Lecture 9: Reinforcement Learning

Emile van Krieken
Deep Learning 2020

k VRIE
divu.github.io VU

REINFORCEMENT LEARNING

Reinforcement learning

« Train agent to act in an environment by maximizing reward
Comparison

« Supervised learning: Exact action given

* Unsupervised learning: No reward given

Deep Reinforcement Learning

+ Agents use neural network policies

In Reinforcement Learning, we try to learn a policy of an agent that acts in an
environment. The agent should act ‘optimally’, in the sense that it should
maximize rewards it receives from the environment.

This is different from supervised learning, where agents are told exactly what
is the best action to perform. The agent just receives a reward from the
environment, but no feedback as to what action leads to good rewards.

Furthermore, it’s also not like unsupervised learning, where no explicit
feedback on how to act is given. We do receive rewards!

REINFORCEMENT LEARNING LOOP

* action Ot
‘ policy Tt learner
I state St
reward "'t
. VU

This is the standard reinforcement loop that most approaches follow. We
have an environment, like a game, or the real world in which a robot has to
act. We assume it is black-box, which means that we have no information
about what the environment looks like. The environment receives actions
from the agent, which follows a policy. A policy is a probability distribution
that suggests which action to take in some state. Of course, it receives the
state again from the environment.

- This loop happens for every timestep t. The environment presents a state
s_t to the policy \pi_\theta, which then chooses an action a_t. The
environment does some magic, and chooses the next state s_{t+1}. It also
returns a reward r_{t+1} for that time step, which could be received
because the agent achieves some goal in the environment. This reward is
then used in the learner to update the policy parameters.

CART POLE

* left or right

policy 7o [EEETEIOTY

if poll upright
otherwise VU“

Here, we present an example of an RL environment: Cart pole balancing. Our
agent is the funny object on the left of the screen, a cart, has to balance the
wooden stick, the pole, so that it remains upright.

To encode the state, it is sufficient to pass the angle of the pole, though
additional features can be thought of! Our agent uses its policy to decide
whether the cart should be moved to the left or the right, so the pole remains
upright.

It receives a positive reward if the pole is upright, and otherwise receives no
reward. The reward is used in the learner to update the parameters.

Simplest (Deep) RL setting
¢ Only neural network policies
¢ Episodic
¢ Online
¢ Model-free

Gradient estimation focus

In this lecture, we will focus on the simplest of Deep Reinforcement Learning
settings. We will only use neural networks to model our policies, and not look
at the tabular reinforcement learning setting or different machine learning
models.

We will assume our is episodic. This means that our agent acts
in the for a finite amount of timesteps. There is some that
is the terminal state: From this point, nothing happens anymore! There are
also non-episodic in which there is never an end to the agent
acting and receiving . This is however much less common in practice.

Secondly, we will be assuming an online RL setting: Here, we train the agent
while it interacts with the . Other settings, like offline RL, exist,
where instead we receive a batch of data of another agent acting in the

, and we should find an agent that acts optimally just from
inspecting this batch of data. This is a very challenging setting, and an active
research area!

We will also only look at model-free methods for now. There are also model-
based methods to RL, where in addition to learning the policy, we also learn a
model of the I This is also an exciting and active research area.

In this lecture, we will attempt to explain Deep RL with a focus on gradient
estimation. We will go into more details later what exactly this is, but we have
seen an example of gradient estimation before in our course: The
reparameterization in VAEs!

This lecture will be introducing RL and explaining the basic Deep RL algorithm,
while the second lecture on RL, lecture 12) will focus on more recent popular
methods for Deep RL.

DEEPMIND ATARI 3

One benefit of RL is that a single system can be developed for
many different tasks, so long as the interface between the world
and the learner stays the same. Here is a famous experiment by
DeepMind, the company behind AlphaGo. The environment is an
Atari simulator. The state is a single image, containing everything
that can be seen on the screen. The actions are the four possible
movements of the joystick and the pressing of the fire button. The
reward is determined by the score shown on the screen.

The amazing thing here is that the system was not pre-
programmed with any knowledge of any of the games. For several
of the games the system learned play the game better than the top
human performance.

source: https: tube vz

Convglution Convglution Fully connected Fuly connected

8
’lo e]c|v
A!HHIIH'HE

y
O]

AREAG
olojololo

Left

Here, we see an example of what a Deep RL policy might look like. Like we
mentioned, the in our atari game are simple images, so, a sensible idea
is to use a CNN! This CNN policy takes the current of the game, does a
lot of hard neural network computation, and computes a probability
distribution over actions! Since we have a finite set of actions, we can use a
softmax output layer to create a categorical distribution over actions. Then,
we sample an action to perform from this distribution.

We won’t discuss policy network architectures any further in this lecture. For
choosing network architecture, generally the same recommendations apply
as for normal deep learning: Use CNNs for states represented as images,

a Graph Neural Networks for states represented as graphs, RNNs or
Wi, V, Kavukcuoglu K. Siker, 0. et . transformers for text, etc.
Human-level control through deep
reinforcement learning. Nature 518,
. 529-533 (2015),
CNN policy network g (als)
VU‘S‘(Figure from the original DQN paper in Nature: Mnih, V., Kavukcuoglu, K.,
. ¢
Silver, D. et al. Human-level control through deep reinforcement learning.
Nature 518, 529-533 (2015).
As we have seen before, reinforcement learning settings are modelled using
TRAJECTORIES .) .)
actions, and . Note that RL settings are stochastic: This means
these three components are random variables.
« Components of RL:
e Actions Gt Furthermore, we have trajectories, which are a full rollout of the agent
interacting with the and receiving . It starts at the
° t s_0, and ends in the s_T, from which the agent stops
. t interacting with the
¢ These are random variables!
+ Trajectories T = 50, (0, 1, 51, A1, 72,52 ... AT—1, I'T, 5T

« Initial state 0

+ Terminal state T

t+1 =0 t2=1

T (Qp1lst41

Qty1=eft™"

t t+1 t+2

https://becominghuman.ai/
lets-build-an-atari-ai-part-0-

Credit assignment:
intro-to-rl-9b2c5336e0ec

What action causes ?

8 VU¥

To show this setup, let’s again look at the atari example. We see three states,
represented using images. These go into our CNN policy, and we sample an
action from them, in this case left (we see the bat go to the left). The ball hits
a block on the third picture, which increases the score by one! That is a
positive reward.

This brings into question the credit assighment problem: what was it that
caused this positive ? It probably was not bat moving left, but rather,
several actions that were taken quite a few timesteps back, where the bat
reflected the ball. We need to assign credit to exactly the action(s) that
caused the positive because it allows us to ‘reinforce' these actions:
These were good choices!

MARKOV DECISION PROCESSES

Actions Qt, tand t
Trajectories T = 50, A0, 1,51, 41,72, 52 ... AT—1, IT, 5T

Markov decision processes (MDPs) model p(Tl0)

T-1
p(Tl0) =p(O)Hﬂe(at\ OP(Str1, Ter1lse, At
t=0

¢ Policy g (alst)
3 transition distribution P(St+1; Tt+1l5t, at)

e [nitial distribution P(50)

Markov decision processes model the RL loop. An MDP is defined as a
distribution over trajectories: What trajectories are most likely, given that our
agent acts in the according to the policy \pi_\theta?

An MDP defines the probability of a trajectory, when interacting using policy
\pi_theta. This probability is given with the long equation. We will explain in a
lot of detail in the coming slides what exactly this means.

The probability of a trajectory is build up using three probability distributions:
The first is the policy, we have seen this one before. It represents our agent,
and defines a distribution over actions given

The second distribution is the , which represents
the . This one is more complicated: It defines a distribution over

what the next of the is, given our current state of the

and the action performed by the agent. It is jointly distributed
with the , which is also dependent both on the previous and
action.

MARKOV DECISION PROCESSES

Environment

P(s0) p(s1, r1lag, so) pl(ss3, r3lag,

pls2, 12las, s1)

MDPs can be illustrated using a variant of computation graphs. These
represent the dependencies between how the different components of the
MDP are generated step by step. This is done by following the lines in the
graph. Dotted lines denote non-differentiable computation. A node with the
tilde (~) operation is a sampling step.

First, we generate the initial from the initial distribution. This is
not conditioned on any input, which is represented by the fact that there are
no incoming arrows. Next, we pass the generated initial through the

policy network \pi_\theta to get a probability distribution over possible
actions. From this distribution, we generate the first action a_0.

Following the arrows, we pass the initial
the and generate the next
of this

and the first action a_0 to
and the associated

The process repeats from this point: Generate an action from the policy, and
use it together with the to generate the next and

OBSERVABILITY

« Full observability of

« Partial observability: POMDP
® Out of scope!

MDPs contain two important assumptions. These assumptions are used to
develop efficient algorithms, but are often not a good model of the real
world! The first one is full observability of . We assume that we receive
from the all there is to know about the current of the

. An example of an with full observability is chess:
Both our agent and their opponent know everything there is to know about

the current of the game by just observing the game board. This is often
a wrong assumption: Consider the game of poker, where our agent only
knows , and not the hands of other players.

Poker is an example of a partially observable MDP (POMDP), where our
agent can only observe a small part of the , or its observations
are noisy. POMDPs are much more complex to work with than MDPs, but
there is a lot of literature out there! For this lecture, it’s out of scope,
however.

MARKOV ASSUMPTION

Markov assumption: St independent of history given 5t—1:
plstlat—1,51, s st-1) = plselac—1,5¢-1)

¢ Used to derive strong algorithms!

T T
N R :
ol C.)Clo‘ C.)le‘2 O q

. VUu¥

e Fundamental assumption behind RL

The second key assumption, which is maybe even more important than the
previous one, is the Markov assumption. It says that the distribution over the

next s_t is independent of the history, if we have complete information
of the current s_{t-1}. Or, in other words, we can reliably reconstruct the
next using just the current and the chosen . This condition is

very easy to violate: For example, a static image doesn’t contain the velocity
of objects on the pixel! This requires multiple images, or a different feature
space. Often, we can expand the features of the , for example by taking
the last few observations as part of the , to solve such issues.

The Markov assumption is what distinguishes RL from black-box optimization
algorithms, like evolutionary algorithms: These do not assume anything about
the environment and thus their algorithms don't make use of this structure.

REWARDS

We introduced RL with MDPs
The goal is to maximize reward!
What does this mean in Deep RL?

So far, we have introduced the structure of RL using MDPs. In RL, we want to
maximize reward. What exactly does this mean? And particularly, what does
this mean in the context of Deep RL?

EXPECTED RETURN

Total reward: © =1 + 72+ -+ 7T

Total discounted rey 0<y <T£:1

y=r1+yre+yia ey iy QQ...,l ?,2?
SPrefer soon ;4

v e H ".‘ 2 %
Goal: maximize total discounted 0 an Oal O q

. VU¥

. and are stochastic!

® So, maximize expected
(é) =Ep(zj0)[Ry

0" = argmaxgq|(0)

The is simply the sum of all the agent receives during
one trajectory. Note that a sum of random variables is also a random variable,
so the is a random variable!

We will often deal with discounted . These encode that we prefer our
sooner than later, and is encoded using the discount factor \gamma.
Usually, this is a number very close to 1, like 0.999. Using the discount factor,
decay exponentially, such that very far in the future are
weighted infinitely low. This might seem like an unnatural way to develop
reward functions. Unfortunately, some algorithms require a discount factor
smaller than 1!

To maximize rewards, we have to note that again that total (discounted)
is a random variable: So instead, we want to maximize the expected
total (discounted) given a policy \pi_\theta!

We will explain how exactly this expectation works and how to compute it. To
maximize it, we should find the policy for which the expected is
maximized. As we assume our policies are parameterized neural networks, we
can turn this into optimizing the parameters of our policy network instead!

EXPECTED RETURN

(9) =]Ep(r\ej[y}
Expectation over trajectories by following policy 7te
Requires summing over all trajectories! Q Q‘P

—>Monte Carlo (sampling) estimation v

So what exactly is this expectation over ? It is an expectation over
trajectories that result from the agent following the policy \pi_\btheta.
Remember that, given a policy, the probability of a trajectory is defined using
the MDP formalism. We will use this to compute our expectation!

Unfortunately, computing an expectation requires summing (or integrating)
over all possible trajectories that could be sampled. There are a huge amount
of possible trajectories, however! So, clearly, we cannot hope to precisely
compute the expected . Therefore, we will do what we usually do when
we see an expectation: Sample! This is called Monte Carlo estimation, which
sounds fancy but just means estimating an expectation using sampling.

ESTIMATE EXPECTED RETURN

Input: Parameters 6, discount Y
o ~plso)
1 2

t:0 P P

L . 18 el sl
while St is not terminal: LR S R

Da DAy Qa

ag ~ e (atlst) ¢_ 0 O 0 o :
t+1s Tt ~ P(Str1s Ter1lse, ai)

> v
1
return i=1 Monte Carlo estimate of expected return

(G)Z]Ep(r\ej[y} VU?

Here, we show the monte carlo algorithm for computing an estimation of the
expected return given a policy \pi_\theta. The algorithm is simple: We
generate a trajectory from the MDP, and compute the total discounted

The tildes used in this algorithm are an operation that denotes sampling from
a distribution.

In the second line, we sample an initial
a terminal

. Then, we loop until we find

1: we use our policy network \pi_\theta to compute a
distribution over actions, from which we sample our next action to take

2: use the sampled action and the previous in our
to sample the next and

Step 2 is a bit hard to follow: are black-box functions that
simulate some complicated process, like a game or a physics engine. It need
not be stochastic, but it’s easiest to assume it is. Sampling from the
simply means to simulate the and create the next
, whether this is done deterministically or stochastically.

After encountering a terminal , we return the monte carlo estimate: The
discounted sum of found in the trajectory.

Note that algorithms described in this way are also called generative stories
or generative processes: They describe how the data is generated. It is an
alternative and intuitive formulation for probabilistic graphical models to
describe complicated joint probability distributions like MDPs! We have seen
a generative story before in the VAE lecture.

MAXIMIZING EXPECTED RETURN

How to find ©" = argmaxg | (0);

->Policy gradient methods: Use Vo l(0)in gradient ascent
011 =0;+aVe,(0;

We just introduced how we can estimate the of a policy
\pi_\theta. Now, we want to know how to maximize this !

Maximizing an objective in Deep RL amounts to finding the optimal
parameters \theta"* that maximize the . We will do this using
policy gradient methods: Estimate the gradient of expected return, then use
this gradient to update the parameters using gradient ascent. Note that we do
gradient ascent and not gradient descent like in most other Deep Learning:
We want to maximize the , not minimize it! Alternatively, we can
minimize the negative expected :) Like in SGD, we choose a step size
(often called learning rate) \alpha with which to update the parameters.

That is all nice, but this requires that we have access to the gradient of the
. Unfortunately, this is not an easy quantity! This is because of
two problems:

1. The is assumed to be black-box (unknown) and stochastic.
This means that we cannot compute gradients through the !
This is a huge downside to RL: A differentiable could give us a
lot of information on how to cleverly update the policy parameters.

N

. Sampling an action from the policy is also not differentiable, because
sampling from a distribution in general is not. Luckily, there are several
techniques from the gradient estimation literature to circumvent this
problem.

RECAP PART 1

Reinforcement Learning

e Agent acts in to receive
MDPs

o Full observability

* Markov assumption

Find parameters maximizing expected

This was it for the first part of the RL lecture! We introduced the
reinforcement learning framework through the MDP. The MDP is a decision
process with two strong assumptions: are fully observable, with no
information hidden, and the Markov assumption: The next is
independent of the history given the current

We then looked at the fundamental problem of RL: Maximizing the expected
(discounted) . We showed a simple algorithm that estimates this

by simply sampling a trajectory and summing over the . We
want to find parameters for our policy network that maximize this
How do we do this? We use gradient ascent, and estimate the gradient of the

MAXIMIZING EXPECTED RETURN

How to find ©" = argmaxg | (0);

o Policy gradient methods: Use Vol(8)in gradient ascent
i1 =0;+aVe, /(04)

« Policy gradient methods exptecte(:' using policy gradient methods. We will explain those in the
next part!
e Estimate gradient for gradient ascent
. Vu¥
We just introduced how we can estimate the of a policy

\pi_\theta. Now, we want to know how to maximize this !

Maximizing an objective in Deep RL amounts to finding the optimal
parameters \theta"* that maximize the . We will do this using
policy gradient methods: Estimate the gradient of expected return, then use
this gradient to update the parameters using gradient ascent. Note that we do
gradient ascent and not gradient descent like in most other Deep Learning:
We want to maximize the , not minimize it! Alternatively, we can
minimize the negative expected :) Like in SGD, we choose a step size
(often called learning rate) \alpha with which to update the parameters.

MARKOV DECISION PROCESSES

p(29 2|a17 1)

P(so0) p(s1,1lag, so)

p(s3,13lag,

How to comru&e Vel(0)?
Gradient estimation!

The problem with finding the gradient is that the
computation graph of MDPs are not differentiable. What
we mean with this is that there is no differentiable path
from the rewards to the model parameters \theta.

SIMPLE REINFORCE

Simple REINFORCE:
1.t~p(Tle) L,

2.0+ 0+« YZVe log g (atlst)
=0

Sample brajectorj

Gradient ascenk

Let’s derive algorithm!

We will first look at the simplest method to estimate the policy gradient: The
simple REINFORCE algorithm.

The simple REINFORCE algorithm starts by sampling a trajectory from the
agent interacting with the . This happens just like how we
sampled a trajectory when estimating the expectation of the

Then, we estimate the gradient using the simple REINFORCE estimate. This
might look a bit like magic! Where does it come from? We'll derive it in the
next few slides to ensure it’s not some equation thrown out of nowhere :)

This estimate gradient is finally used in the gradient ascent step.

JOINT DISTRIBUTION OF MDP

Vol(0) = VoEp(xe)[Ry]

Expectation is over all trajectories T :(
Vo (0) =) R,Vep(tl0)
T

To sample, we need an expression like

> plrle)f(r)

Solution: The score function!

Let’s first recap what we know. We want to estimate the gradient of the
expected . This is the derivative of an expectation! We can write this
derivative out by expanding the expectation: This results in a sum over all
trajectories. We can move the derivative inwards, however. Still, it is obviously
impossible to compute this: The amount of possible trajectories is likely
infinitely big, so we cannot sum over it.

Like usually when we see an expectation, we want to estimate it using monte
carlo estimation. However, to be able to do monte carlo estimation, we need
an expression in the form of a sum of the probability times some quantity.
Note that the gradient is not in this form: It is the gradient of the probability
times a quantity (R_\gamma).

How can we write the gradient in a form that allows sampling? For that, we
can use the score function! Let’s show what it is.

THE SCORE FUNCTION

Vol(8) =) R,Vep(tl6)

|0 Lkipl
:Z yVep(Tle 'P(10) Mu F3b71
T

p(Tl0)
— Z Ymﬂmw

p(Tl0)

> plrlo)f(r)

This is an expression like < !

Again, we remind ourselves that the goal is to put the gradient of the
expectation in a form so that we can sample from it. We will be using the
score function trick to do this.

First, we multiply the expression by 1: p(\tau|\theta)/p(\tau|\theta). Next, we
simply move the probability out of the numerator and the gradient of the
probability into the numerator.

We know have an expression that we can sample from! There is a probability
term, and a function (R times the fraction). This fraction is called the score
function, and has a very useful representation that we will look at next.

THE SCORE FUNCTION

Vol(8) =) R,Vep(tl6) Score function:
T

Va logp(/0)
_ dlogp(t]0) dp(t}e)

op(Tl0) 00
1
:mvep(’de)
_Vep(1l6)
p(TI0)

)

.

= IEp(rle)[vVe log p(7(0)]

As it happens, we can rewrite the fraction, the score function, into the
derivative of the log probability! I'm sure you’ve seen this quantity a lot
before: Losses like the cross entropy minimize log-probabilities by taking their
derivatives.

We can clearly see now that this is an expectation: A sum over a probability
times a function. So let’s rewrite it as such!

So how did we find that that fraction is equal to the derivative of the log-
probability? It is easier to show this the other way around. Note that, by the
chain rule, this derivative is equal to the 2nd line on the right. Note that the
derivative of log x is 1/x, so we find on the left side 1/p(\tau|\theta). The right
side is just the derivative of the probability wrt the parameters. This recovers
the fraction!

WORKING OUT MDP

Vel(8) =Ep(zj0)[Ry Ve logp(l0)]
How to compute Ve logp(t|0];

MDP distributioTn civer trajectories:

So we found a way to sample trajectories, and we can use the discounted
reward times the derivative of the log-probability of the trajectory: This is an
unbiased estimate of the derivative of the expected return.

Still, we haven’t quite figured out how to compute the derivative of the log-
probability over trajectories yet.

Recall that we defined the probability of a trajectory using MDPs. This was the
long equation some slides back. Now with more knowledge of the structure
of how the RL loop works, see if you can follow this equation: It follows
exactly the generative process denoted in the graphical representation.

WORKING OUT MDP

T-1
p(t10) =p(s0) [[mo(arls)psesn, resalse, ar)
t=0

T-1

logp(T]0) =logp(s0) + Y logmo(arse) +logp(sers, resalse, ar)
t=0

T-1
Vo logp(tl0) =Vo logp(so)+ D (Vo log e (ails)
t=0

HVologp(sest, erlse, at)
Gradient of wrk

T-1
Vo logp(T|®) = Z Ve log e (alst) policy parameters 0 is o
t=0

. VU

te

Recall how the probability of a trajectory is defined in an MDP. First, we take
the logarithm of this probability: This allows us to change multiplication into
summation (because \log(ab)=\log(a) + \log(b)). We thus have a big sum of
different log-probabilities. The first and the last are probabilities representing
the dynamics of the , and the middle one represents the policy.

Now remains one step: We are interested in the derivative of this log-
probability! By linearity of the gradient, we simply put a gradient symbol in
front of every log-probability. In the last line, we remove the terms associated
with the . Why? The parameters of the policy only influence the
policy (the agent), and not the 1 So, changing the value of the
parameters of the policy changes nothing about the itself. This
leaves us with a sum over gradients of log-policy probabilities.

BASIC REINFORCE

T-—1

Vo logp([0))=) Vo logme(ail)
=0

Fill into Ep(xie) [(Ve log p(T/0))],

T—1
Vo l(0) =Ep(ro)[Ry Z Ve logme (atlst)]

-1 50

~ Ry Z Ve logne(utl t), T~ p(’t\e) Mownte Carlo
t=0 (sample) estimate

» VU

be

-3

Now that we can compute the derivative of the log-probability of the
trajectory, we can fill this into the expression of the gradient of the expected
return.

This gives us the expression on the third line: An expectation over trajectories,
again, but now we multiply the policy probabilities over time with the
discounted reward.

CREDIT ASSIGNMENT

T1
Vo l(0) =Ep(ro)[Ry Z Ve logmme (atlse)]

t=0
Ry =714+ Y2+ + - +yT g
Reinforce actions with high total return
o Reinforce AT—1when "1 is high?
¢ Only reinforce actions with good consequences!

This algorithm is very simple, and also very poor! One important reason for
this is that it doesn’t do any credit assignment: Whenever we get a high total
reward, the log-probability of all actions performed in that trajectory are
increased evenly. Increasing the probability of performing an action because
we got a good reward is called reinforcing that action.

We don’t really want this: Consider the situation where we got a high total
reward because the very first reward r_1 was very high. All actions taken are
equally reinforced, so the action a_T taken at the last timestep T will be
reinforced as much as the first action a_0, although only the first action a_0
could have influenced the value of the first reward!

CREDIT ASSIGNMENT

Recall vy =71 +7V 9+ V234 v rr

Consider gradient of att' +1: T-1
VG]EP(T|9)[yt/) =]Ep(-r\ejh/tl t/4+1 Z Vo log e (atlsi)]
t=0

¢!

:]Ep(r\e)h/tl t/+1ZVe log e (ais¢)]
=0

Only influenced by actions until t’

So can we improve upon this simple REINFORCE algorithm? Yes!

Let’s consider what the gradient of the discounted at timestep t+1’ is.
So instead of taking the total expected , we only look at the expected

at timestep t’'+1. We do the same trick as before to find the first
expression on the right.

It turns out this is equal to the second expression: We only need to some over
the first t’ action log-probabilities! The intuition behind this is that the actions
taken in timesteps t’+1 to T do not influence the outcome of the at
t'+1.

In the RL assignment, you'll prove this formally :)

?t=

BETTER REINFORCE

Sum over timesteps:

T-1 t’
VoEp(xie)Fy] =Ep(rie)[Y v rei1) Velogmo(adse)l

t'=0 t=0
Equivalent: Update actions based on following rewards

. Discount$d ! to go
t= Z Y e
t’'=t
Gradient estimate: T-1
VoEy(xi0)[Ry] = By rie)[)_ v' i Ve log e (adsy)]
. 0 vu¥

In the last step, we found that for a single
probability of actions that came before the

, we only need to update the

Let’s use this to find the gradient of the total expected (that is, over all
timesteps)! We see that, again, for all , we also should only consider
the actions that came before to update. Those are the actions that could have
led to a positive ! The actions after receiving each couldn’t
possibly have influenced it.

We can rewrite this to an equivalent formulation: for the update of each
action, we should consider only the received after performing the
action. We will also proof this relation in the assignment.

To do this, let’s first define the discounted to go. This is the
discounted reward after timestep t, but only counting the
discounting from that point. You might wonder why! It turns out this quantity
represents something very useful in RL, and we will be going back to it in the
next lecture on RL.

Finally, we find a nice expression for the policy gradient: Each action is
reinforced based on the discounted reward to go it receives: The after
executing that action.

2t=

T-1
t= Zykft k+1
k=t
REINFORCE:
1. T~p(Tl®)

2.0+ 0+ otZVt tVeo logme (alst)
t=0

Sample trajec&orj

Gradient ascent

We will first look at the simplest method to estimate the policy gradient: The
REINFORCE algorithm.

First, we define G_t, the total discounted received after timestep t.
This quantity will turn out to be very useful in future algorithms! Note that
the discounting also happens from timestep t onward: the is
not discounted, because \gamman{k-t}=\gamma’{t-t}=1

The REINFORCE algorithm start by sampling a trajectory from the agent
interacting with the . This happens just like how we sampled a
trajectory when estimating the expectation of the

Then, we estimate the gradient using the REINFORCE estimate. This might
look a bit like magic! Where does it come from? We’'ll derive it in the next few
slides to ensure it’s not some equation thrown out of nowhere :)

This estimate gradient is finally used in the gradient ascent step.

REINFORCE ALGORITHM FOR PYTHON

1 discount = ©.9999

2 sgd = SGD(NN.parameters(), lr=le-4) Initialize

3 for tau in range(100000):

4 = .reset()

5 sgd.zero_grad()

6 > log pi as =[], [] i

7 for t in range(100000): Sample a trajectory
8 pi = Categorical(logits=NN(s))

9 a = pi.sample()

10 , ', terminal, _ = .step(a)

11 .append(r)

12 log_pi_as.append(pi.log_prob(a))

13 if terminal:

14 break T-1

15 surrogate_1 = 0. [

16 for t in range(len(log_pi_as)): REIH@:Mpdtatg+l
17 t=0. T—1 t/—t

18 for t’ in range(t, len(R)): t

19 t += discount**(t’ - t) * R[t’] Z Y tVQ logne(atl t)
20 surrogate_l += discount**t * Gt * log_pi_as[t]

21 (-surrogate_1).backward() t=0

Update parameters VUQ{’

Here, we see some python code for a simple REINFORCE implementation. It
uses PyTorch and the OpenAl Gym library, which implements many RL
to play around with.

In the first loop (line 3), we loop over the trajectories we sample. In line 4, we
sample the initial from the

Next, we start looping over the timesteps (line 7). We use the NN to create a
categorical distribution over actions from the . This is the policy
distribution \pi_\theta(a|s)! From this distribution, we sample the next
action a to perform. We then use env.step(a) to transition to the next)
and we receive a in the process. We save the and the log-
probability of the action. We also get back a boolean terminal which tells us if
the sampled is a terminal . If so, we break the loop and go to the
REINFORCE update.

In the next lines, we compute the REINFORCE update. For each timestep, we
compute a "loss" component, which is often called the surrogate loss. Don’t
consider this loss as a meaningful quantity: We don’t want to maximize the
loss, we want to maximize the expected ! The REINFORCE update is
straightforwardly computed, just like the equation suggests, with a loop in the
sums.

Policy gradient is the gradient of expected
REINFORCE
¢ Simplest method to approximate policy gradient
¢ General and unbiased :)
e Very high variance! :(
* Not sample efficient
Next part: General gradient estimation

Recap: We discussed the policy gradient, which is the gradient with respect to
the policy parameters of the expected

The simplest policy gradient algorithm is REINFORCE, which is general and
unbiased, but has very high variance. In the next part, we will discuss gradient
estimation in general, and will also discuss what it means for an estimator to
be unbiased and to have high variance.

GRADIENT ESTIMATION

Policy gradient methods:

Estimate gradient of expected
Gradient estimation:

Estimate gradient of any expectation

argmaxEp, () [1(z)]
0

In this final part of the lecture, we will be discussing gradient estimation in
general. As we have seen in the previous part, policy gradient methods
estimate the gradient of the expected in an MDP. Gradient estimation as a
field generalizes this: We want to estimate the gradient of any expectation, and not
just over MDPs. This allows us to optimize problems of the form of the formula.

GRADIENT ESTIMATION

Derivative of expectation:
VoEp,()lf(2)]

Continuous distributions:
Vo | pola) 2)es

Discrete distributions:

Vo) polz)i(z)

O— 00— O

Stochastic node

We want to find the derivative of an expectation. This is represented using
the graph on the right: We use the parameter \theta to form a distribution
p_\theta. Then, we sample z from this distribution. This is represented by the
tilde (~) operation. Finally, z is used in the to optimize. The
problem? There is no differentiable path from the to the
parameters theta, so we cannot directly optimize this. This is because
sampling isn’t differentiable, and because the might also not be!

The derivative of an expectation can mean different thing, depending on
whether the distribution p_\btheta is a continuous or a discrete distribution.
For continuous distributions, we compute an integral over all options of z,
while for discrete distributions, it is a sum over all options. Both are
normalized by the probability density.

SCORE FUNCTION

Recall score function:

Vopol2) Ve logpe(z)
VoEpy (l1(2)] = Epy) [112) =200 :wvepe(z]
_ ope(z)
=Ep,[(2)Ve logpe(z)] Vopol(z)
« All distributions Pe (%) T peln)

o All

* But very high variance

Recall the score function. We used it when deriving the REINFORCE estimator:
The derivative of an expectation turns out to be equal to the expected value
of the times the gradient of the log-probability of the sample z. This
is represented by the graph: The distribution is used to create the log-
probability, which is multiplied with the output to create the
surrogate loss, which is named this way because it is like a fake loss.

The score function is very general: It can be used for any distribution and any
| However, it has very, very high variance. So what exactly is
variance?

Score function estimate:
gsr = ((z)Vologpe(z), z~7pel(z)

Variance:
D

Vigse) =Ep, | D (8spi — Ep, lgsri))?
i=1
High variance
—>More samples needed
—>Unstable training

Deep RL lecture: Variance reduction for policy gradients!

Variance is the average squared distance from mean of an estimator., per
dimension. In this case, it is the score function estimator. The D represents
the dimensionality of the gradient, which is equal to the dimensionality of the
parameters. Note that variance increases with dimensionality: With more
dimensions, the variance usually increases.

High variance is pretty bad! It usually means that we will need way more
samples to get a good estimate of the expected gradient. This also
destabilizes the training loop: If the gradient has very high variance, the
training algorithm has to deal with a lot of noise, and the training can jump
everywhere!

This is in particular problematic in deep learning applications, because the
dimensionality of the parameters is so large. And, as we mentioned, the
variance scales with dimensionality...

In the next lecture on deep reinforcement learning, we will be looking into
variance reduction techniques for policy gradient methods. This is essential to
get them working on practice.

MULTIPLE DEPENDENCIES

f depends on 0 directly
and through 7

Pe

Now, consider gradient estimation on the following graph. Unlike before, the
parameter \theta isn’t just used to compute the probability p_\theta, but also
used in the computation of the function f, that is, (z, \theta). Furthermore,
the function fis a differentiable function now!

The previous gradient will not do here: It’d not take into account how the
parameter \theta influences f directly.

MULTIPLE DEPENDENCIES

log e (z)

SL = f(z) log pe(z) + f(2)
Vo SL = 1(2)Ve logpe(z) HVe(z) logpe(z) [Ve (z) # VeEy, (»[f(2)]

. VUu¥

The corresponding surrogate loss for this graph uses both the log probability
and the function itself. Walk through the non-broken lines backwards from SL
to see what paths to \theta exist. Does that work?

Looking at the derivative, no it doesn’t! There is an extra term in the middle
which we didn’t expect. It comes from using the product rule on the function
times log-probability term. So, this surrogate loss is unfortunately wrong.

MULTIPLE DEPENDENCIES

logpa()

SL = L(f(z)) log pe(z) + 1(2)
VG SL = |‘(Z)Ve lOg ‘pe(Z) -+ VQ |‘(Z) ~ Ve]Epe () [|(Z)]

. VU¥

The correct surrogate loss uses the detach function. We have seen this before
in lecture 2. This is an operation that blocks gradients from flowing
backwards, but leaves forward computation intact.

Taking the derivative of the surrogate loss, we see that it uses both the score
function and a direct derivative of the function with respect to the parameter
\theta.

GENERAL SURROGATE LOSS

T-1

~ t/—t

G = Z Y T4 Rewards in RL are not
t'=t differentioble

T-1
SL = Ep(x0)[)_[Ciflog e (atlse)]
t=0

SL=E |) logp(z)}_ L)+ +

z2€Z z=<1 reER

Schulman, John, et al. "Gradient
estimation using stochastic computation
graphs.” Advances in Neural
Information Processing Systems. 2015.

Can we generalize this? Yes! Schulman et al, 2015 introduces an algorithm for
gradient estimation on any computation graph with stochastic nodes. Say we
have a set of stochastic nodes Z and a set of rewards R. We will also use the
notation z < r, which means that the reward r is influenced by the node z. A
node is influenced by another if there is a directed path between them
through the computation graph.

The correct surrogate loss then sums over each stochastic node to get their
log-probability. This is multiplied by the sum of rewards that the stochastic
node influences. Finally, we also have a sum over all rewards to ensure that
parameters that directly influence the rewards are also taken into account for
computing the gradient.

Compare this with the REINFORCE surrogate loss. We note that reward
functions in RL are not differentiable, so we won’t need the second sum over
rewards. Then, the automatic surrogate loss corresponds perfectly with the
REINFORCE estimator: It sums over actions to compute their log-probability,
and this is multiplied by the sum of rewards that the action influences!

CAN WE DO BETTER?

Score function has high variance...
Can we do better?
Lecture 6 (VAEs):

0 Peo f
¢ VAEs also use gradient estimation! O_O—O—’Q'@_O"O

* “Reparameterization trick” Stochastic node

Can we do better than the score function, which has very high variance? Yes,
but not always. Recall lecture 6, in which Jakub discussed VAEs. He also talked
about reparameterization. The reparameterization is actually also a gradient
estimator! Let’s dive in.

GAUSSIAN REPARAMETERIZATION

Gaussian N(1, Z) u
e~N(0,1) O\ Pe z f
z=p+ el é/ &O—0—=>0
Move sampling out
of computation path
u zZ f
o— O
r
O—————> & Gradients flow to

parameters B

. VU¥

Assume we have a Gaussian distribution with mean parameter \mu and
covariance matrix \Sigma (often diagonal).

The idea behind reparameterization is to move the sampling step out of the
computation graph, so that gradients can flow directly through the graph to
the parameters. This is very easy to do for the Gaussian distribution: We
simply sample noise epsilon from a normal gaussian (with mean 0 and
identity covariance matrix), and transform this noise by multiplying it with the
covariance matrix \Sigma and adding the mean \mu. We can now do a normal
backwards pass from directly to the parameters!

EXAMPLE: VAE ELBO
Rec

O—O

ELBO =logpe (x| z) — Dxrlqq (z%)llp(2)]
Rec KL VUQ(

For Gaussian posteriors, we can use reparameterization to train this model
well! Using the same trick as before, we sample noise \epsilon, multiply it
with the covariance matrix of the approximate posterior q(z|x) and then add
the result to the mean of the approximate posterior. This produces the
sample z in a differentiable way!

PATHWISE DERIVATIVE

Reparameterization:
Epolf(2)] =Epe)[f(9(0,€))]
« Noise distribution P(€)
z=9(0,€) ~po(z)

0 Po Z f
O—0—0—+&++0—0—0

Pathwise derivative (=backprop):
of 0z

gpPD = 3200’ e~ple)

In general, the reparameterization trick works as follows: Instead of sampling
directly from p_\theta, we sample from some noise distribution p(\epsilon)
and transform it using a function g. Importantly, this function should have the
property that, after transforming the noise \epsilon, its results have the same
distribution as the original distribution p_\theta. So, if z=g(\theta, \epsilon) is
the result of the transformation, and \epsilon ~ p(\epsilon), then z ~
p_\theta(z).

After a reparameterization, we can use the pathwise derivative. This is a
simple application of the chain rule: First compute the derivative of z with
respect to the function f, then of z with respect to the parameters \theta
through the function g. Although it sounds fancy, the pathwise derivative, this
happens automatically when using backpropagation!

REPARAMETERIZATION IN RL?

Reparameterization sounds pretty great! So why didn’t we just use it for
Reinforcement Learning?

REPARAMETERIZATION IN RL?

y i Still no differentioble
path from 1 to 6!

Unfortunately, reparamterization doesn’t work in Reinforcement Learning.
Although we can transform the action sampling step to make it differentiable,
this doesn’t solve the non-differentiability of the I As you can
see, there is still no differentiable path from the parameters to the

PATHWISE DERIVATIVE

Pathwise derivative has low variance :)
0
¢ Uses extra info: —
0z

Requires:

e Differentiable function I :(
* Appropriate continuous distribution Pe (z) H{
No reparameterization for discrete distributions...

But continuous relaxations exist!

The pathwise derivative using reparameterization has low variance. This is
because it uses extra information compared to the score function: It has
access to the derivative of the , which gives much more information
on how to properly change the sampled value z to improve the result. This
means that, when using the pathwise derivative, we will have much more
stable and quick training.

However, reparameterization requires a . This
unfortunately means we cannot use it in applications like Reinforcement
Learning. It also requires a continuous distribution which is
‘reparameterizable’, that is, there is a transformation g on noise epsilon so
that the result has the same distribution as p_\theta. This is particularly
annoying because it means we cannot use the pathwise derivative for discrete
distributions!

GUMBEL SOFTMAX

Gumbel Softmax: Continuous relaxation for categorical distribution
Probabilities 7t1; ---, 7K, temperature T > 0
€1, ..., €k ~ Gumbel(0, 1)
z = g.(€,m) = Softmax((log7w+ €)/1)
e 9 z

Gumbel(0, 1) »g
O0—&0Oce

%

Although reparameterization doesn’t exist for discrete distributions, we can
use so-called continuous relaxations. The Gumbel Softmax is a method that
allows us to use a pathwise derivative for a continuous distribution that is
almost like a categorical distribution.

We first sample noise from the Gumbel distribution. Then, we transform this
noise. First, we add the log-probability for the i-th class. We divide this by the
temperature parameter, which should be larger than 0. The result is
transformed by the softmax! What does this look like?

GUMBEL SOFTMAX

Probabilities 7t1; -+, 7K, temperature T > 0
€1, ..., €k ~ Gumbel(0, 1)
z = g.(€,7) = Softmax((log 7t + €) /1)

< Categorical 7=0.1 7=05 7=10 7=10.0

o
B

3

|3

3

Jang, Eric, Shixiang Gu, and Ben Poole.

o "Categorical Reparameterization with
2 Gumbel-Softmax." (2016)

E

o

&

category VU e

V-3

In this image, you'll see what the gumbel softmax distribution looks like.
Samples (bottom row) look a lot like samples from a categorical distribution,
for lower temperatures. For higher temperatures, it looks more like a uniform
distribution over classes. However, note that it is not a distribution: It is a
sample! So where the categorical distribution samples ‘one-hot’ vectors, the
gumbel-softmax samples “kinda one-hot vectors, but not really”.

This is similar for the expectation of the distribution. For low temperatures,
the expectation looks very similar to the expectation of the categorical
distribution. For higher temperatures, the expectation again looks rather
more like a uniform distribution over classes.

BIASED ESTIMATORS

If the temperature T increases
¢ Variance decreases :)
e Bias increases :(
Bias = Ep(¢)[Vrl(g. (e,)] = Vaky () [[(2)]

c Categorical 7=0.1 7=05 7=10 7 =10.0

o
B

5

hil

15

3

U

Jang, Eric, Shixiang Gu, and Ben Poole.

o "Categorical Reparameterization with
s Gumbel-Softmax.” (2016).

£

o

&

. category V U k

So clearly, there’s something with this temperature parameter. When it
increases, the variance decreases, so that’s good! This is quite easy to see:
Samples will look more like very similar uniform distributions.

However, when the temperature increases, the bias also increases! What is
the bias? The bias is the difference between the true gradient and the
expected gradient using the gumbel softmax. So far, we have only looked at
methods that are unbiased, so that the true gradient and expected gradient
are equal. However, that’s not the case for the gumbel softmax: In essence,
you could say that its approximation is wrong, and gets even more wrong
when the temperature increases.

Does that mean that we cannot use it? Actually, the gumbel-softmax works
remarkably well. It requires a continuous, differentiable function, but it can
optimize to good performance. This is because, although it is biased, it
becomes unbiased when the temperature approaches zero. When balancing
bias and variance properly through controlling the temperature (called bias-
variance trade-off), we can do well!

DISCRETE DISTRIBUTIONS

Discrete distributions: Make crisp choices
e Example: Graphs from text or images
e Transform neural representations to symbolic representation

arack Obama was born in Hawaii.”

»

v v

Barack Obamma Observed dynamics Interaction graph

So why do we even care so much about discrete distributions? Discrete
distributions allow us to make crisp choices within our neural network: We
can, for example, choose to only do one computation path instead of all of
them. Or we can have intermediate symbolic representations of what the
neural network is thinking of. For instance, we can transform text into a graph
using a neural network, and then reason on this graph using a GCN to answer
questions about the graph. The same thing goes for images: Transform them
first into a graph representation and then answer questions!

Intermediate symbolic representations also are much more interpretable than
the very high-dimensional continuous representations of neural networks. If
we can transform these representations between each other, this could help
us understand the neural network.

NEURO-SYMBOLIC Al

Neuro-Symbolic Al: Combine Deep Learning and Logic
® Deep Learning: Continuous
e Logic: Discrete
¢ Gradient estimation allows integrating these fields!

The field that tries to combine symbolic reasoning with
Deep Learning is called neuro-symbolic Al. A fundamental
challenge of this field is that Deep Learning does
continuous reasoning, while symbolic reasoning, like logic,
reasons about discrete data. This mismatch makes it hard
to integrate the two fields.

However, gradient estimation turns out to be a general
and principled way to integrate the two fields!

QUESTION ANSWERING WITH QUERIES

Executing queries is hon-differentiable...
Continuous relaxation isnt possible!

Qe (2] =

Execute query Z

<t

Who wrote “The
Hobbit”?

Encode T

po(ulx,T)

Encode

).R.R. Tolkien wrote
“The Hobbit"

As an example, we present a neuro-symbolic approach to question-
answering. Assume we have a dataset of question-answer pairs written in
natural language. Given a question x, we encode it to a distribution over
queries g_\phi(z|). From this distribution, we sample a query that represents
the question.

Next, we execute the query on the knowledge base to find the extracted data.
Note that executing this query is not a differentiable operation!

Finally, we answer the question both by using the question and the retrieved
data.

This model is very hard to train. This is because of the non-differentiability of
executing the query on the dataset. However, we need to find the parameters
\phi so we can learn how to extract queries from an answer. We can use
gradient estimation here, although this is hard: We cannot use continuous
relaxations either because executing queries is non-differentiable.

Storchastic: Define computation graph with sampling steps.
Compute gradient estimators automatically!

e PyTorch library with easy API
* Many low-variance estimators implemented

¢ Focus on discrete distributions

GfTorc ‘(éStIC httpsi/githubcom/HEmile/torchastic VU‘(

i

56

We have been working on a PyTorch library for gradient estimation. With this
library, you can define a computation graph with sampling steps (~), and it
computes correct gradient estimators automatically. This allows people to
develop stochastic deep learning models with a simple API. We have
implemented state of the art gradient estimators with low variance, that can
be plugged and played with. In particular, we have focused on gradient
estimators for discrete distributions to allow people to develop neuro-
symbolic models as discussed on the previous slide.

THESIS PROJECTS

Master thesis projects with Storchastic
¢ Designing new gradient estimators
¢ Knowledge Graph walking
e Question answering with querying
¢ Model-based RL with discrete latent space
e Logical reasoning as a stochastic hidden layer
¢ Neural network pruning
e ... (your idea here)
Contact e.van.krieken@vu.nl if interested

. Gfforc ?5“9 https /aithub.cor . VU‘»(

Score function: general, but high variance
Reparameterization: move sampling out of computation graph
e Uses pathwise derivative with low variance
® Requires appropriate continuous distribution
e Requires differentiable functions
Gumbel softmax: Continuous approximation for discrete distributions
But biased!

Next lecture: Variance reduction for policy gradients

e.van.krieken@vu.nl
https://github.com/HEmile/storchastic

. S nrra;trc https:JGithub.com/HEmiletorchastic Vuk

