBUTION

There are two main rules in the probability theory:

e Sumrule: p(x) = Zp(x,y)
e Product rule: p(x, y)y= p(v|x) p(x)

: VU

REPRESENTING A JOINT DISTRIBUTION

There are two main rules in the probability theory:

e Sumrule: p(x) = ZP(X,)/)
e Product rule: p(x, y)y= p(v|x) p(x)

Before, we used these two rules for latent-variable models:

p(x) = | p(x,2) dz

p(x|z) p(z) dz
: ” VUf¥

REPRESENTING A JOINT DISTRIBUTION

There are two main rules in the probability theory:

e Sumrule: p(x) = ZP(X,)’)
e Product rule: p(x, y)y= p(v|x) p(x)

Now, we will use the product rule to express the distribution of X € RP:
D
p(x) = p(x))) pyl X)
d=2

. T
Where X<d — [.xl, XZ, Y xd—l]

: VUf¥

REPRESENTING A JOINT DISTRIBUTION

We use the product rule to express the distribution of X € RP:

D
p(x) = px;)) pleg| x2y)
d=2

_ T
where X_; = [x[, X5, ..., X;_1] .

: VU

REPRESENTING A JOINT DISTRIBUTION

We use the product rule to express the distribution of X € RP:

D
p(x) = px;)) pleg| x2y)
d=2

_ T
where X_; = [x[, X5, ..., X;_1] .

The order of variables isn’t important.

. VUf¥

REPRESENTING A JOINT DISTRIBUTION

We use the product rule to express the distribution of X € RP:

D
p(x) = p(x))|
=2\

_ T
where X_; = [x[, X5, ..., X;_1] .
The order of variables isn’t important.

However, modeling all conditionals separately is infeasible...

; VUf¥

REPRESENTING A JOINT DISTRIBUTION

We use the product rule to express the distribution of X € RP:

D
p(x) = p(x))|
=2\

_ T
where X_; = [x[, X5, ..., X;_1] .
The order of variables isn’t important.

However, modeling all conditionals separately is infeasible...

Can we do better that?

. VUf¥

REPRESENTING A JOINT DISTRIBUTION

We can assume a finite dependency.

. VU

REPRESENTING A JOINT DISTRIBUTION

We can assume a finite dependency.

For instance, for two last variables:
D
P(X) = p)p(x,1x1) D Pyl Xg_0 Xy_y)
d=3
Now, we can model p(x;|x;_,, X;_;) by a single model.

= E.g., we can take a neural network.

. VUf¥

REPRESENTING A JOINT DISTRIBUTION

We can assume a finite dependency.

For instance, for two last variables:

D
p(x) = pCe)p [x0) D pOcg| x40 X%41)
d=3

. VU

REPRESENTING A JOINT DISTRIBUTION

We can assume a finite dependency.

For instance, for two last variables:
D
P(X) = p)p(x,1x1) D Pyl Xg_0 Xy_y)
d=3
Now, we can model p(x;|x;_,, X;_;) by a single model.

= E.g., we can take a neural network.

. VUf¥

REPRESENTING A JOINT DISTRIBUTION

We can assume a finite dependency.

For instance, for two last variables:

D
p(x) = pCe)p [x0) D pOcg| x40 X%41)
d=3

., g & & & & & & o VU

REPRESENTING A JOINT DISTRIBUTION

We can assume a finite dependency.

For instance, for two last variables:
D
P(X) = p)p(x,1x1) D Pyl Xg_0 Xy_y)
d=3
Now, we can model p(x;|x;_,, X;_;) by a single model.

= E.g., we can take a neural network.

However, it is still pretty limiting, because we need to decide on the
length of the dependency.

. VUf¥

AUTOREGRESSIVE MODELS (ARM)

Instead, we can use RNNs to model the conditionals:

pOy1xX.) = p (x| RNNGy_y, hy_y))
where hd — RNN(xd_l, hd—l) .

. VU

AUTOREGRESSIVE MODELS (ARM)

Instead, we can use RNNs to model the conditionals:
pxglXg) =p (xleNN(xd—l’hd—l))

where h; = RNN(x,;_{,h;_,) .

Advantages:

= \We don’t need to define dependencies.

= A single parameterization.

. VUf¥

AUTOREGRESSIVE MODELS (ARM)

Instead, we can use RNNs to model the conditionals:

pOy1xX.) = p (x| RNNGy_y, hy_y))

)
O O O O O O o

softmax
ha
y = @ ® ® @ ® @
7/ / NN block
Td
@ @ @ @ O @ @ O

. VU

AUTOREGRESSIVE MODELS (ARM)

Instead, we can use RNNs to model the conditionals:
pxglXg) =p (xleNN(xd—l’hd—l))

where h; = RNN(x,;_{,h;_,) .

Advantages:

= \We don’t need to define dependencies.

= A single parameterization.

RNN are slow, because they’re sequential.

. VUf¥

AUTOREGRESSIVE MODELS (ARM)

Instead, we can use RNNs to model the conditionals:
pxglXg) =p (xleNN(xd—l’hd—l))

where h; = RNN(x,;_{,h;_,) .

Advantages:

= \We don’t need to define dependencies.

= A single parameterization.

RNN are slow, because they’re sequential. Can we do better?

, VUf¥

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

Let us consider a sequence X = [X, X, ..., Xp] .

We assume all observed data are D-dimensional.

. VU

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

Let us consider a sequence X = [x{, X,, ...,xD]T.
We assume all observed data are D-dimensional.
We can use 1D convolutional layers to process all signals at once.

Moreover, we can use dilation to learn long-range dependencies.

. VUf¥

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

Let us consider a sequence X = [X, X, ..., Xp] .

o o O O O 0O O

QQQQQQ

CausalConv1D(B)

CausalConv1D(B)

CausalConvliD(A)

Td

. ‘ ' . VUl

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

We can use 1D convolutional layers to process all signals at once.

Notice: © 0O 0O 0 0 O O

e Causal convolution
(i.e., looking only to the “past”)

CausalConv1D(B)

CausalConvl1D(B)

222
0

CausalConvlD(A)

Td

. VU

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

We can use 1D convolutional layers to process all signals at once.

O O O O

O
@)

Notice: o

e Causal convolution

Q
(i.e., looking only to the “past”) R R
o

28

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

We can use 1D convolutional layers to process all signals at once.

Notice: O O O

@)
O
O
O

e Causal convolution
(i.e., looking only to the “past”)

. VU

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

We can use 1D convolutional layers to process all signals at once.

Notice: O O O O O O 0O O

e Causal convolution o o 5 o o o
(i.e., looking only to the “past”)

. VU

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

We can use 1D convolutional layers to process all signals at once.

Notice: © 0O 0O 0 0 O O

e Causal convolution
(i.e., looking only to the “past”)

CausalConv1D(B)

CausalConvl1D(B)

- g
e Very efficient using current oy
@)

DL frameworks.

CausalConvlD(A)

Zd

. VU

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

We can use 1D convolutional layers to process all signals at once.

Notice: O O O O O O 0O O

e Causal convolution o o o
(i.e., looking only to the “past”) e Ch e £

e Very efficient using current
DL frameworks.

e For deep neural networks, NNs learn long-range dependencies.

; VUf¥

USING CONVOLUTIONAL NEURAL NETWORKS FOR MODELING SEQUENCES

We can use 1D convolutional layers to process all signals at once.

Notice: O O O O O 0O O

e Causal convolution o o o
(i.e., looking only to the “past”) e Ch e £

e Very efficient using current
DL frameworks.

e For deep neural networks, NNs learn long-range dependencies.

VU¥

% Oord, Aaron van den, et al. "Wavenet: A generative model for raw audio." arXiv preprint arXiv:1609.03499 (2016).

We can utilize the very same idea for images, but using 2D convolutions.

We need to remember about causal Lﬂ

0

255

convolutions!

~
1] —
7
g

y VU

We can utilize the very same idea for images, but using 2D convolutions.

We need to remember about causal

convolutions!

S | O | = | = | =
clo|l~|~=|—=
C ||| = |~
CcCl|lo|Oo |~ |-
cC|lo|o|~=|=

Moreover, we should think of
2 or even 3 dimensions (CxHxW).

We can accomplish that by composing two Conv2D layers.

. VUf¥

We can utilize the very same idea for images, but using 2D convolutions.

We need to remember about causal

convolutions!

c | o

(=R =

Cc | o |C

(= || = —Il—li—l

v—-|'—-r—l
OOH|HH
|...._.
|...H

Moreover, we should think of
2 or even 3 dimensions (CxHxW).

We can accomplish that by composing two Conv2D layers.

The first Conv2D layer covers the upper part.

. VUf¥

We can utilize the very same idea for images, but using 2D convolutions.

We need to remember about causal Lﬂ

0 } 255 11111

convolutions! A

|~

|~
(=10 == T L
(=" = =T L

Moreover, we should think of
2 or even 3 dimensions (CxHxW).

We can accomplish that by composing two Conv2D layers.
The first Conv2D layer covers the upper part.
The second Conv2D layer covers the left part.

VU¥

37Van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders." NIPS. 2016.

We can utilize the very same idea for images, but using 2D convolutions.

We need to remember about causal Lﬂ

0 ? 255

convolutions! A

Moreover, we should think of
2 or even 3 dimensions (CxHxW).

S | O | = | = | =
clo|l~|~=|—=
C ||| = |~
CcCl|lo|Oo |~ |-
cC|lo|o|~=|=

We can accomplish that by

using masking
for kernel weights.

VU¥

38Van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders." NIPS. 2016.

Originally, PixelCNN used the softmax non-linearity at the end to output
integers between 0 and 255 (i.e., pixel values).

Currently, a mixture of discretized logistic distributions is used:

P(x | 7, u,s) = iﬂi [0<<x+ 0.5 —,ul-)/sl-) — 6(()6 — 0.5 —Mi>/Si)]

=1

39 Salimans, Tim, et al. "PixelCNN++: Improving the pixelcnn with discretized logistic mixture likelihood and other VU k
modifications." arXiv (2017).

Originally, PixelCNN used the softmax non-linearity at the end to output
integers between 0 and 255 (i.e., pixel values).

Currently, a mixture of discretized logistic distributions is used:

K
P(x | 7, u,s) = ;ﬂi [0<<x+ 0.5 —,ul-)/sl-) — 6(()6 — 0.5 —Mi>/Si)]

N

sigmoid function

40Salimans, Tim, et al. "PixelCNN++: Improving the pixelcnn with discretized logistic mixture likelihood and other VU k
modifications." arXiv (2017).

Originally, PixelCNN used the softmax non-linearity at the end to output
integers between 0 and 255 (i.e., pixel values).

Currently, a mixture of discretized logistic distributions is used:

P(x | 7, u,s) = iﬂi [0<<x+ 0.5 —,ul-)/sl-) — 6(()6 — 0.5 —Mi>/Si)]

"\

Learnable as a parameter

41 Salimans, Tim, et al. "PixelCNN++: Improving the pixelcnn with discretized logistic mixture likelihood and other VU k
modifications." arXiv (2017).

PIXELCNN

AUTOREGRESSIVE MODELS

Advantages Disadvantages
v Exact likelihood. - Very slow sampling.
v Stable training. - No compression.

- Sometimes, low visual quality.

. VU

FLOW-BASED MODELS

. VU

CHANGE OF VARIABLES

Let us consider a random variable v € R with p(v) = 4/ (v|0,1).

. VU

CHANGE OF VARIABLES

Let us consider a random variable v € R with p(v) = 4/ (v|0,1).
Then, we take the following transformation: u = 0.75 - v + 1.

Q: What is the pdf for u?

. VUf¥

CHANGE OF VARIABLES

Let us consider a random variable v € R with p(v) = 4/ (v|0,1).

Then, we take the following transformation: u = 0.75 - v + 1.

Q: What is the pdf for u? 071

A: The pdf is p(u) = A/ (u|1,0.75%).)

0.1 1

0.0 1

; VU

CHANGE OF VARIABLES

Let us consider a random variable v € R with p(v) = 4/ (v|0,1).

Then, we take the following transformation: u = 0.75 - v + 1.

Q: What is the pdf for u? 7
A: The pdfis p(u) = A (1| 1,0.75%). o
In general, we have: "
_ of ! (u) .
pu)=p (f 1(u)) Py [A S

. VUf¥

CHANGE OF VARIABLES

Let us consider a random variable v € R with p(v) = 4/ (v|0,1).

Then, we take the following transformation: u = 0.75 - v + 1.

Q: What is the pdf for u? £) = b(t)—751

A: The pdfis p(u) = A (1] 1,0.75?). '

In general, we have: of ! (w) _ i
] of ! (u) o .

P =p (fw) | —

. VUf¥

CHANGE OF VARIABLES

Let us consider a random variable v € R with p(v) = 4/ (v|0,1).

Then, we take the following transformation: u = 0.75 - v + 1.

Q: What is the pdf for u? 1 u—1
ST W) = G

A: The pdfis p(u) = A (1] 1,0.75?). '
In general, we have: of ' (w) _ 4

of ~\(w) ou 3

_ (-1
P =p (fw) | —
u—1Y\ 4 1

p(u) =p (> — = exp { —(u — 1)%/0.75?
g 075) 3 /22 0.75° { j VU¥

CHANGE OF VARIABLES

Multidimensional case:

of ' (u)
ou

p(w) =p (f~'(w)

where:

of ' (u)
ou

= |det Iy

. VU

CHANGE OF VARIABLES

Multidimensional case:

of ' (w)
~1
u = u
p) =p (f'(w) -
where:
of ! (w) ‘
= [det J 1y ‘
ou /o Jacobian .
of! of’
ou, ouyp,
Jr=1 '

ofp' ofp'

B} T VU¥

CHANGE OF VARIABLES

Multidimensional case:

_ of ' (u)
pw) =p (f(w)
ou
where:
of l(u
f () - ‘det‘]f_l(u)‘
ou Jacobian _)
of ! of !
ou, o ouyp,
Jf—l — : . :
How can we utilize this idea? | of5! of 5!
. o o VUE

APPLYING CHANGE OF VARIABLES AND INVERTIBLE TRANSFORMATIONS

Let us consider a sequence of invertible transformations f; : R? — RP,

We can start with a simple distribution, e.g., 7(z) = A4 (z| 0, I).

VU¥

Rippel, O., & Adams, R. P. (2013). High-dimensional probability estimation with deep density models. arXiv

APPLYING CHANGE OF VARIABLES AND INVERTIBLE TRANSFORMATIONS

Let us consider a sequence of invertible transformations f; : R? — RP,

We can start with a simple distribution, e.g., 7(z) = A4 (z| 0, I).

J1 fo
—_— —_— —_—
— — = AN
. | ,
0 0 0
“latent” space pixel space

VU¥

Rippel, O., & Adams, R. P. (2013). High-dimensional probability estimation with deep density models. arXiv

APPLYING CHANGE OF VARIABLES AND INVERTIBLE TRANSFORMATIONS

Let us consider a sequence of invertible transformations f; : R? — RP,

We can start with a simple distribution, e.g., 7(z) = A4 (z| 0, I).

| 5| L
= JL — =N

“latent” space pixel space

of; (Zi—l)
et

0z;_;

Thisresults in: p(X) = 7 (ZO) H d
i=1

VU¥

Rippel, O., & Adams, R. P. (2013). High-dimensional probability estimation with deep density models. arXiv

Data space X Latent space Z

Inference {fk}
r~px =
z=f ()
. G -1 ¢
Generation & e
bz fiY; U
z=f""(z) | | o

. VU

DENSITY MODELING WITH INVERTIBLE NEURAL NETWORKS

-1
Jf; (Zi—l)
ct
0z;_

The density model: p(X) = 7 (ZO) H d
i=1

, VU

DENSITY MODELING WITH INVERTIBLE NEURAL NETWORKS

~1
Jf; (Zi—l)
et
0z;_,

The density model: p(X) = 7 (ZO) H d
i=1

In order to obtain flexible transformations f;, we use neural networks.

However, we need to ensure that they are invertible.

. VUf¥

DENSITY MODELING WITH INVERTIBLE NEURAL NETWORKS

~1
Jf; (Zi—l)
et
0z;_,

The density model: p(X) = 7 (ZO) H d
i=1

In order to obtain flexible transformations f;, we use neural networks.
However, we need to ensure that they are invertible.

Moreover, we cannot use any invertible neural network, because we need
to remember about the Jacobian!

. VUf¥

DENSITY MODELING WITH INVERTIBLE NEURAL NETWORKS

~1
Jf; (Zi—l)
et
0z;_,

The density model: p(X) = 7 (ZO) H d

i=1

In order to obtain flexible transformations f;, we use neural networks.

However, we need to ensure that they are invertible.

Moreover, we cannot use any invertible neural network, because we need
to remember about the Jacobian!

Calculating Jacobian is the main challenge in flow-based models.
VU¥

61

Design the invertible transformations as follows:

Yia = X14
Yi+1:p = X441.p © €Xp (S (Xlzd>) +1 (Xlzd>

where: s (-) and ¢ (-) are arbitrary neural networks.

62 Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using RealNVP. arXiv preprint arXiv:1605.08803. VU !!Eg

Design the invertible transformations as follows:
Yi:a = X1.4
Yar1:0 = Xgy1:0 © €Xp (S (Xlzd>) +1 (X))
where: s (-) and ¢ (-) are arbitrary neural networks.
This is invertible by design, because:
Xg+1:D = (Yd+1;D —1 (Y1:d>> O exp (‘S <YI:d>)
X1:d = Y1

VU¥

63 Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using RealNVP. arXiv preprint arXiv:1605.08803.

Design the invertible transformations as follows:

Yi.7 = Xj.
ld Ld Known as

Yiir1:p = X441.p © €Xp (s (Xlzd>) + ¢ (Xlzd> affine coupling layer
where: s (-) and t (-) are arbitrary neural networks.

This is invertible by design, because:
Xd+1:D = (Yd+1:D —1 (Y1:d>> © exp (‘S <YI:d))
X1.0 = Y14

VU¥

64 Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using RealNVP. arXiv preprint arXiv:1605.08803.

The invertible transformation:

Yi:a = X144
Yi+1:p = X441:p © €Xp (S (X1:d)) +1 (Xlzd)

What about the Jacobian?

. VU

The invertible transformation:

Yia = X1
Yi+1:0 = Xg+1.p © €Xp (S (X1:d)) +1 (Xlzd)
What about the Jacobian?
L4 04x(D-a)
I= oy
e diag(exp(s(x1.4)))

. VU

The invertible transformation:

Yi:a = X144
Yi+1:p = X441:p © €Xp (S (X1:d)) +1 (Xlzd)
What about the Jacobian?
Iq 04x(D—a)]
J=15y,. .
[@;’c—“j’ diag(exp(s(x1.4)))
D—d D—d
and det(J) = Hexp (s (Xlzd))j = exp Z) (Xlzd)j
Jj=1 J=1

. VUf¥

The invertible transformation:

Yi.a = X1a
Ya+1:p = Xg41:p © €XP (S (X1:d)) +1 (Xlzd)
What about the Jacobian?
Iq 04x(D—a)
J = 8yd+1:D :
52 diag(exp(s(x1.4)))
|
Dd Dd Easy to calculate!
and det(J) = exp (s (X;. = ex s (x.
) H p (s (x14)), = exp Zl, (%1a),
Jj= Jj=

. VUf¥

We can also introduce the idea of autoregressive modeling here as well:

VU¥

69

We can also introduce the idea of autoregressive modeling here as well:

P)P(2)P(23 |21, 2)P (24| 215 20 Z3)

VU¥

70

We can also introduce the idea of autoregressive modeling here as well:

VI IEN N CHENENEN : :

VU¥

71

We can also introduce the idea of autoregressive modeling here as well:

P(zp(2)p(z3 @7 (24215 205 Z3\)_

VU¥

72

Moreover, we can use additional transformations:
1. Permutations of variables (this is invertible).

— this helps to “mix” variables.

2. Divide variables using a checkerboard pattern.
— this helps to learn higher-order dependencies.
3. Use squeezing: reshape input tensor

— reshaping can help to “mix” variables.

. VUf¥

GLOW: REALNVP WITH 1X1 CONVOLUTIONS

A model contains ~1000 convolutions.
A new component: 1x1 convolution instead of a permutation matrix.

Y

* step of flow x K
affine coupling layer squjeze
invertible 1x1 conv @4— split
actnorm step of flow x K x (L—1)
A f
squeeze
'y

®
(a) One step of our flow. (b) Multi-scale architecture (Dinh et al., 2016).

. VUf¥

Kingma, D. P, & Dhariwal, P. (2018). GLOW: Generative flow with invertible 1x1 convolutions. NeurlPS 2018

N
—

CelebAHQ

8]
L
—
(o
=
<
Vg
=
@
=
O

GLOW: LATENT INTERPOLATION

CelebAHQ

. VU

VAES WITH NORMALIZING FLOWS

q(z|x) & p(x|z) p(z)

Variational inference
with normalizing flows

Rezende & Mohamed. "Variational
inference with normalizing flows."

Flow-based priors

Chen, Kingma, Salimans, Duan, Dhariwal,
Schulman, Abbeel, “Variational lossy

autoencoder”
v.d. Berg, Hasenclever, Tomczak, Welling, . .
“Sylvester normalizing flows for Gatopoulos, Tomczak. "Self-Supervised
variational inference” Variational Auto-Encoders."

Kingma, Salimans, Jozefowicz, Chen,
Sutskever, Welling “Improved variational
inference with inverse autoregressive flow”

Tomczak, Welling, “Improving variational

auto-encoders using householder flow” k
. VU

Thank you!

