Lecture 8: Learning with Graphs

Michael Cochez Deep Learning 2020

dlvu.github.io

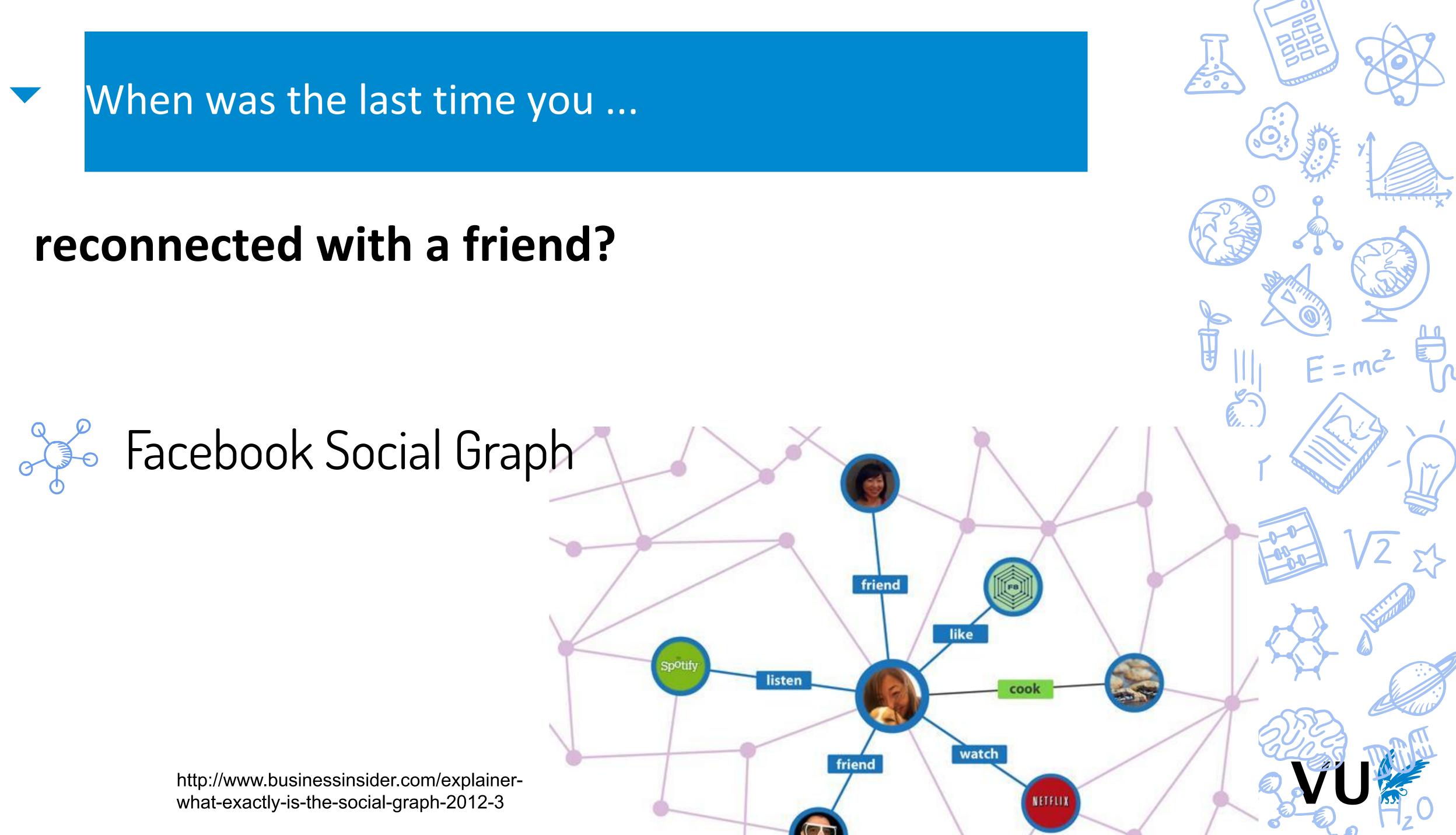
part 1: Introduction - Why graphs? What are embeddings?

part 2: Graph Embedding Techniques

part 3: Graph Neural Networks

part 4: Application - Query embedding

PART ONE - A: INTRODUCTION - GRAPHS

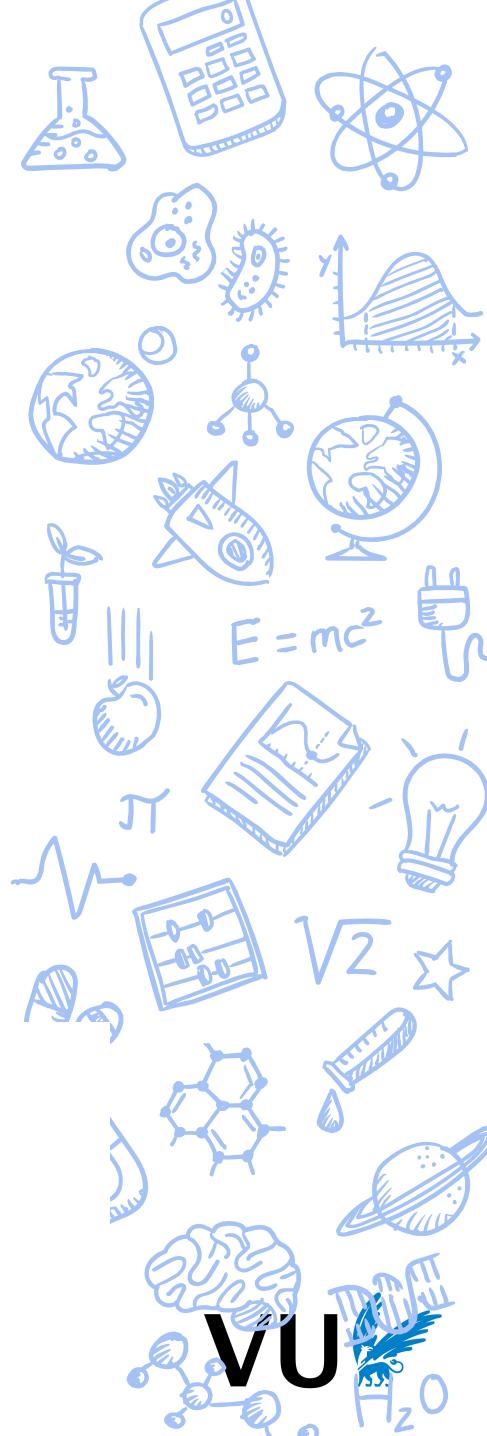


reconnected with a friend? visited a doctor?

IBM Watson

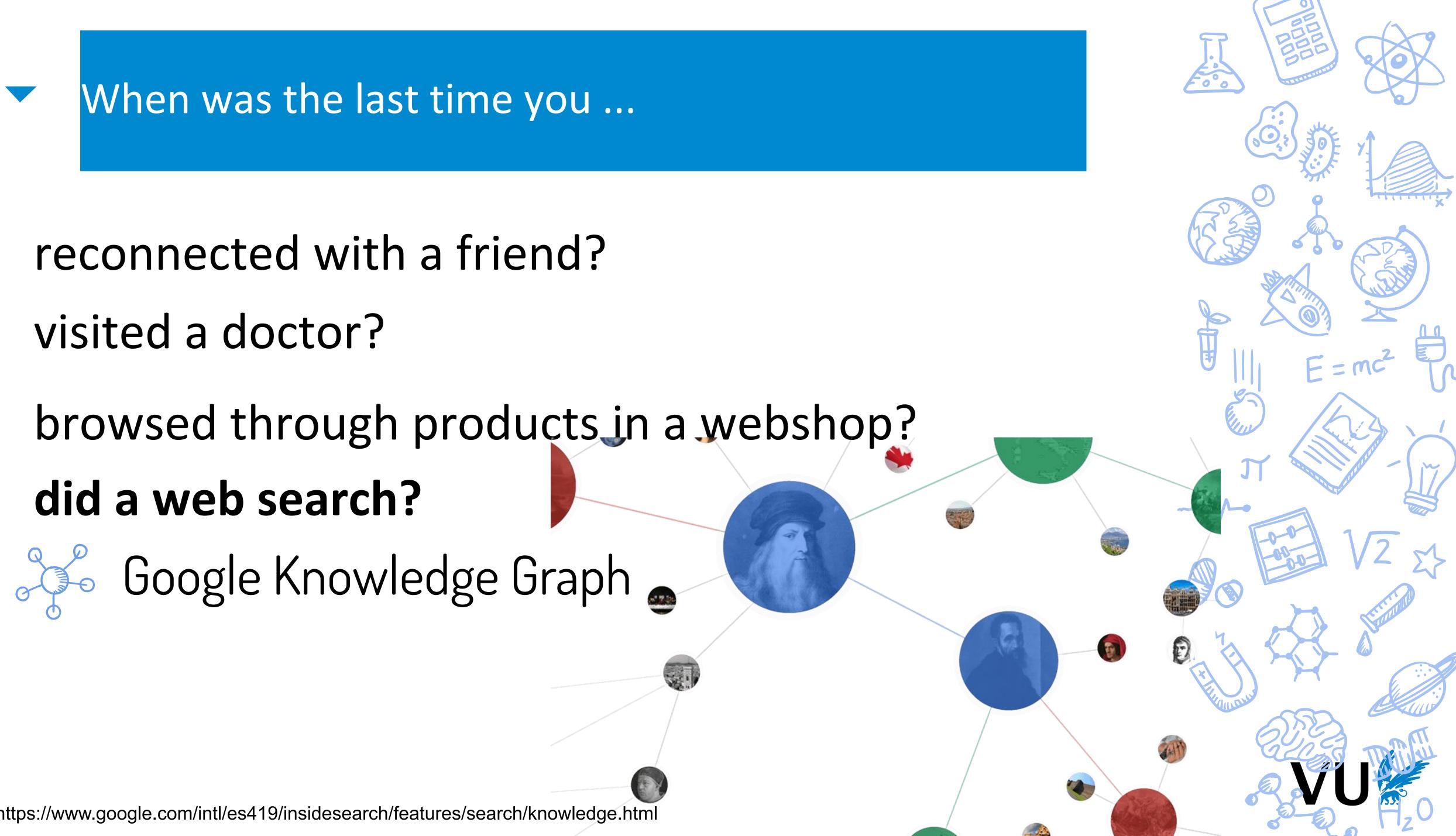
Next comes the "ingestion" process: Watson preprocesses the information, building indices and other metadata that make the content more efficient to work with. It may also create a **knowledge graph** to represent and leverage key concepts and relationships within a domain.

https://www.ibm.com/think/marketing/how-watson-learns/



reconnected with a friend? visited a doctor? browsed through products in a webshop?

Amazon Product Graph



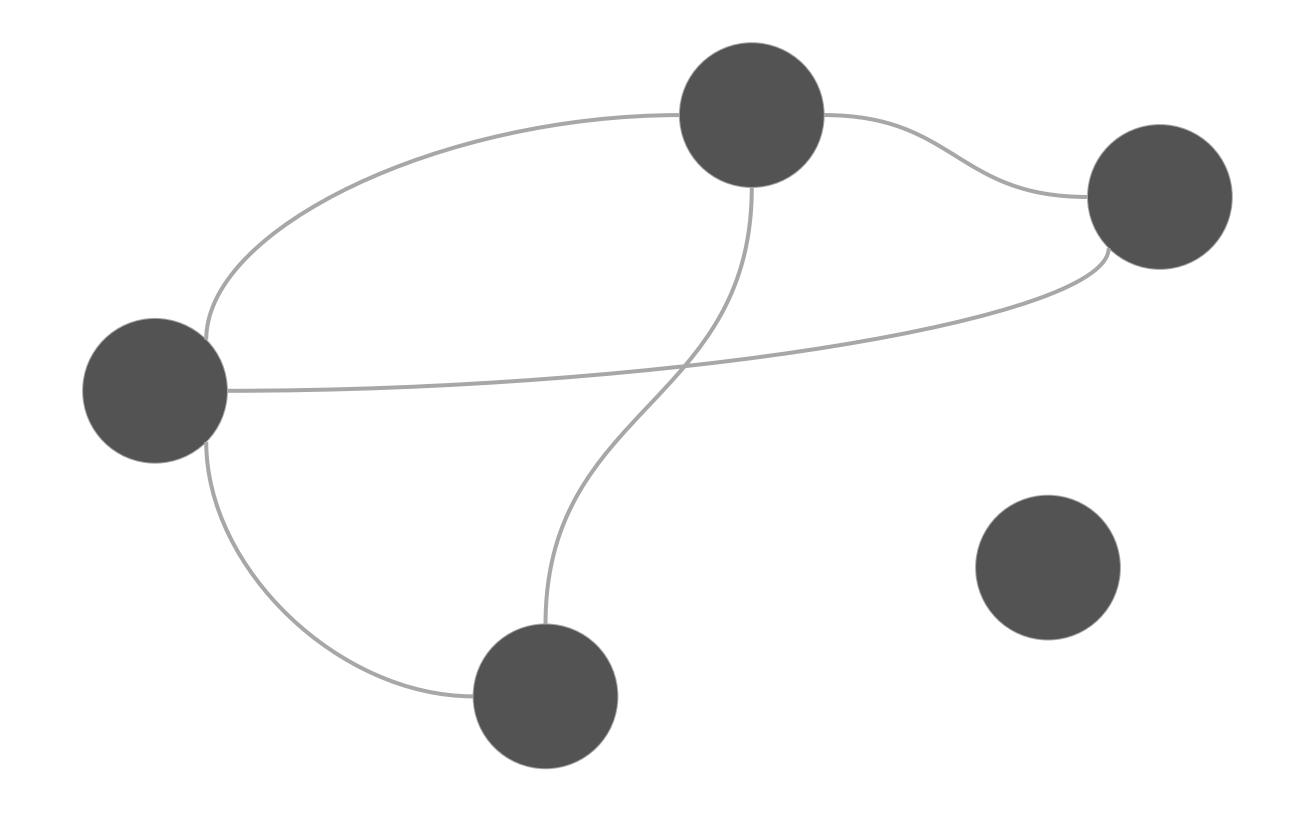
https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html

browsed through products in a webshop? reconnected with a friend? visited a doctor? did a web search?

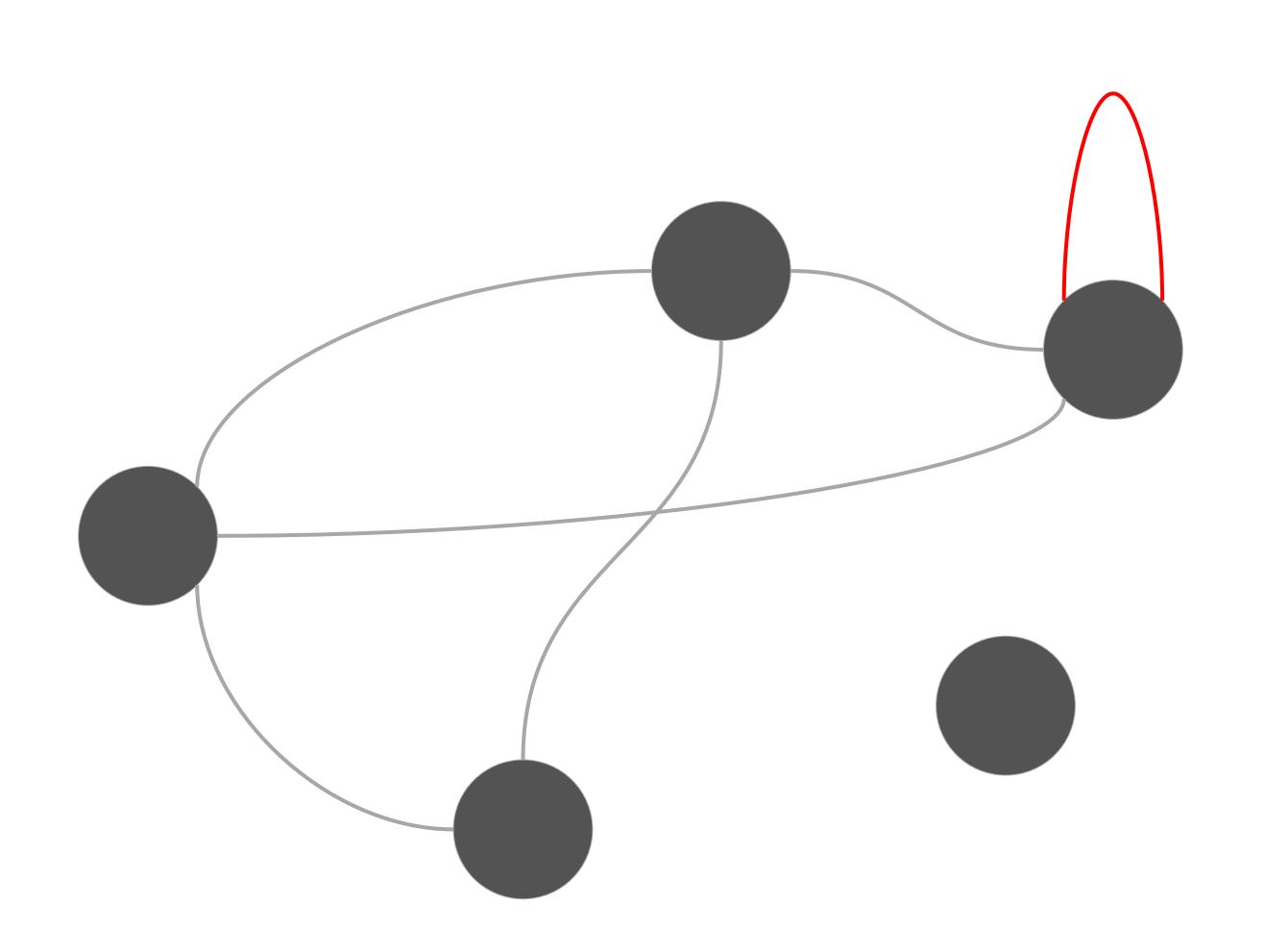
Knowledge graphs are all around us.

Other examples: Cyc, Freebase, DBPedia, Wikidata, YAGO, Thomson Reuters, Microsoft Satori, Yahoo KG, Springer, ...

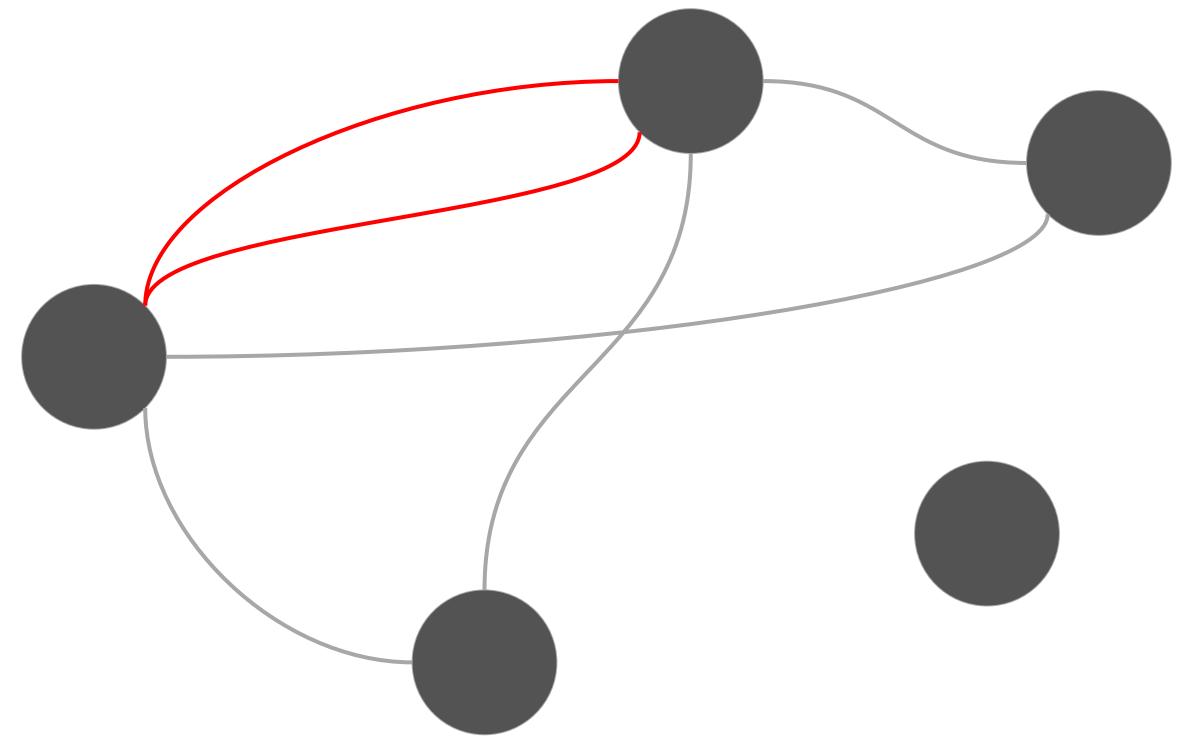
Graphs - Undirected - Simple Graphs



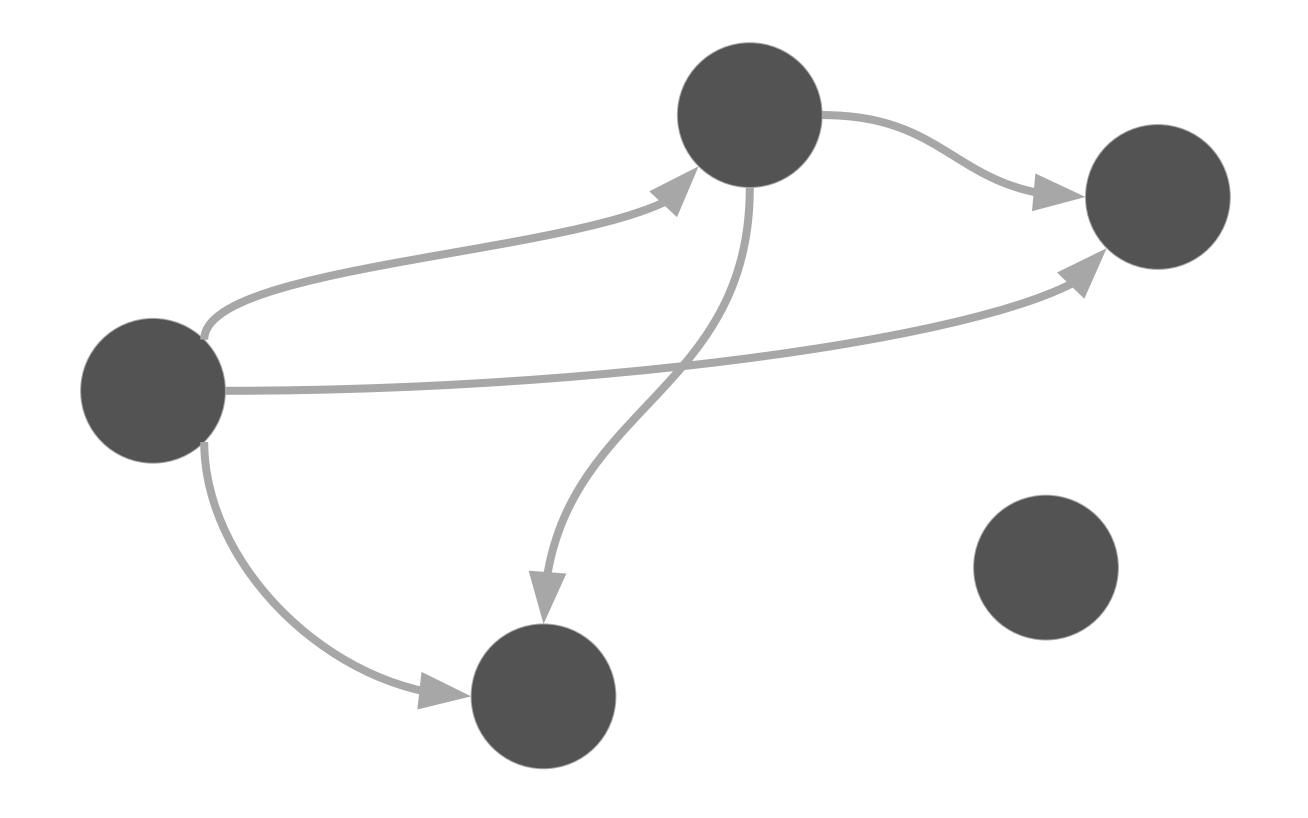
Graphs - Undirected - Self loop



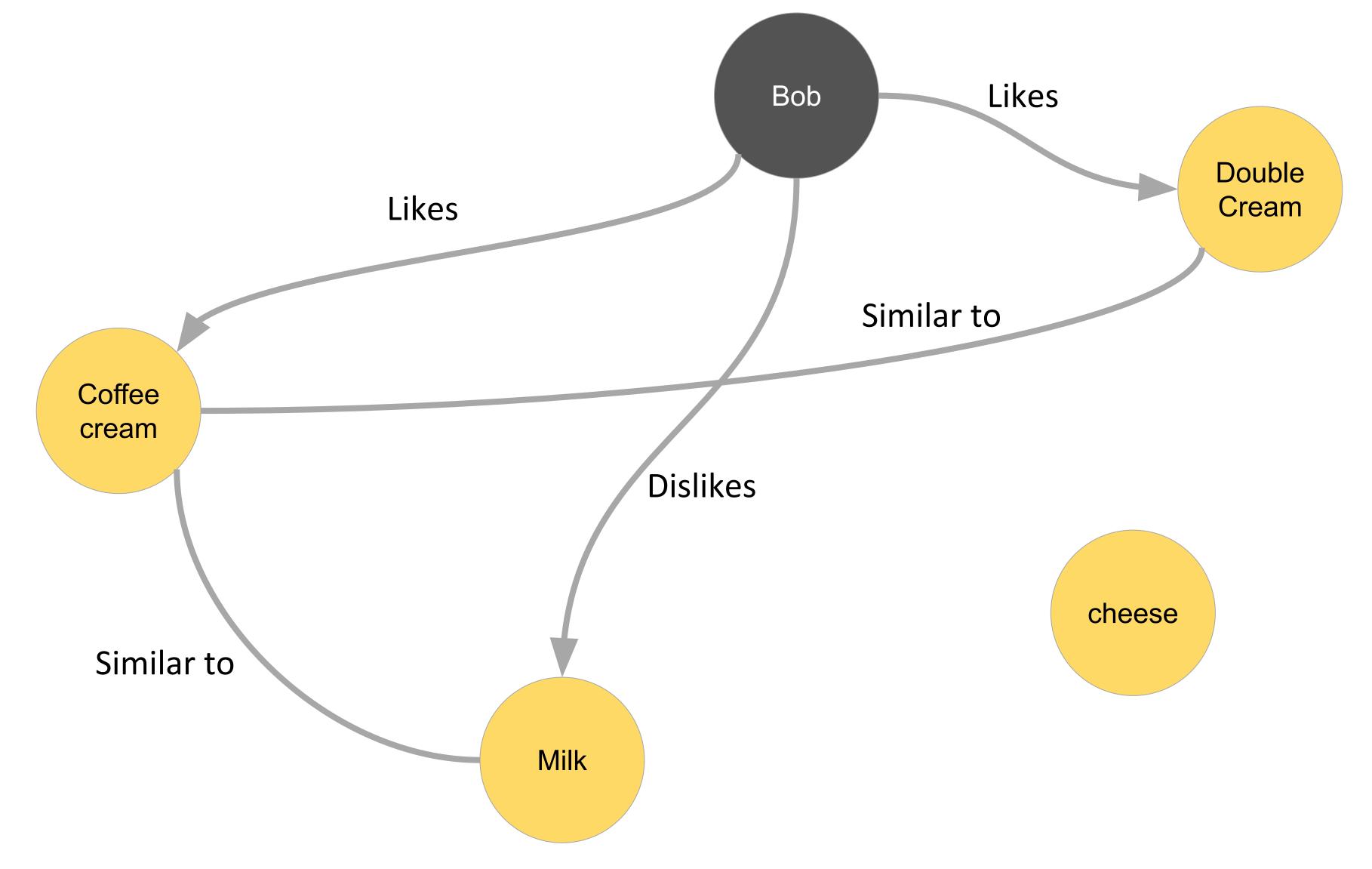
Graphs - Undirected - multigraph



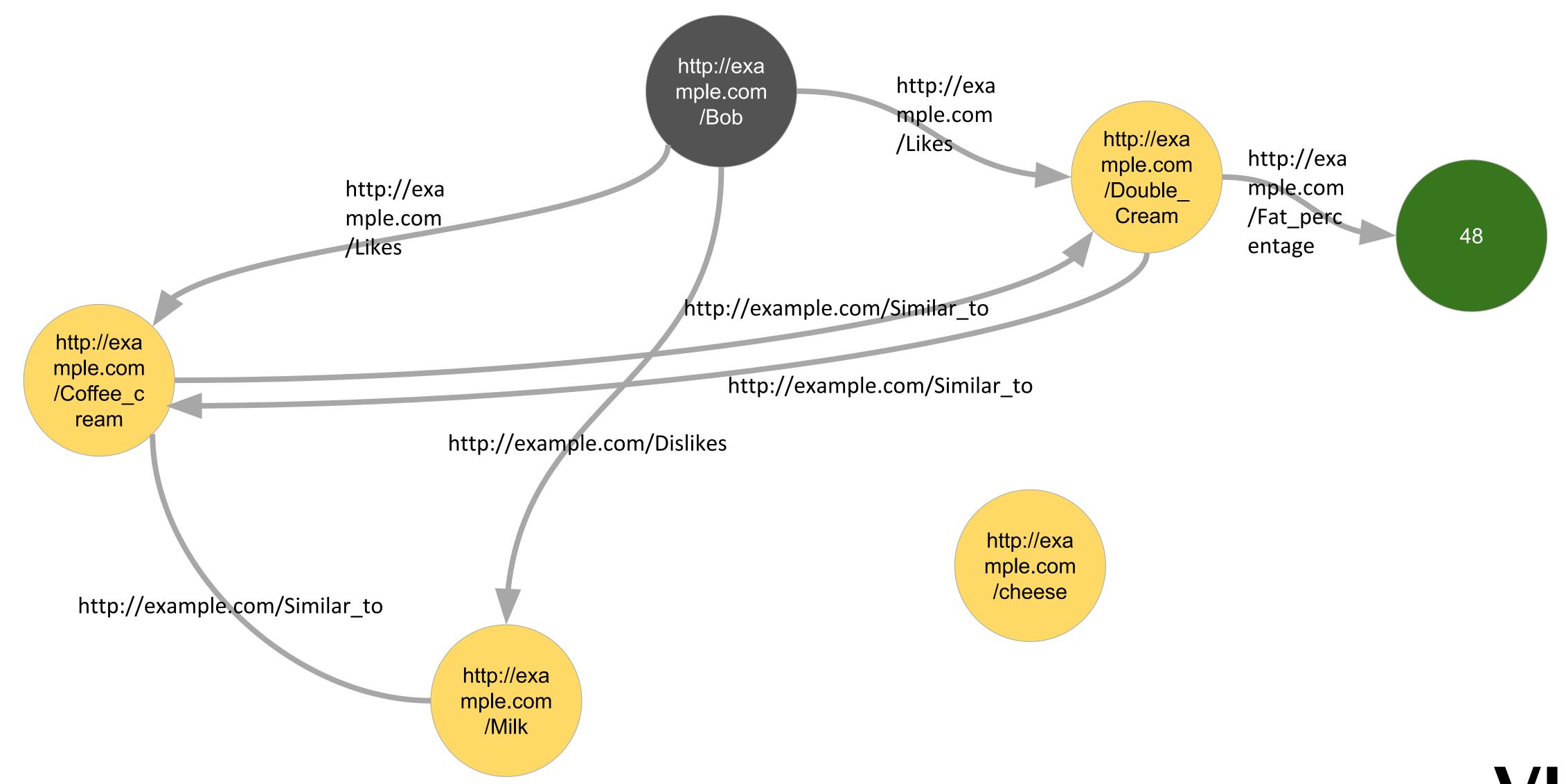
Graphs - Directed



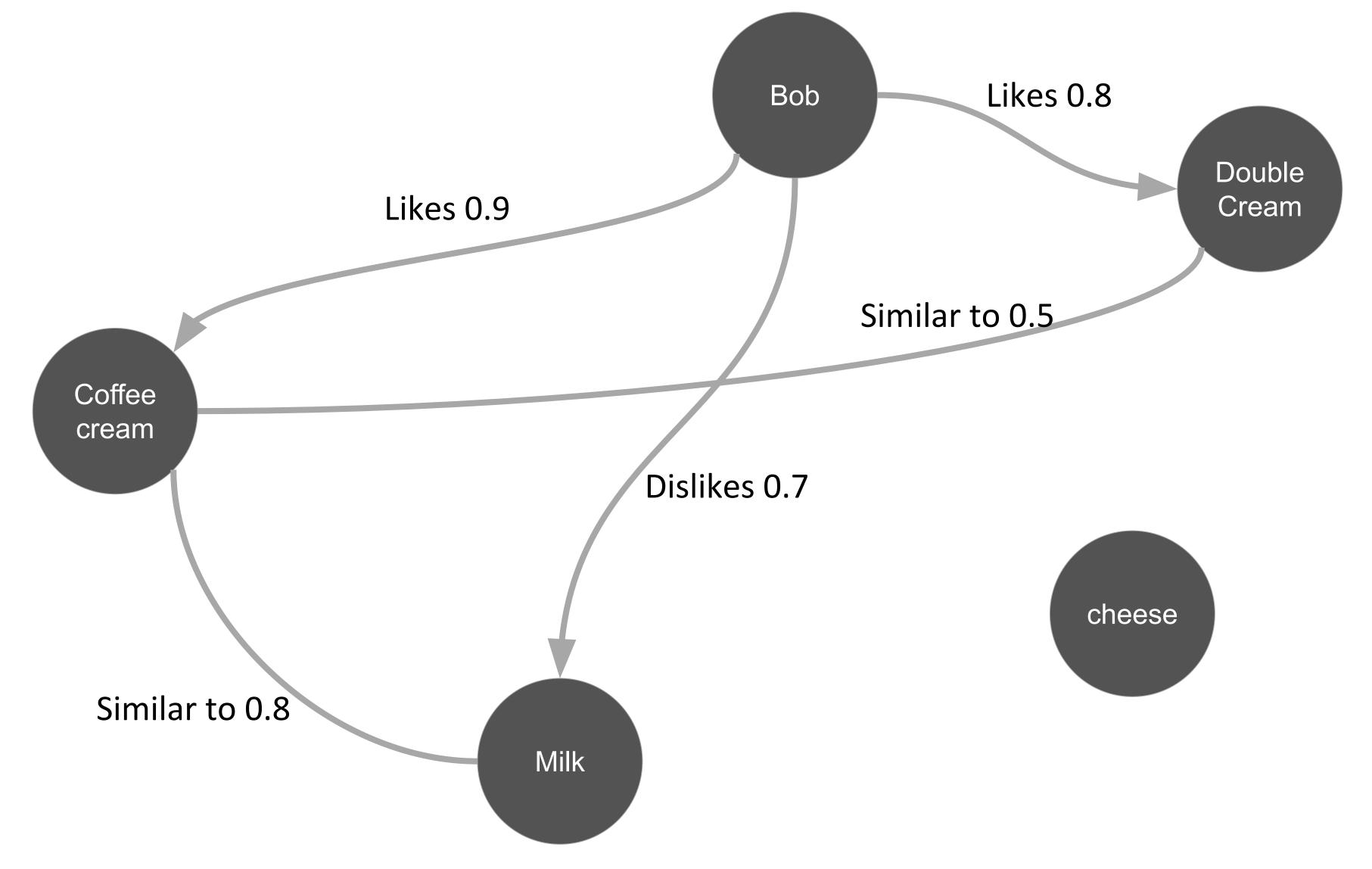
Graphs - Edge and node labels/types



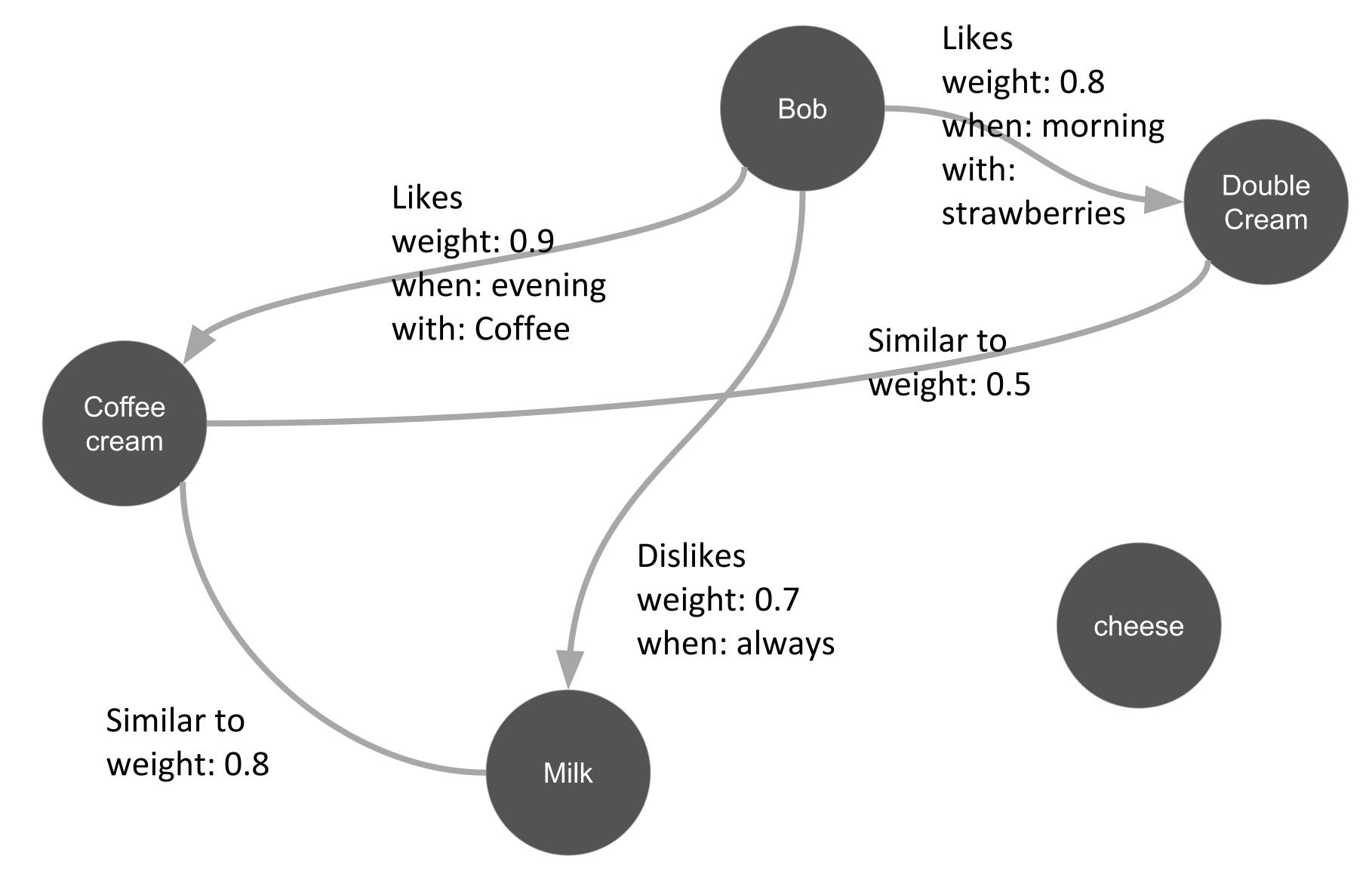
Graphs - Edge and node labels/types - RDF (simplified)



Graphs - Edge and node labels/types + weights



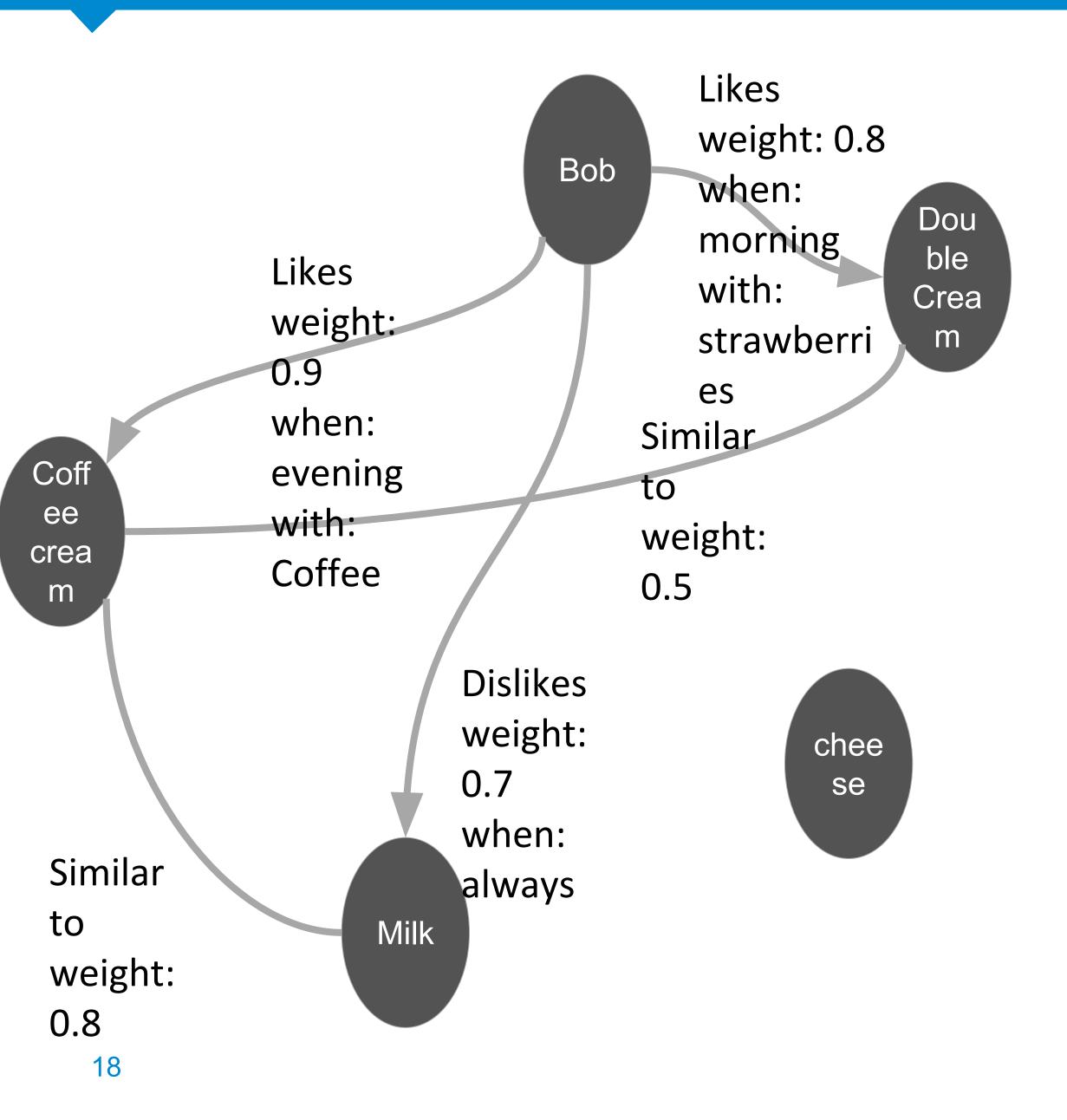
Graphs - Edge and node labels/types + weights

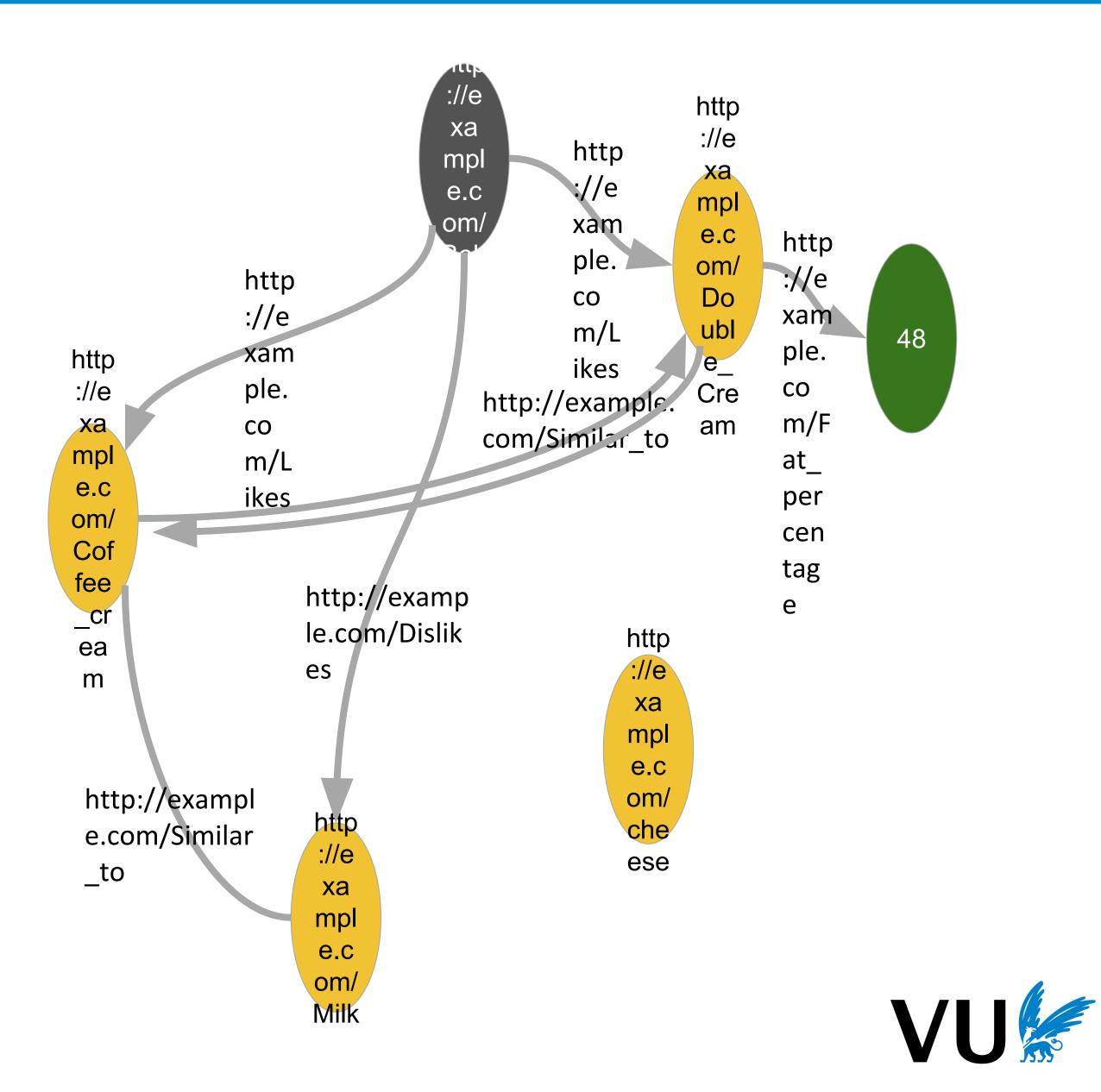


Graphs - summary

- . For a given graph, you should know whether it has:
 - Self loops or not
 - Multigraph or not
 - Directed/undirected/mix
 - Edge labels (unique?)
 - Node labels (unique?)
 - Properties on edges (also called qualifiers)
 - Edge weights
 - . Any combination of these is possible

What is now a knowledge graph?





PART ONE - B: INTRODUCTION - EMBEDDINGS

Embeddings are low dimensional representations of objects

- . Low dimension: Much lower as the original size
- . Representation: There is some meaning to it, a representation corresponds to something
- . Objects: Words, sentences, images, audio, graphs,

Embedding of images

Input Volume (+pad 1) (7x7x3)								Filter W0 (3x3x3)	Filter W1 (3x3x3)
x[:,:,0]								w0[:,:,0]	w1[:,:,0]
0	0	0	0	0	0	0		-1 0 0	0 1 1
0	1	1	0	2	1	0		-1 -1 1	1 1 -1
0	2	1	0	2	0	0		0 1 -1	-1 1 -1
0	2	2	1	2	2	0		w0[:,:,1]	w1[:,:,1]
0	0	2	2	1	2	0			1 -1 0
0	2	1	0	0	2	0		1 -1 0	1 1 1
0	0	0	0	0	0	0		0 1 -1	-1 1 0
x[:,:,1]								w0[:,:,2]	w1[:,:,2]
0	0	0	0	0	0	0			0 1 -1
0	1	2	1	0	2	0		1 1 -1	0 1 1
0	2	0	0	0	2	0	-1 -1 -1	-1 -1 -1	1 0 0
0	0	2	0	1	0	0		Bias b0 (1x1x1)	Bias b1 (1x1x1)
0	1	2	0	1	2	0		b0[:,:,0]	b1[:,:,0]
0	1	0	2	0	1	0		1	0
0	0	0	0	0	0	0			
x[:,:,2]									
0	0	0	0	0	0	0			
0	2	0	0	0	1	0			
0	0	0	0	1	0	0			
0	1	1	0	2	1	0			
0	0	0	0	2	1	0			
0	0	1	1	2	2	0			
0	0	0	0	0	0	0			imad

5

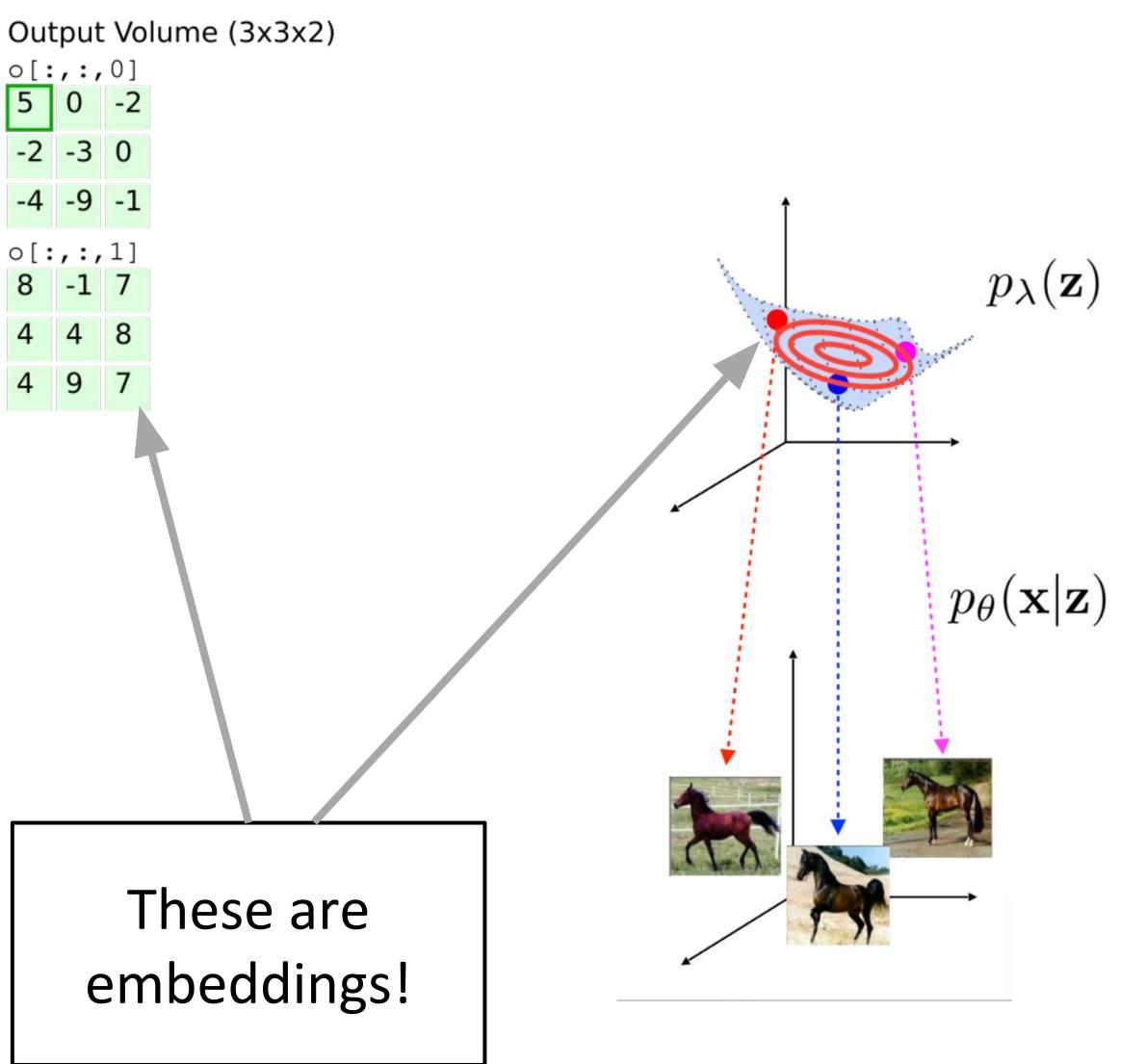
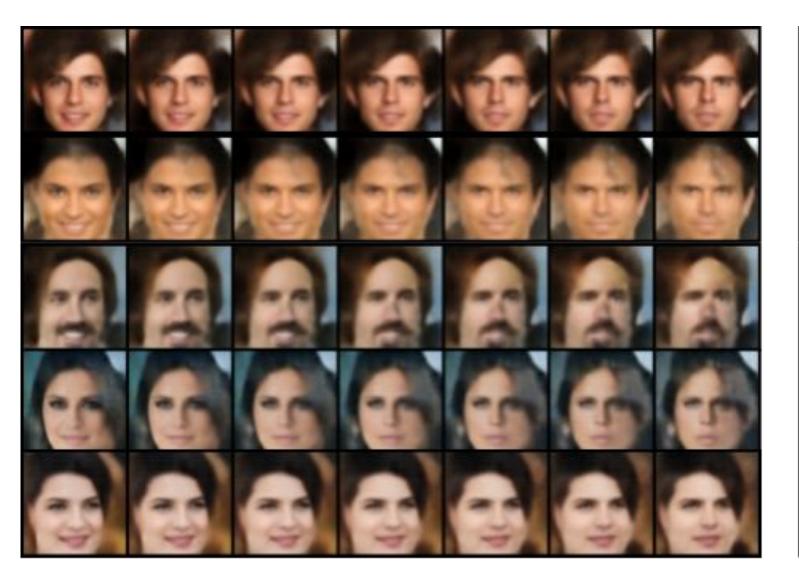


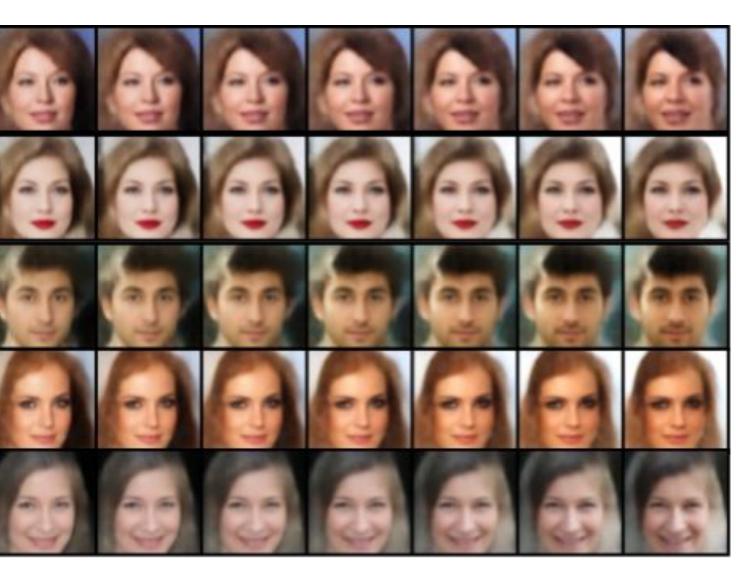
image source: https://cs231n.github.io/convolutional-networks/#fc

Embedding of images - navigable space



(a) Smile

(c) Baldness



(b) Background intensity

https://arxiv.org/ abs/1911.05627

(d) Gender

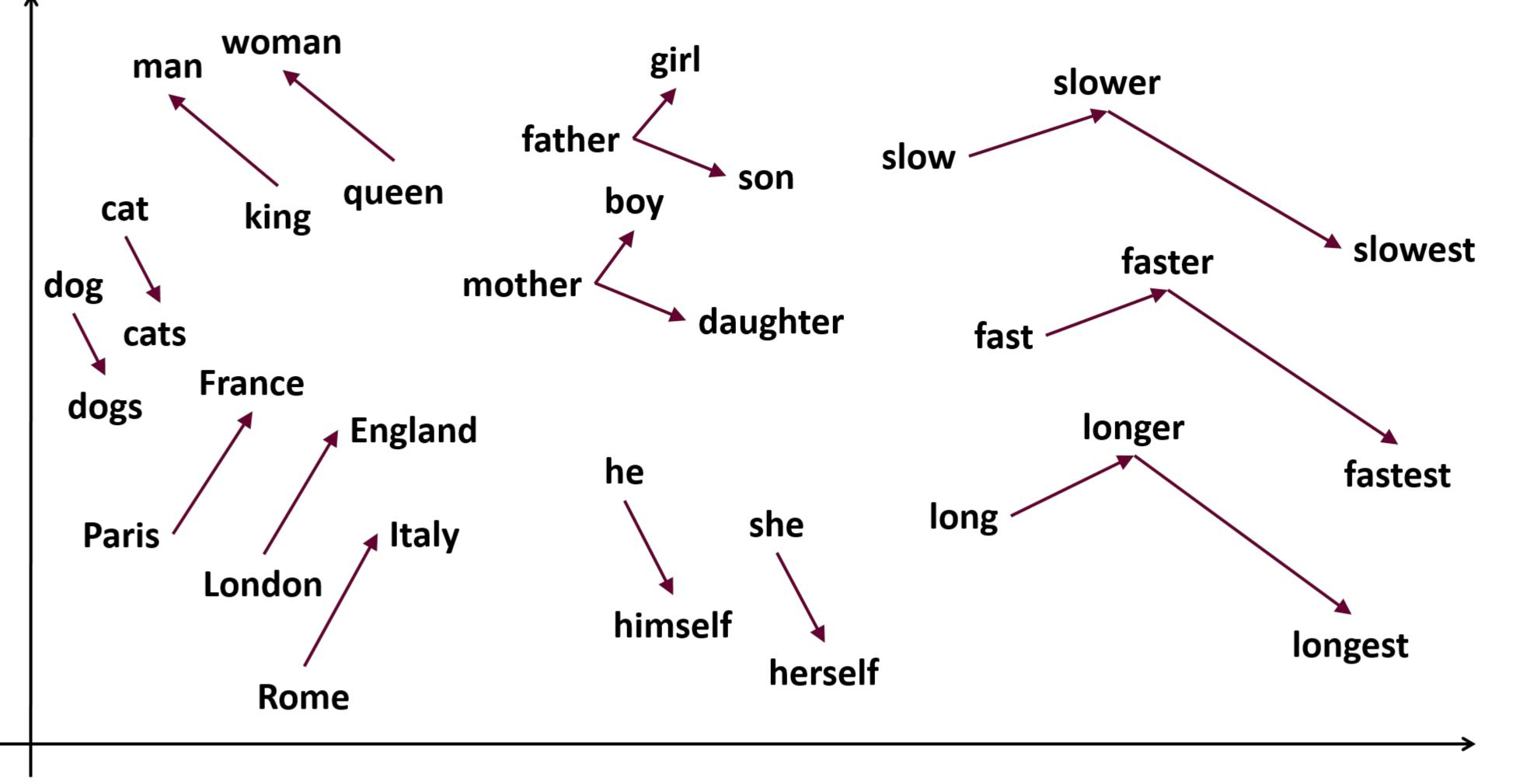
Distributional hypothesis

- ^o "You shall know a word by the company it keeps" Firth 1957 ^o "If units of text have similar vectors in a text frequency matrix, then they tend to have similar meaning" Turney and Pantel (2010)
- For example, the word 'cat' occurs often in the context of the word 'animal', and so do words like 'dog' and 'fish'.
- But, the word 'loudspeaker' hardly ever co-occurs with 'animal'

Distributional hypothesis

=> We can use context information to define embeddings for words. One vector representation for each word Generally, we can train them (see lecture on word2vec)

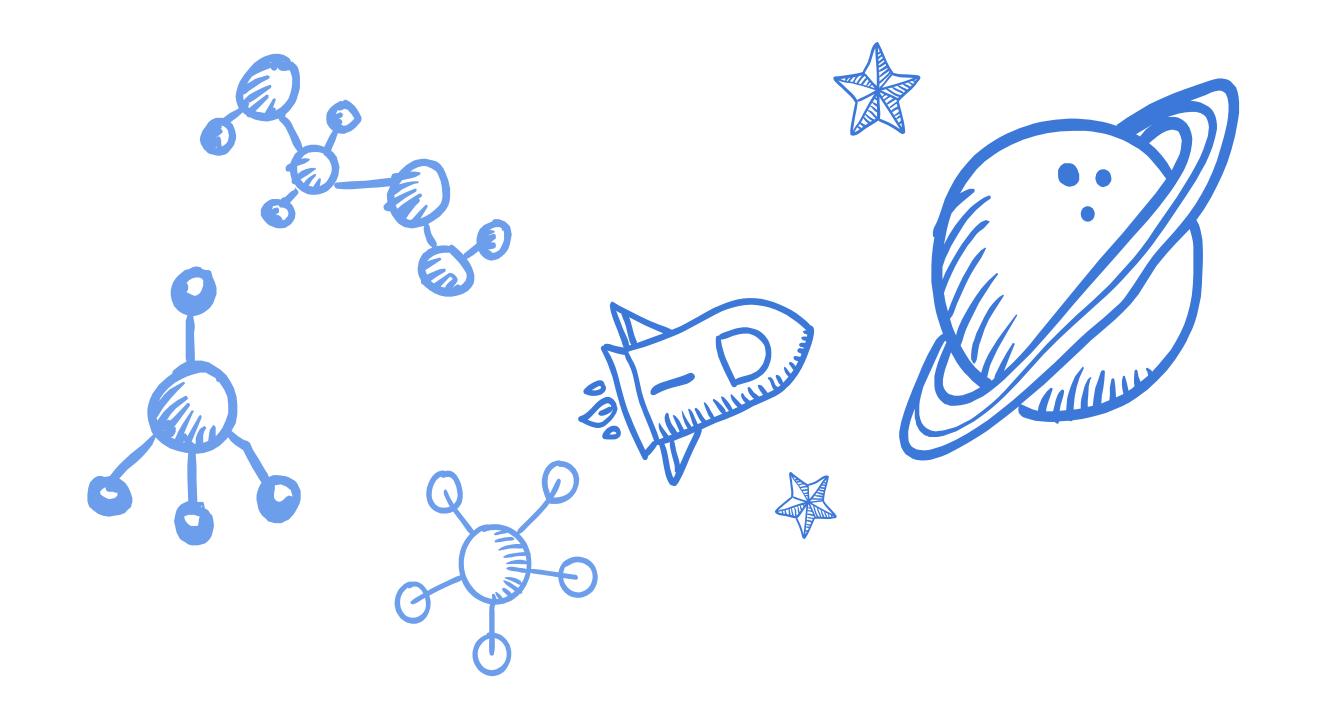
Embedding of words - navigation



https://samyzaf.com/ML/nlp/nl p.html

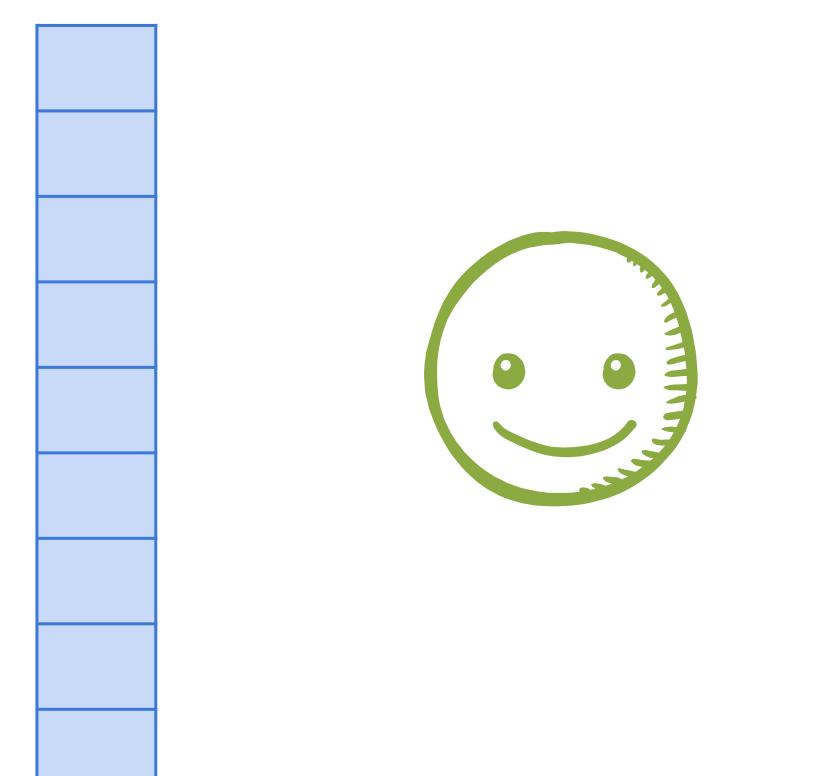
Classification, Regression, Clustering of nodes/edges/whole graph Recommender systems (who likes what) Document modeling Entity and Document similarity (Use concepts from a graph) Alignment of graphs (which nodes are similar?) Link prediction and error detection Linking text and semi-structured knowledge to graphs

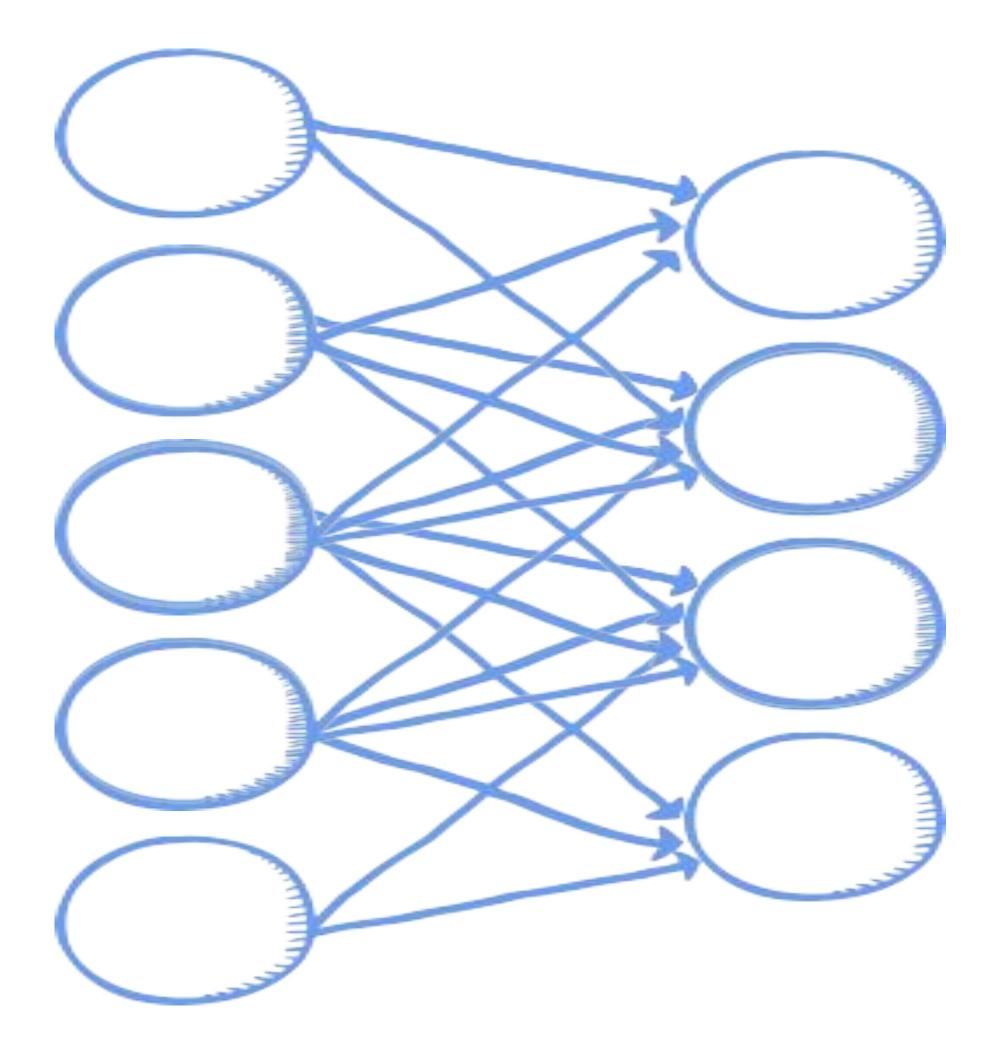
PART TWO: Graph Embedding Techniques



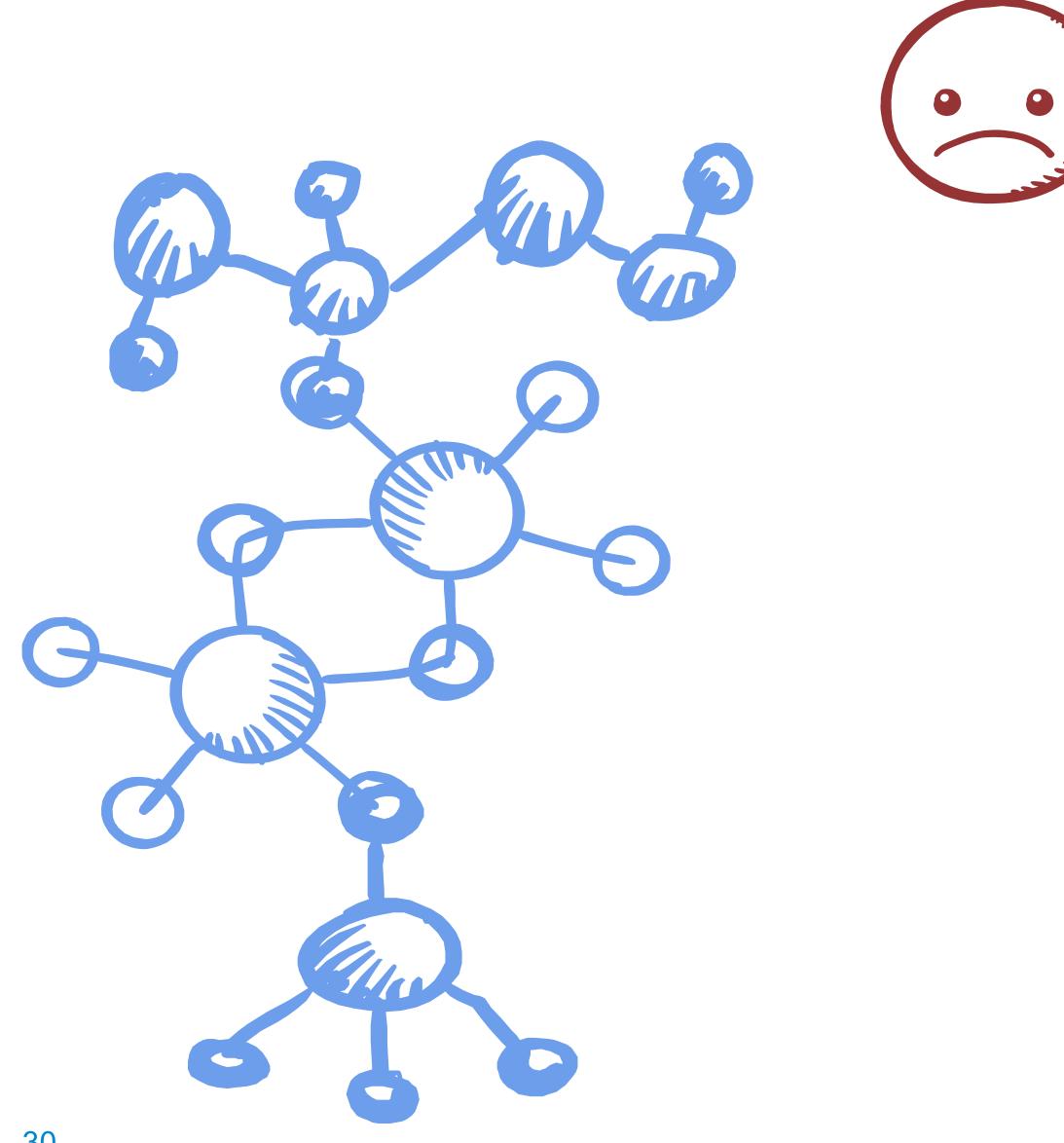
The Challenge

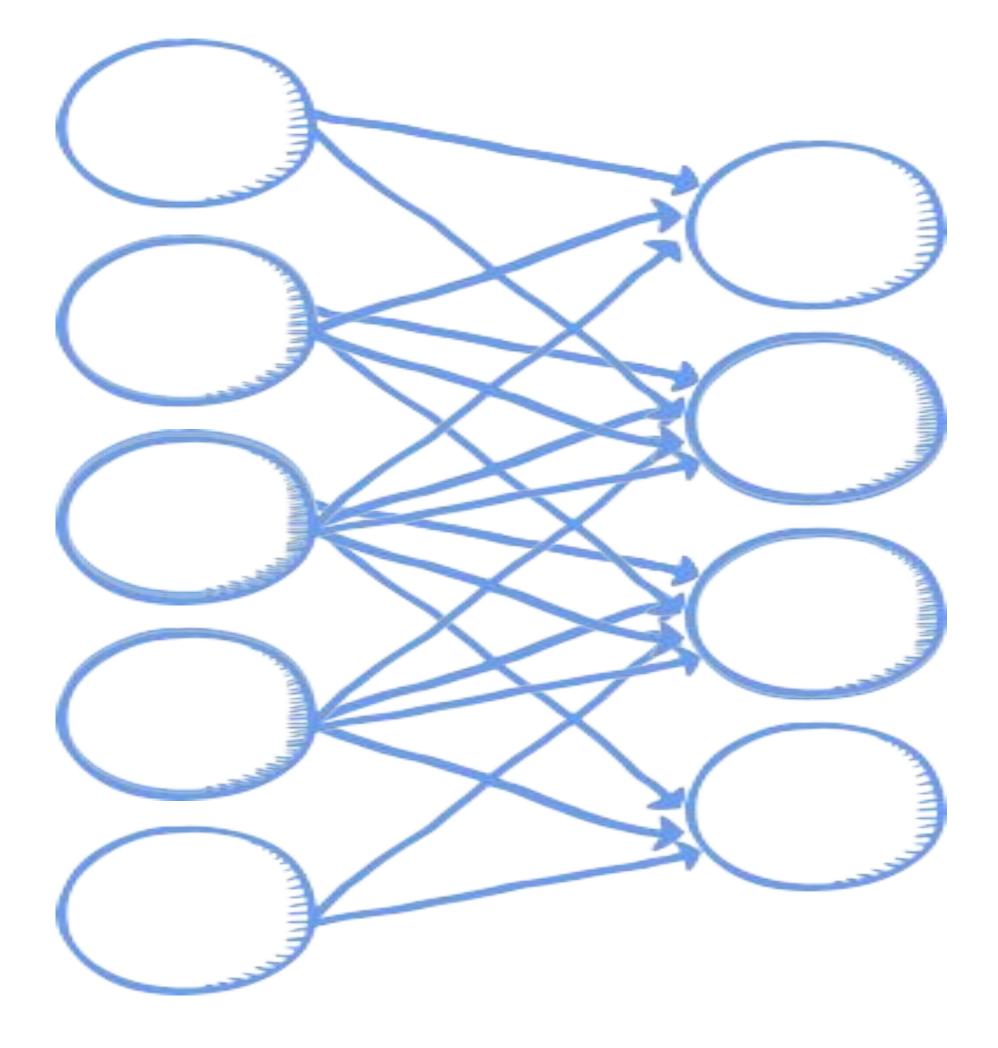
Graphs - model mismatch





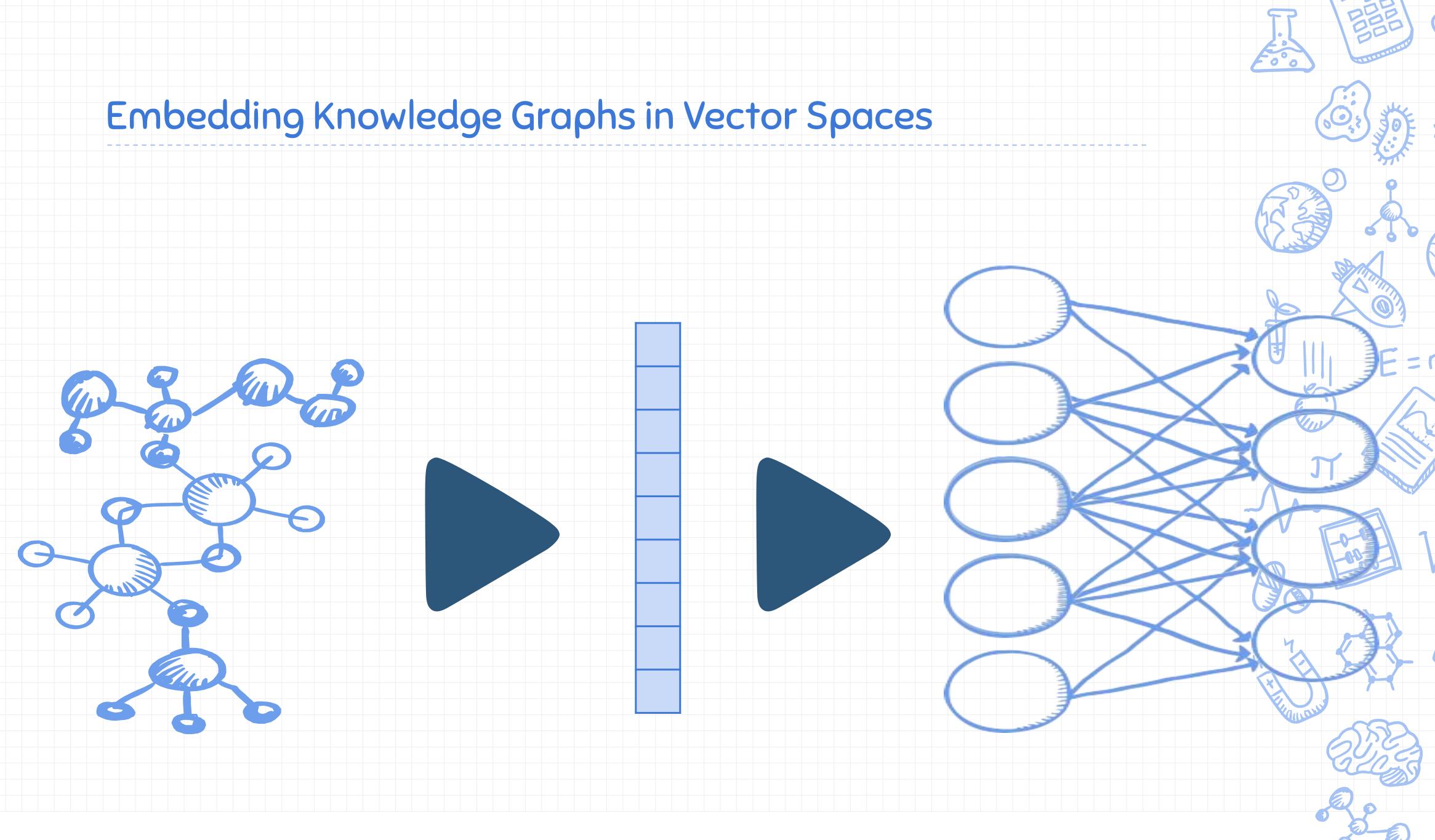
Graphs - model mismatch





What we skip

- . Traditional ML on graphs
 - Often have problems with scalability • Often need manual feature engineering
 - . Task Specific



Embedding - propositionalization

X One vector for each entity Compatible with traditional data mining algorithms and tools **X** Preserve the information **X** Unsupervised **X** task and dataset independent **X** Efficient computation Low dimensional representation

Two Major Visions

Preserve Topology

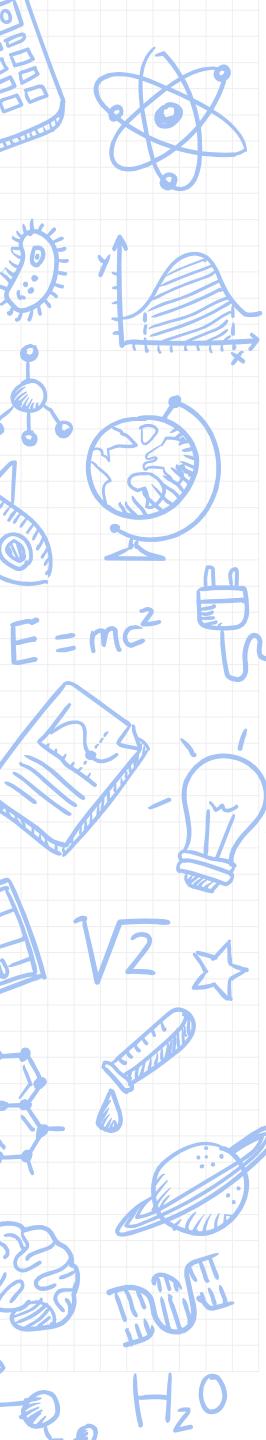
 Keep neighbours close together

Europe - Germany
Africa - Algeria

Preserve Similarity

Keep similar nodes
 close together

Europe - Africa Germany - Algeria



Two Major Targets

Improve original data

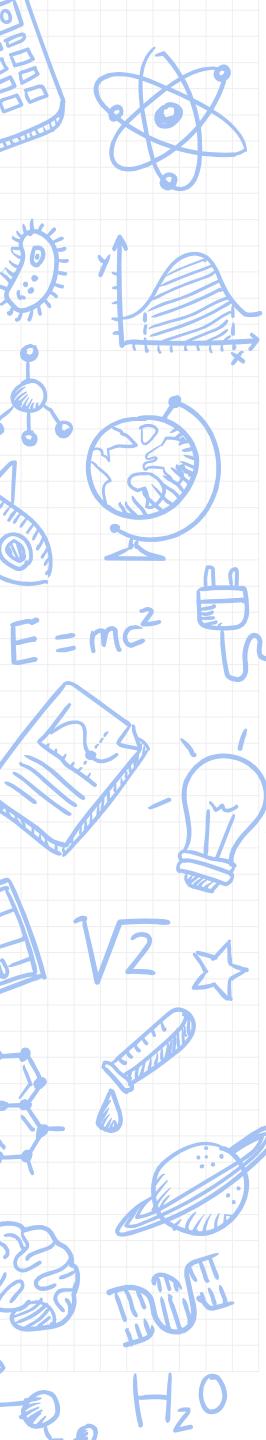
 Knowledge Graph Completion
 Link Prediction
 Anomaly Detection

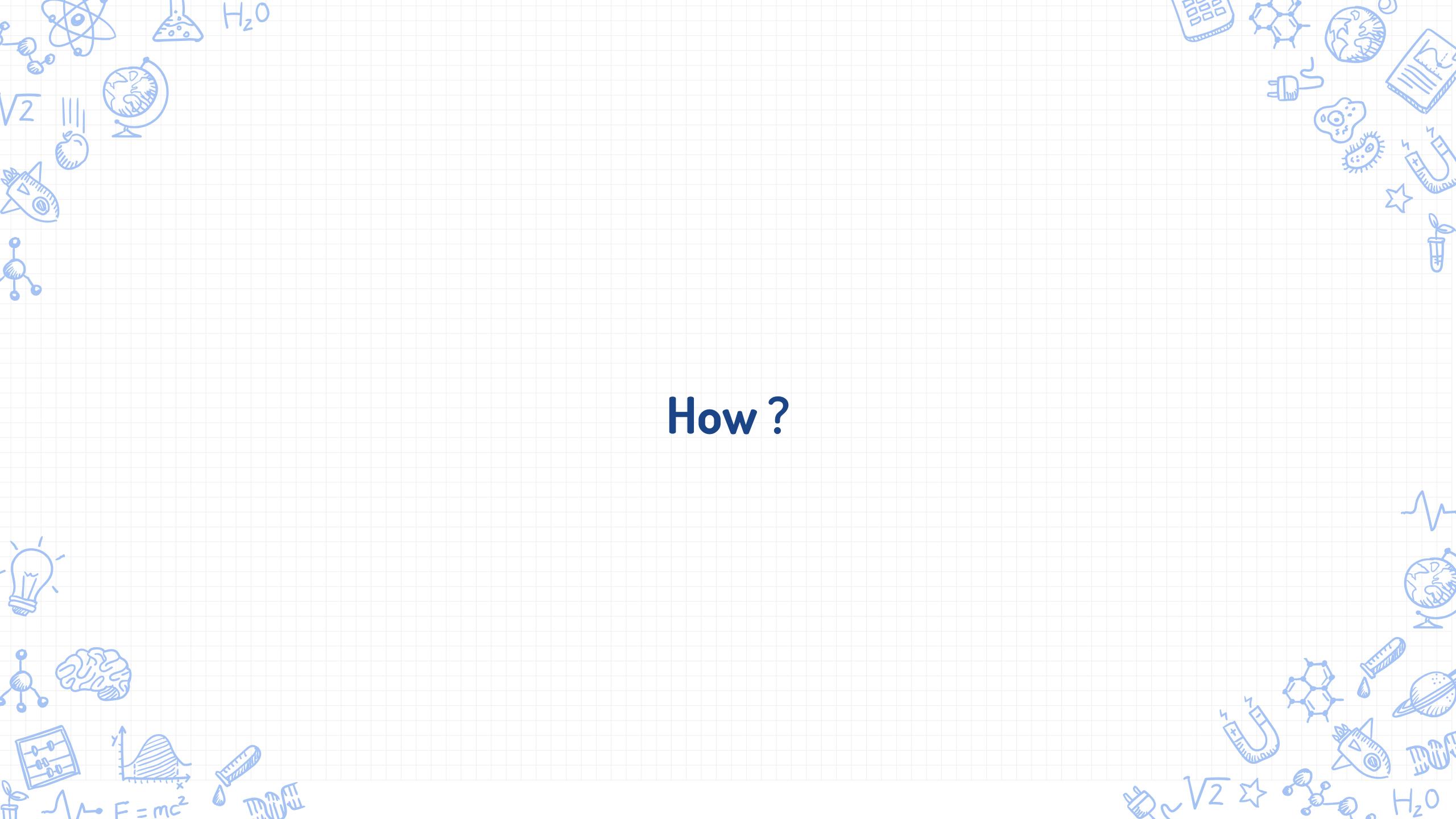
Downstream ML Tasks

Classification/Regressio
 n/Clustering/K-NN

 Then used as part of a larger process

 QA/dialog systems
 Translation
 Image segmentation





Three Major Approaches for Propositionalization

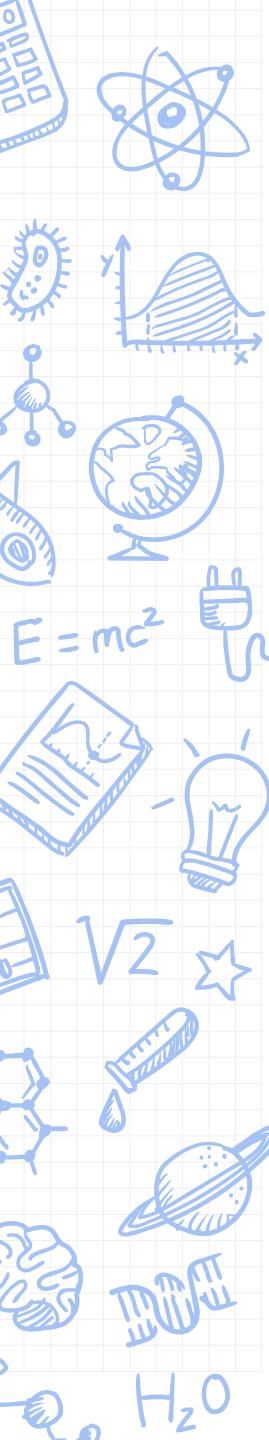
Translational

Interpret relations as translations of concept in the embedded space

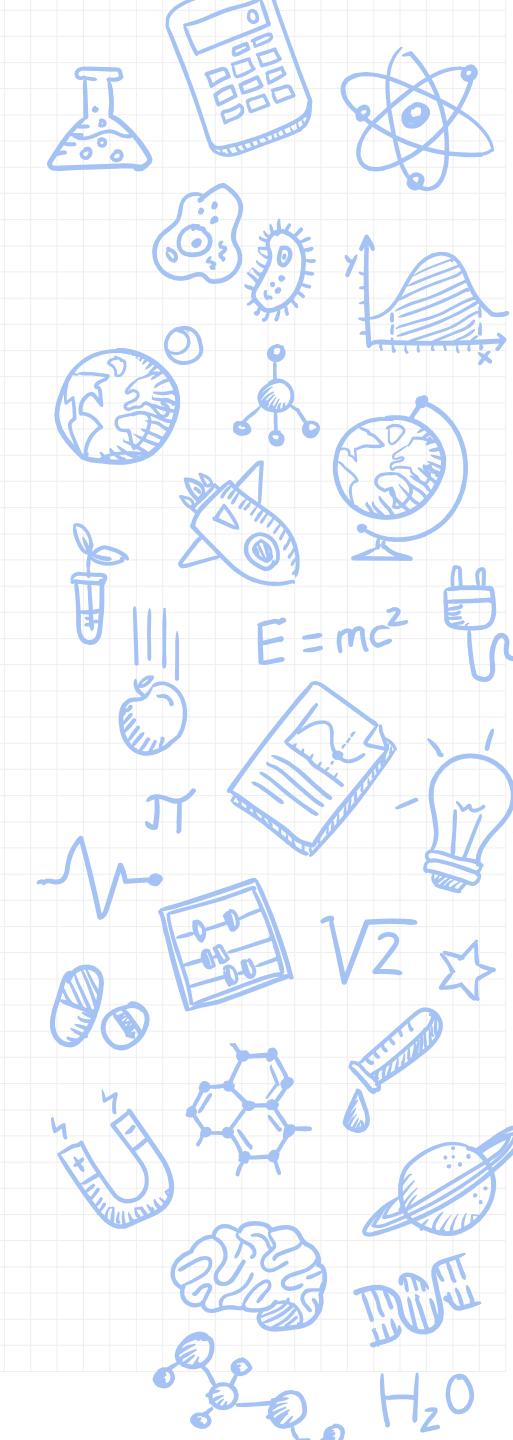
Random Walk Based Tensor Factorization

Make a 3D matrix and factorize it Reconstructing the original hints which edges were missing

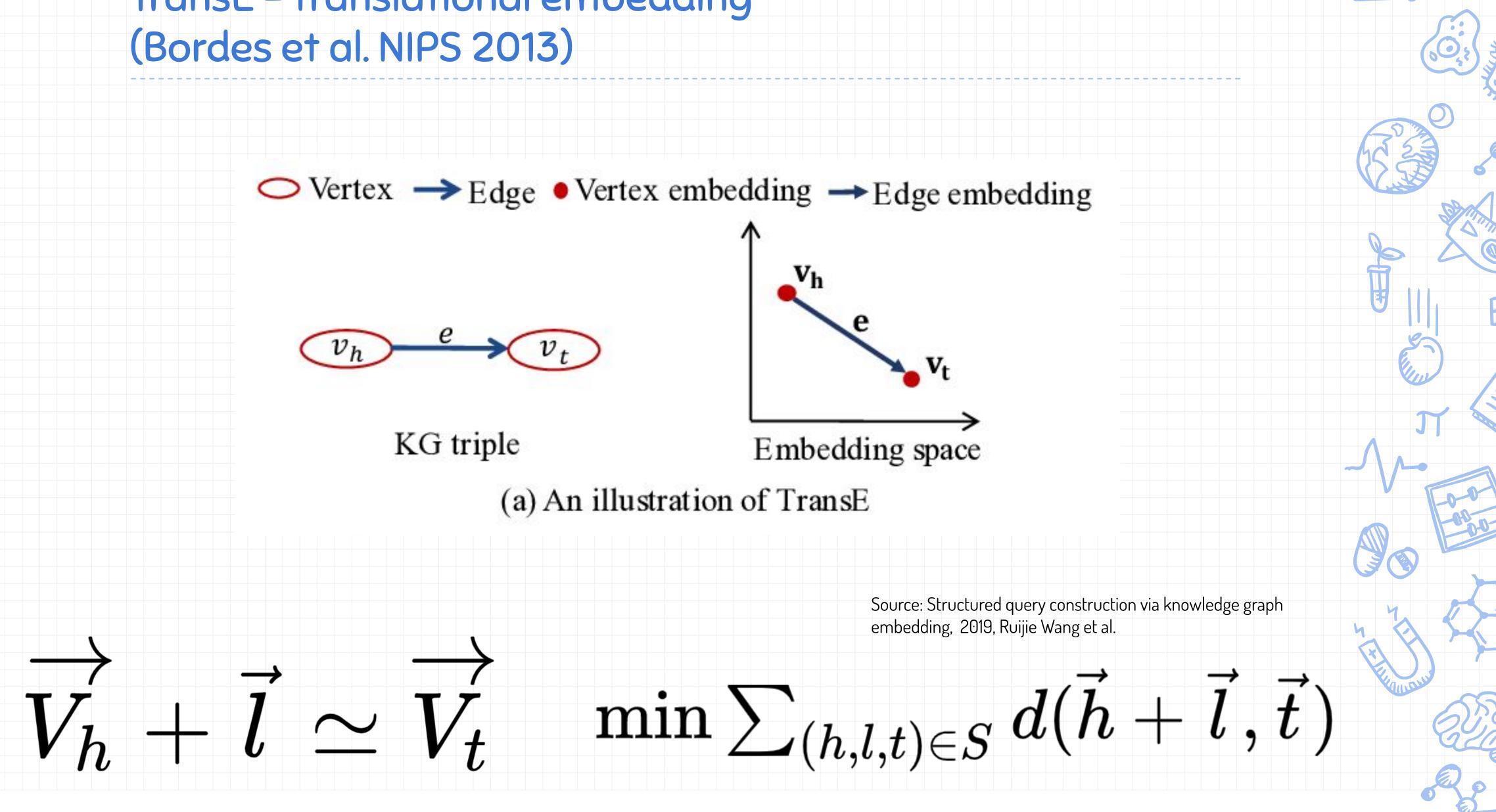
- Use the context of a concept to embed it Use the distributional hypothesis



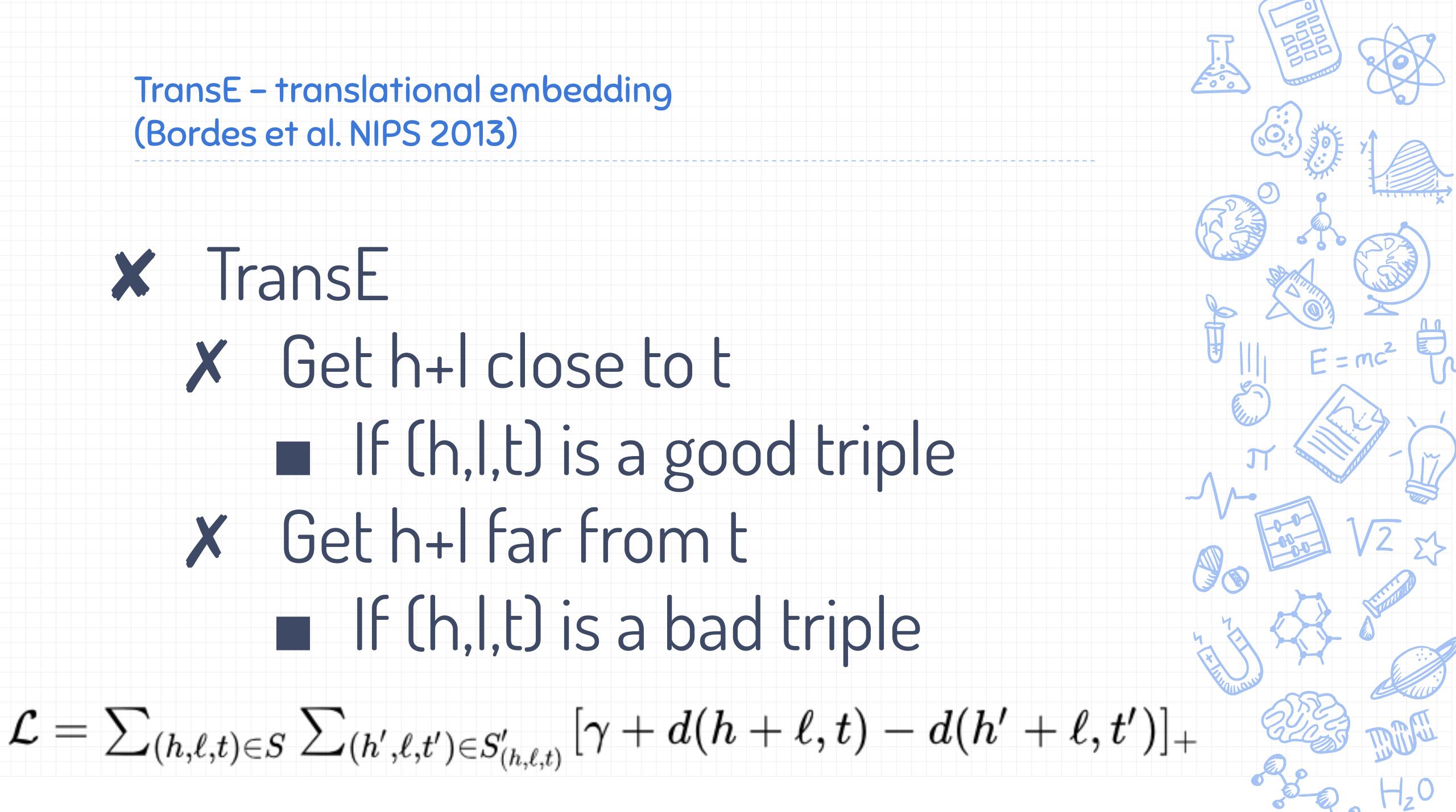
XTransX - translational embedding (Bordes et al. NIPS 2013, Lin et al., AAAI'15)



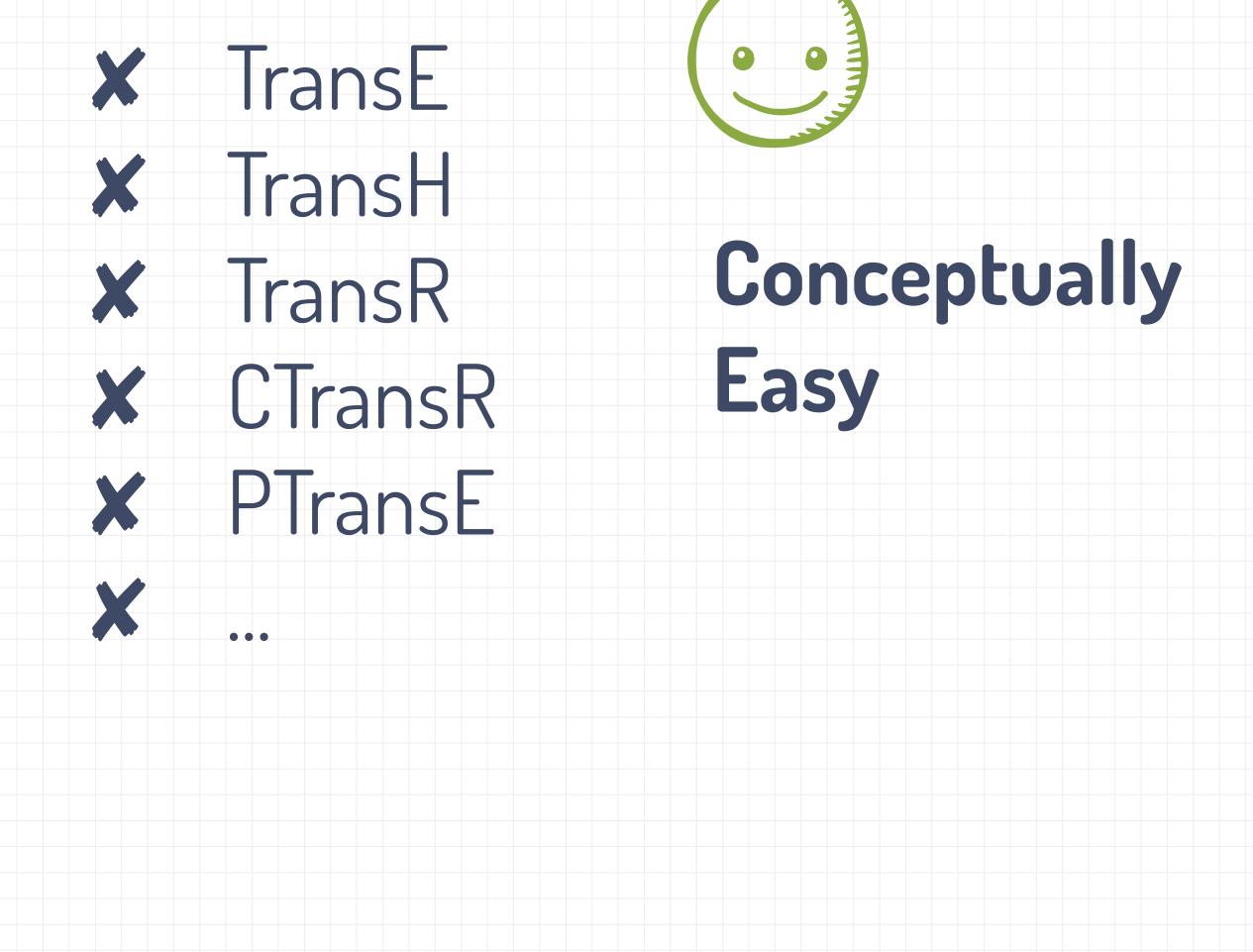
TransE - translational embedding (Bordes et al. NIPS 2013)

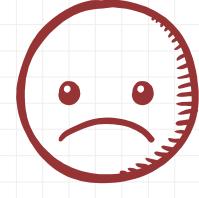


(Bordes et al. NIPS 2013)

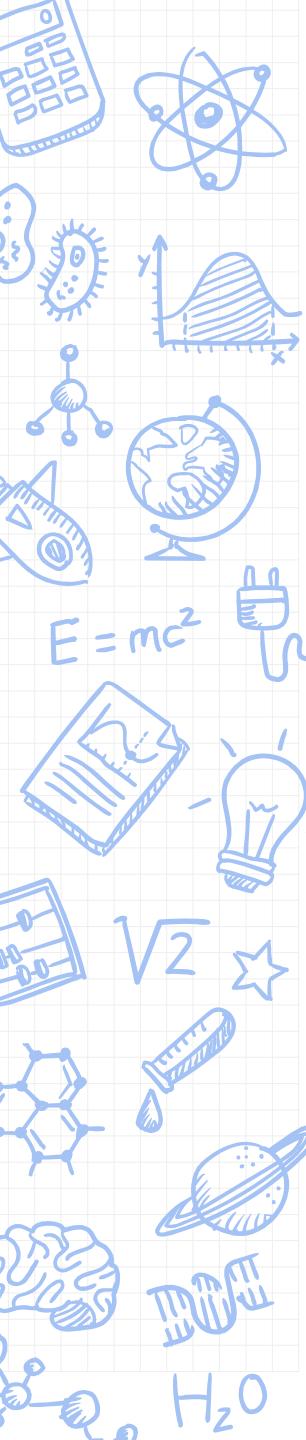


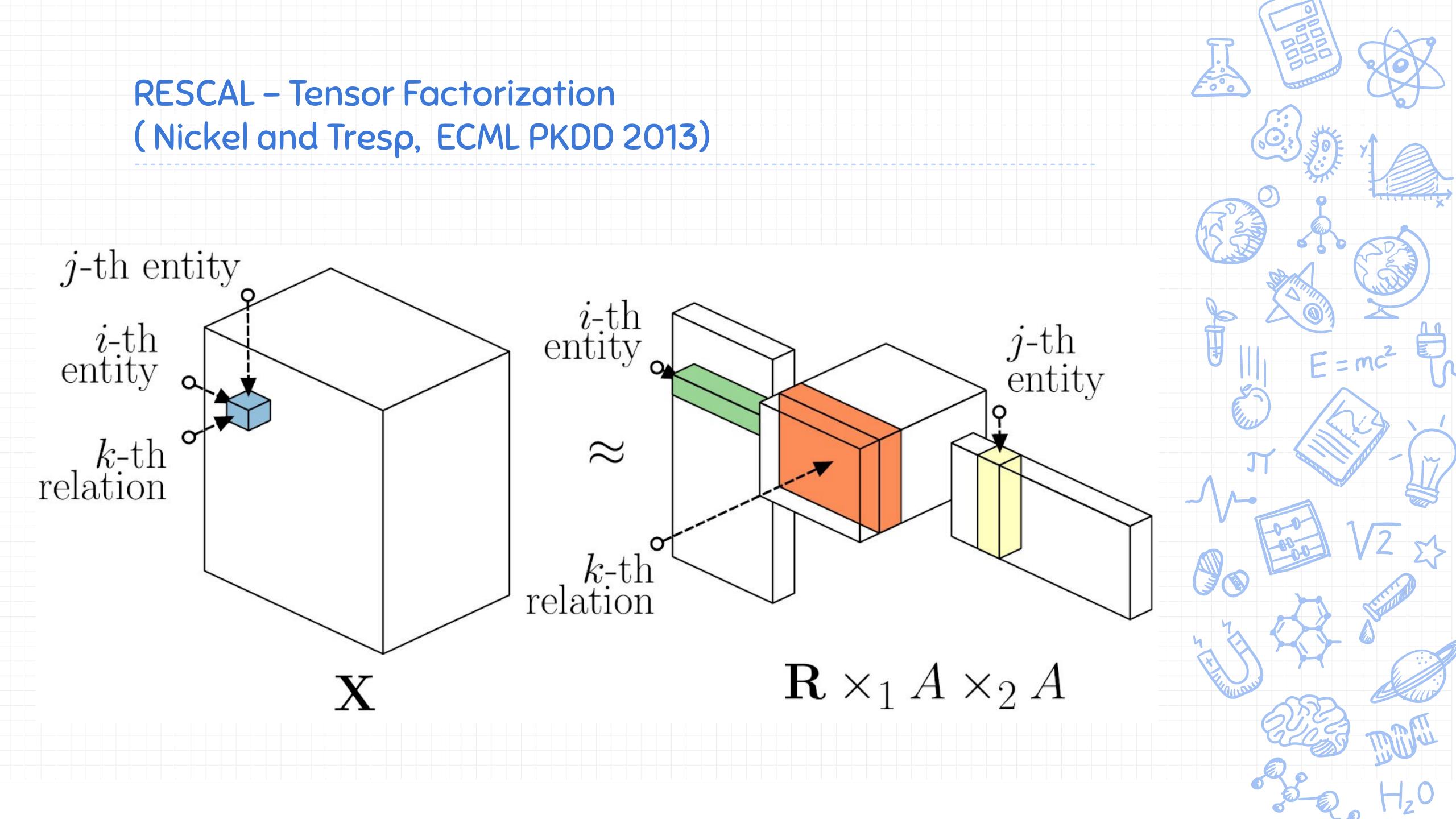
XTransX - translational embedding (Bordes et al. NIPS 2013, Lin et al., AAAI'15)





Embedding Quality The better the model, the less scalable **One Hop**





Tensor Factorization

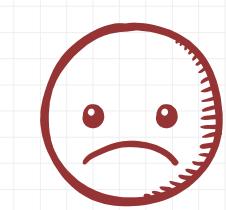
Explainable Conceptually

tasks **Good for link** Numeric prediction The better the attributes can model, the Usually be included less scalable Scalable

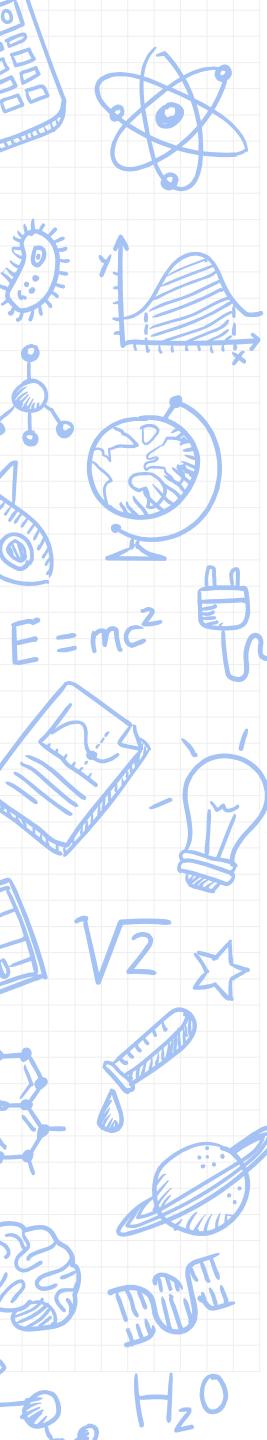
Multi hop

Easy

somehow

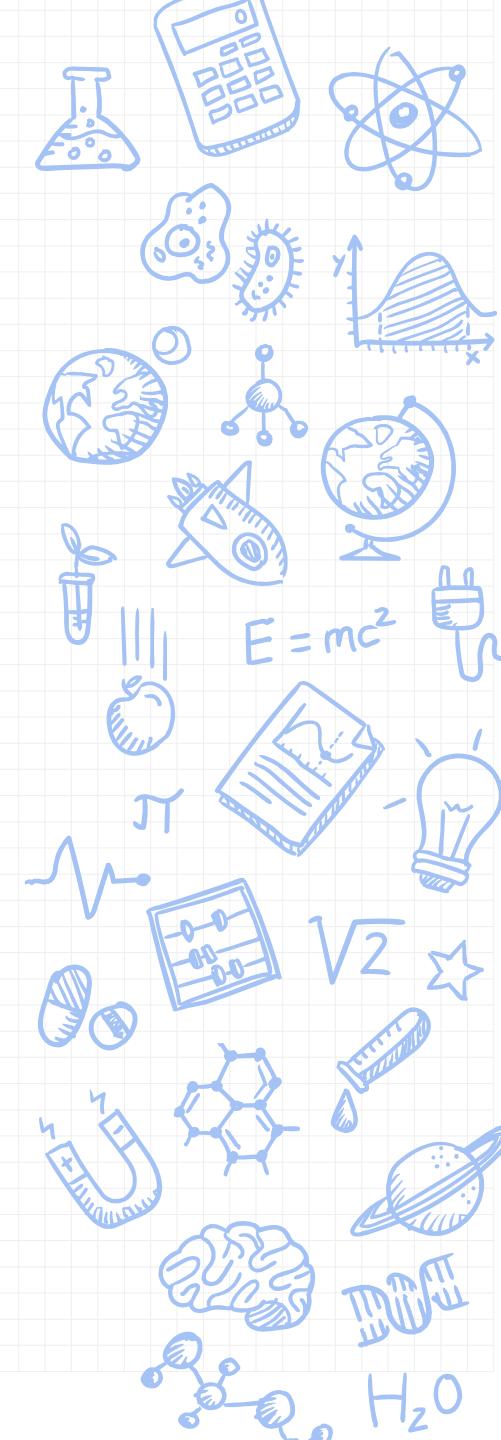


Embedding **Quality for ML**



Random Walk based methods (Cochez, et al., ISWC '17, Cochez, et al. WIMS'17, Ristoski et al. ISWC '16, Grover, Leskovec KDD '16)

 Use random walks to extract a context for each node Use this context as input to word embedding techniques



Random Walk based methods - RDF2Vec and Node2Vec (Cochez, et al. WIMS'17, Ristoski et al. ISWC '16, Grover, Leskovec KDD '16)

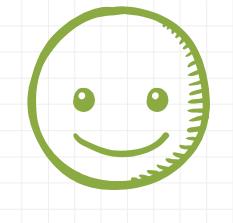
 Use random walks to create sequences on the graph. • Feed these to word2vec

• Biasing the walks helps for specific cases • Also some other graph kernels have been used

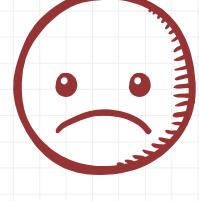
Global Embeddings - KGloVe (Cochez, Ristoski, et al., ISWC '17)

 Create co-occurrence stats using Personalized PageRank • All pairs PPR • Apply the GloVe model • Similar things will have similar contexts Optimizes for preserving analogy 0 ■ King – Man + Woman ≃ Queen Berlin – Germany + Austria ~ Vienna Complete context captured Ο

Random walk based methods (Cochez, et al., ISWC '17, Cochez, et al. WIMS'17, Ristoski et al. ISWC '16, Grover, Leskovec KDD '16)

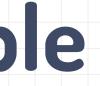


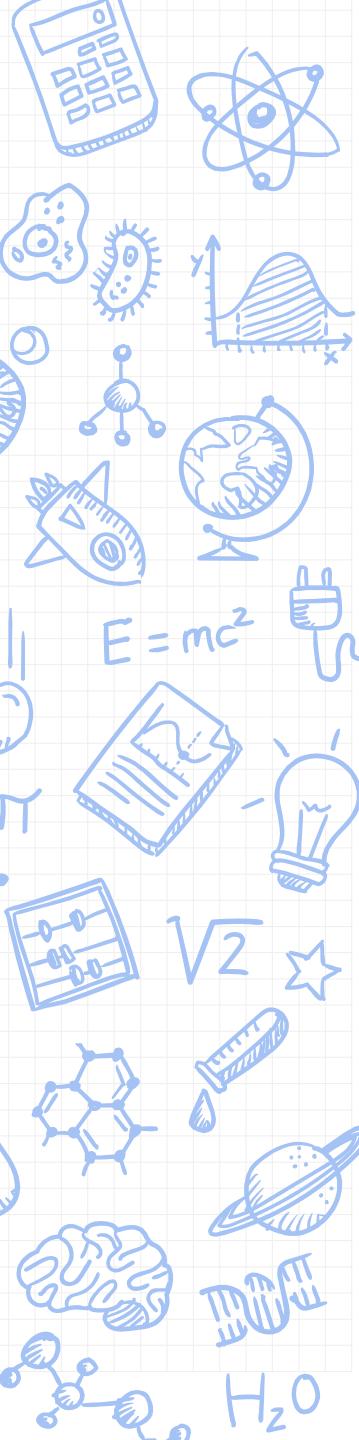
Deals with large Likely or Graphs partially Good Explainable Embeddings Larger **Good Training** Context Used Time



Link

Prediction



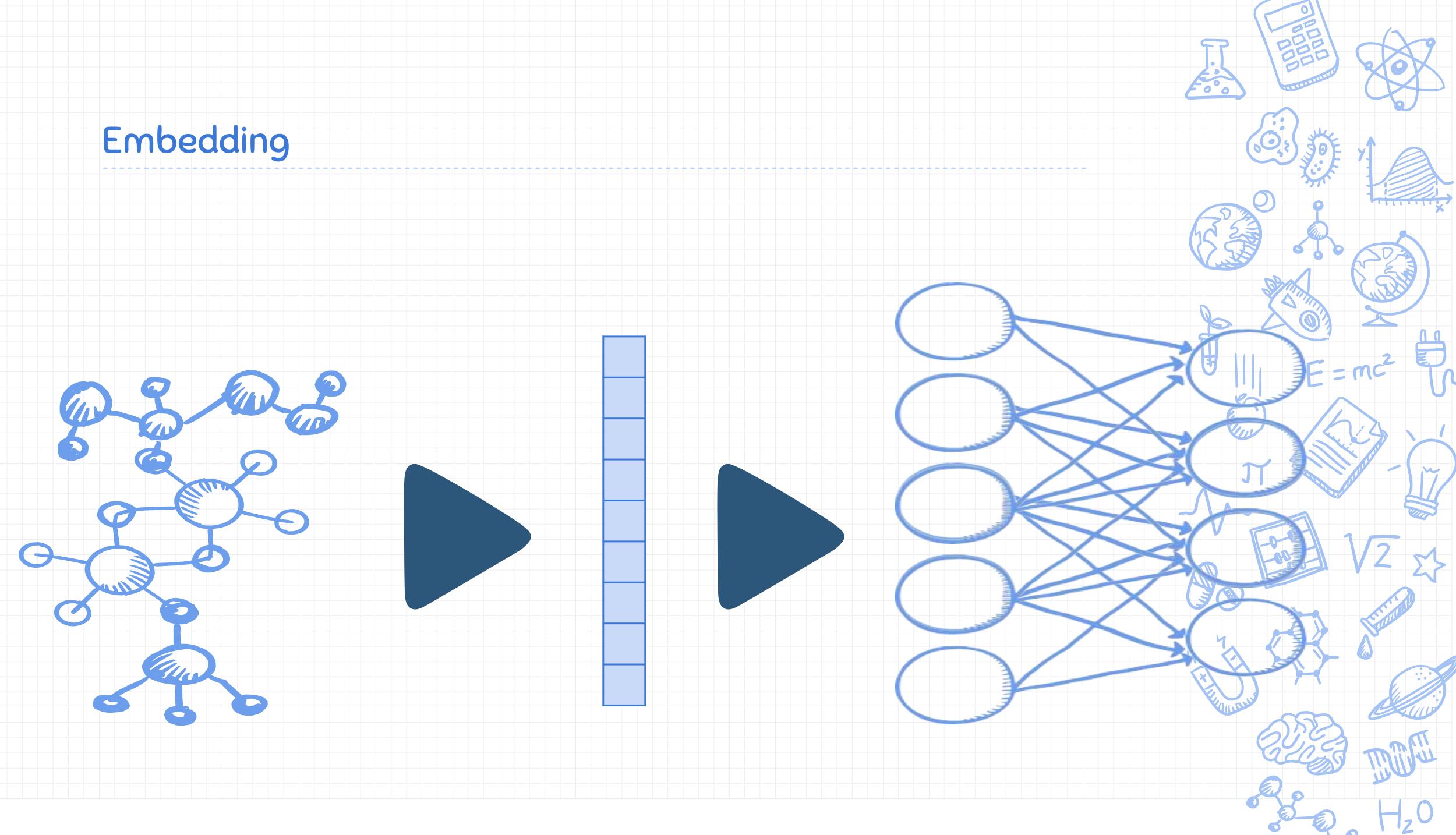


PART THREE: Graph Neural Networks

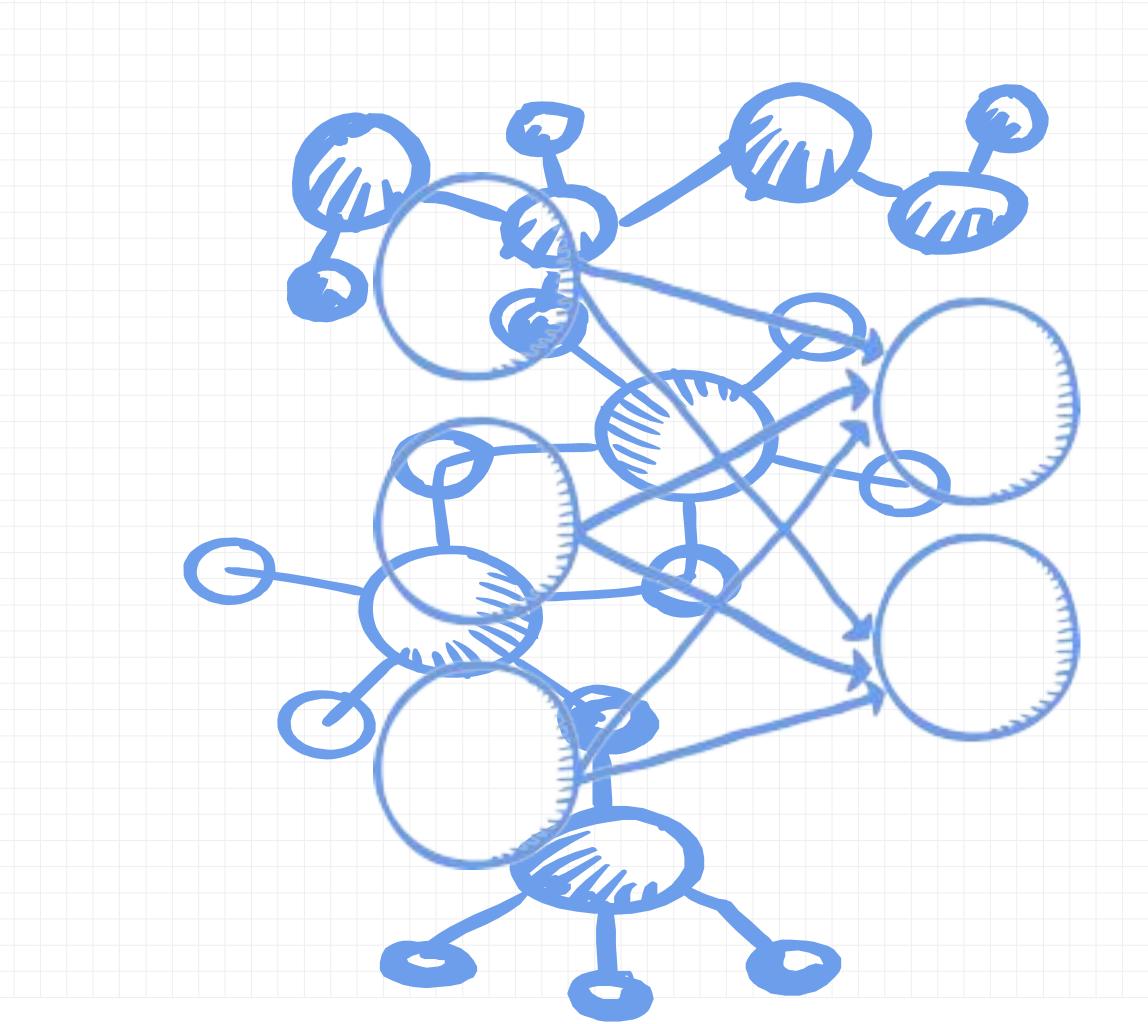
VU

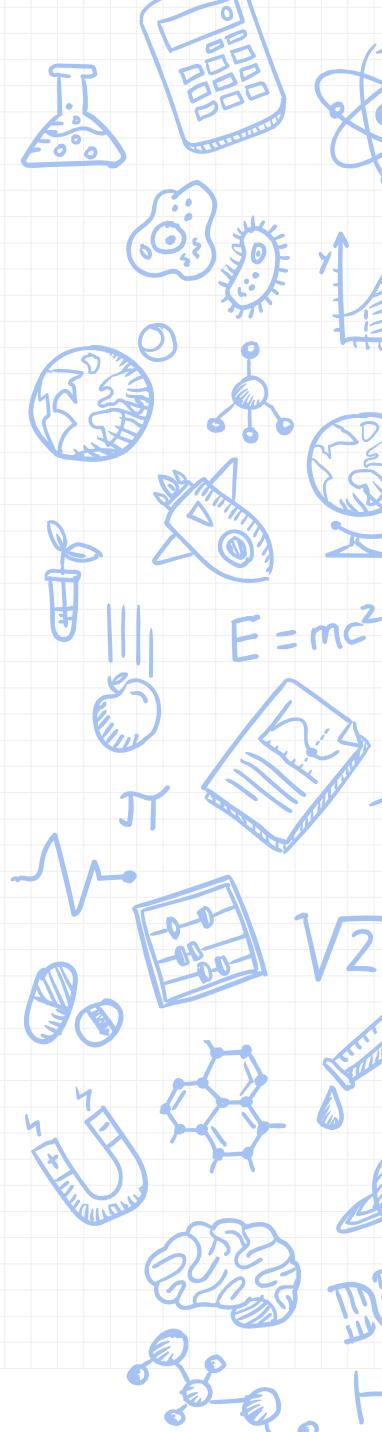
Graph Convolutional Networks (GCN: Kipf and Welling, ICLR'17, RGCN: Schlichtkrull et al. ESWC'18)

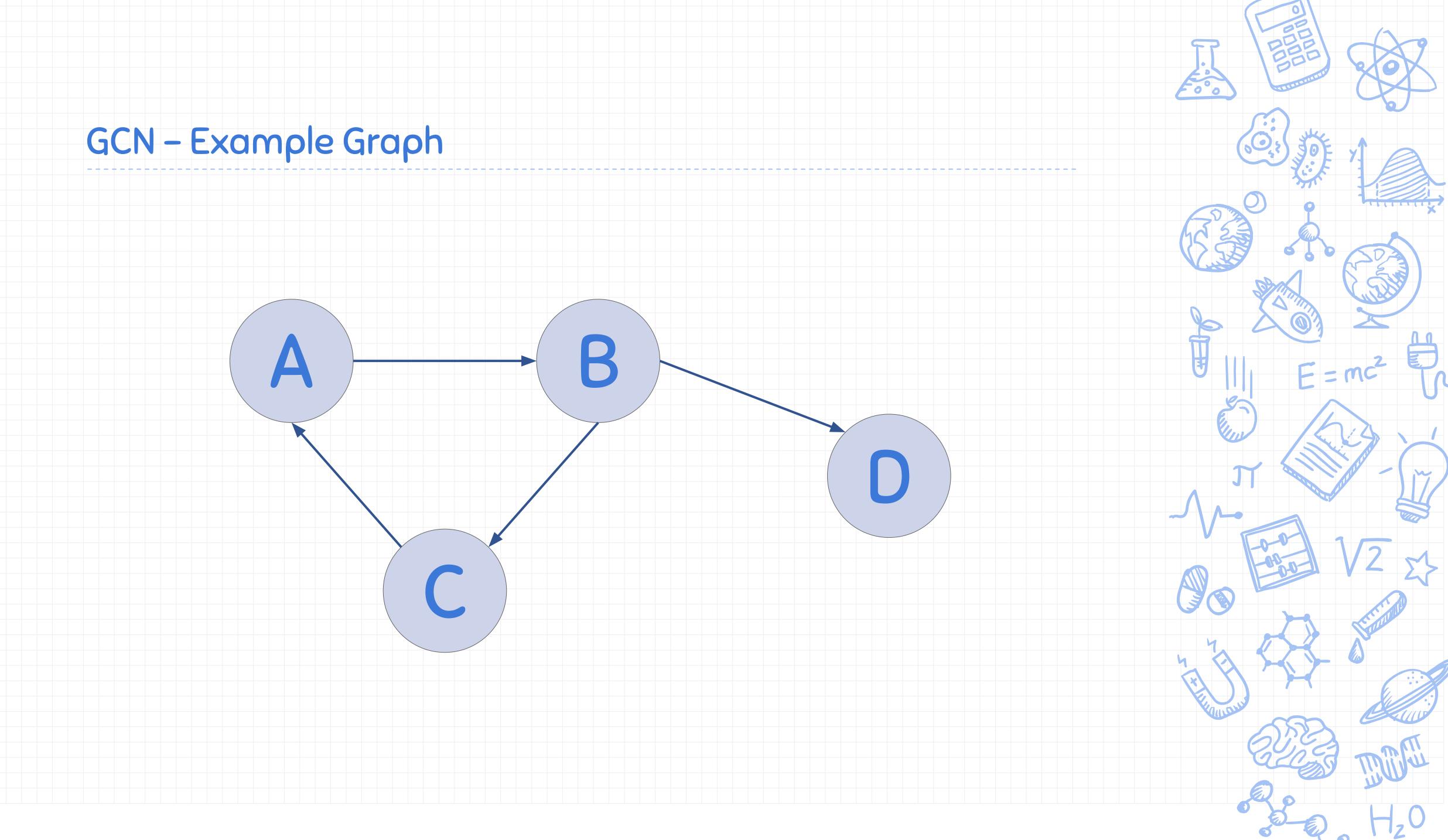
 How can we directly incorporate graph information into a machine learning algorithm?
 Especially for end-to-end learning



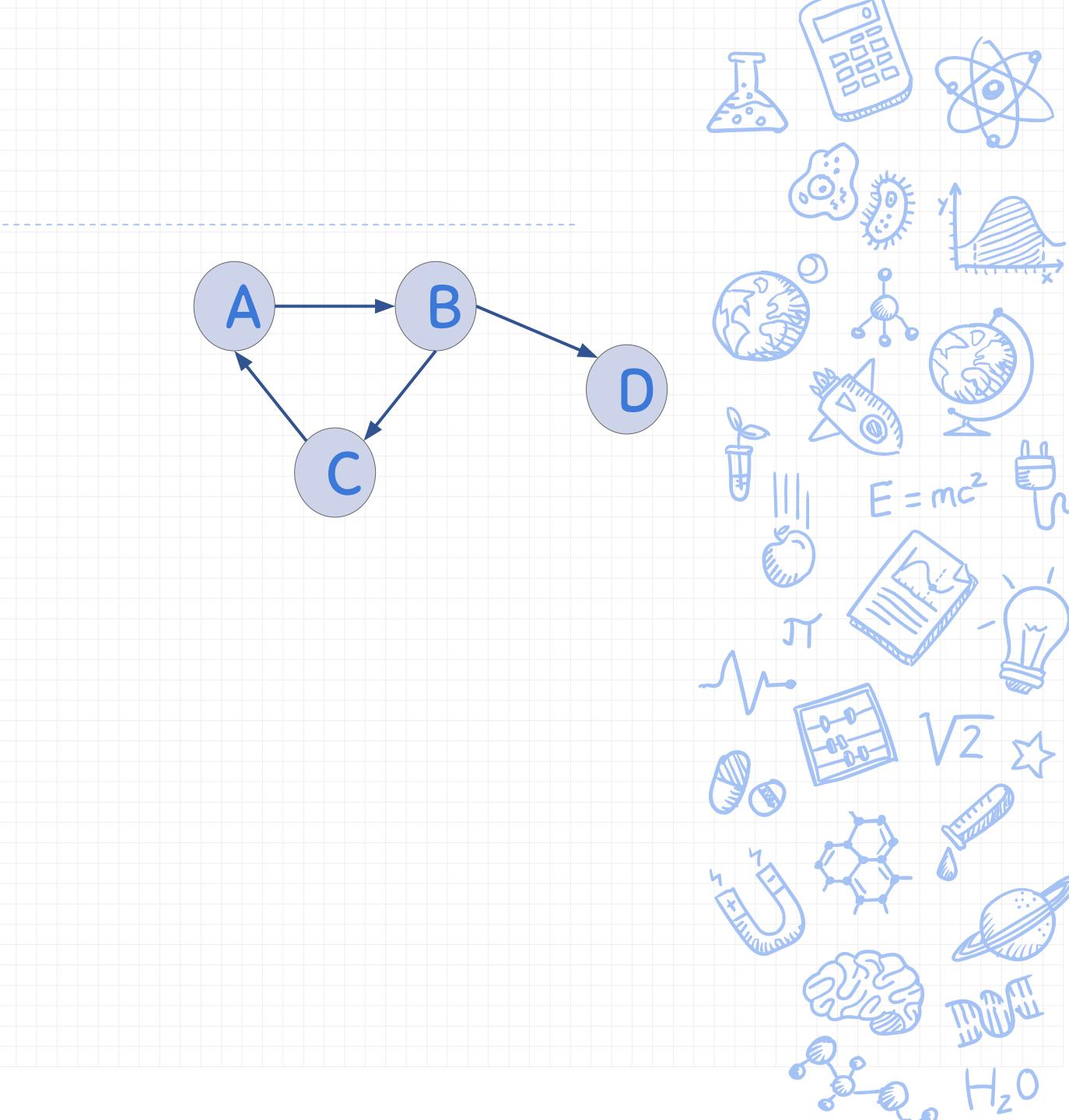
Graph Convolutional Network - Merge the two worlds



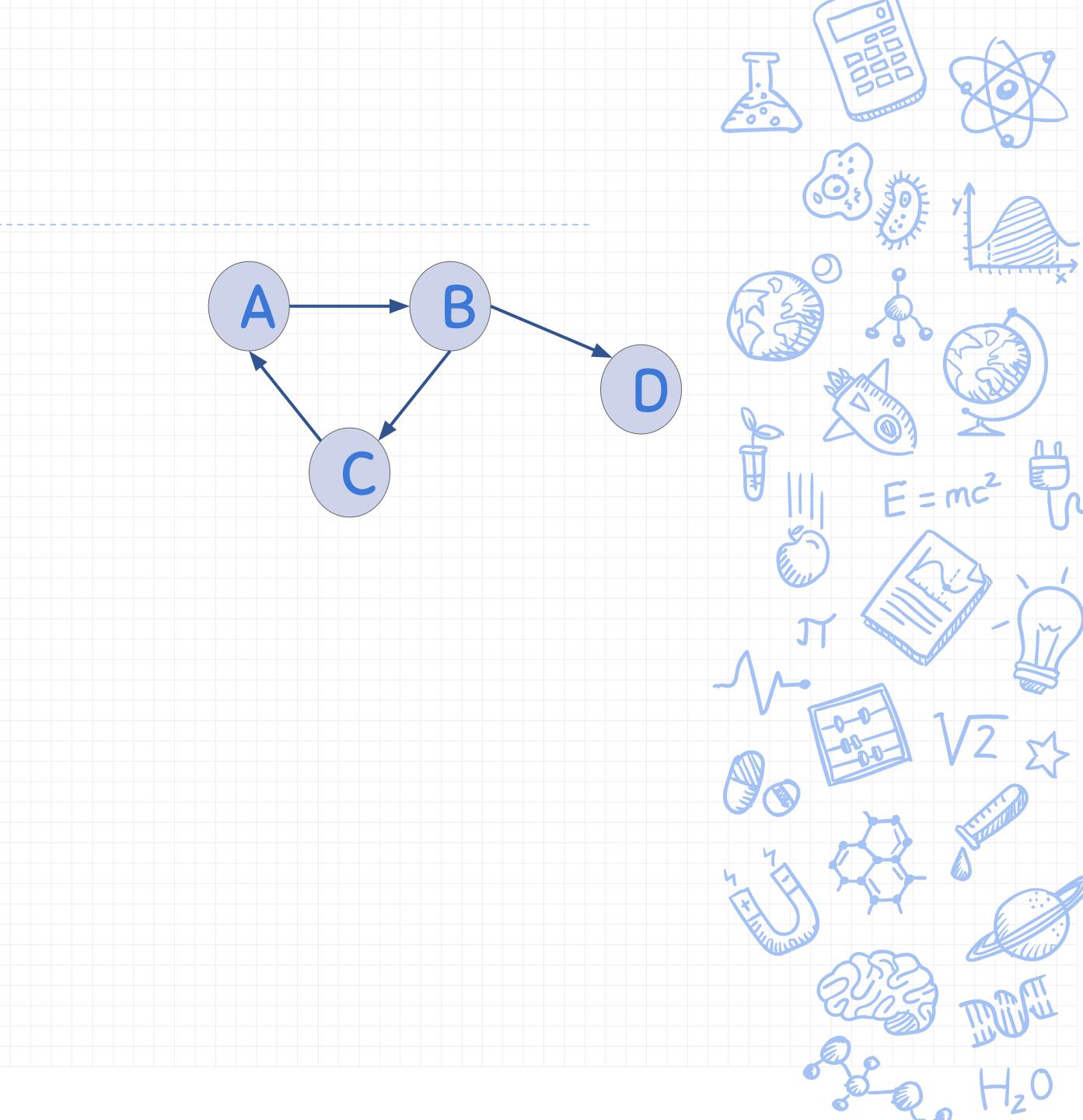


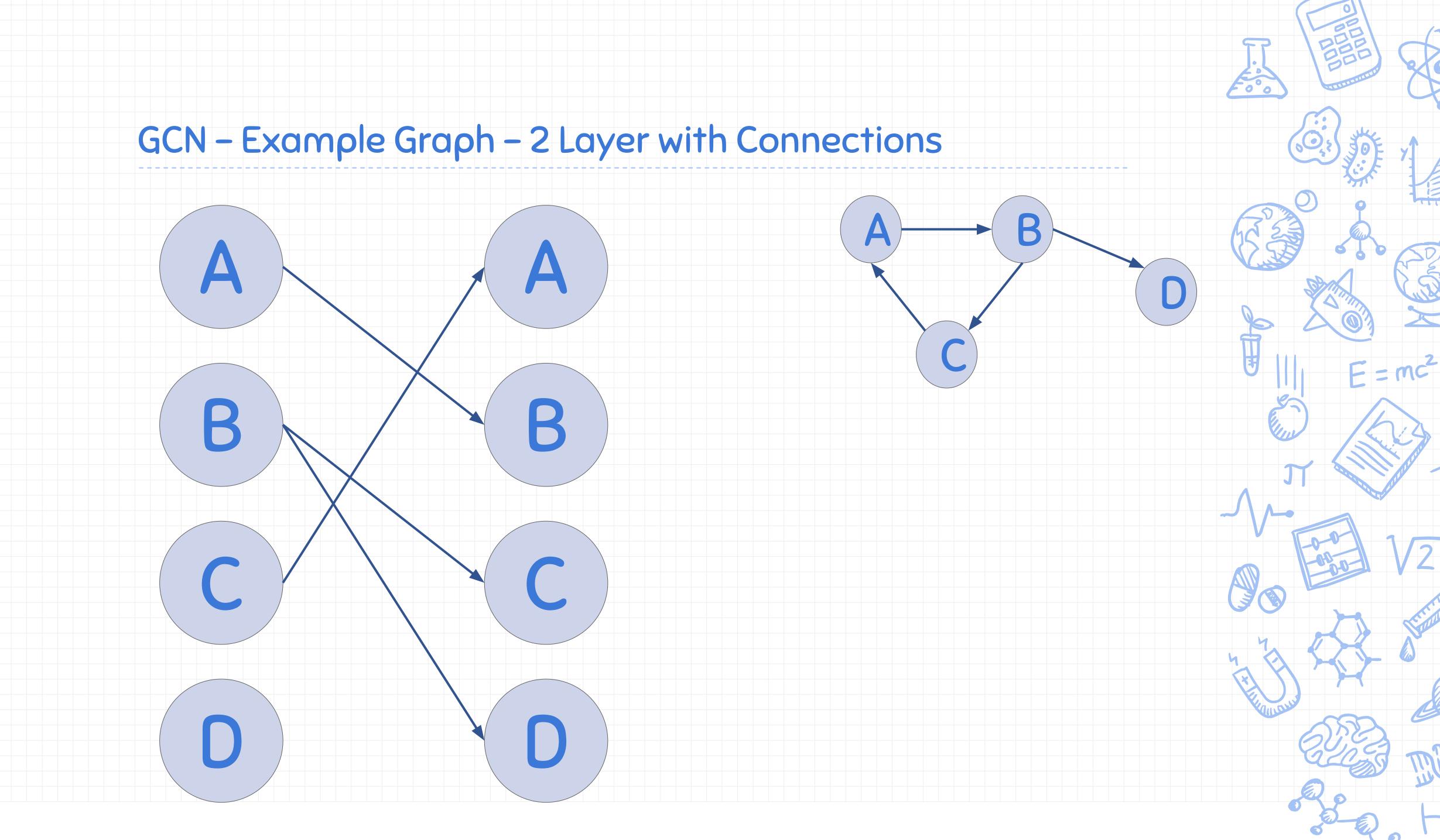


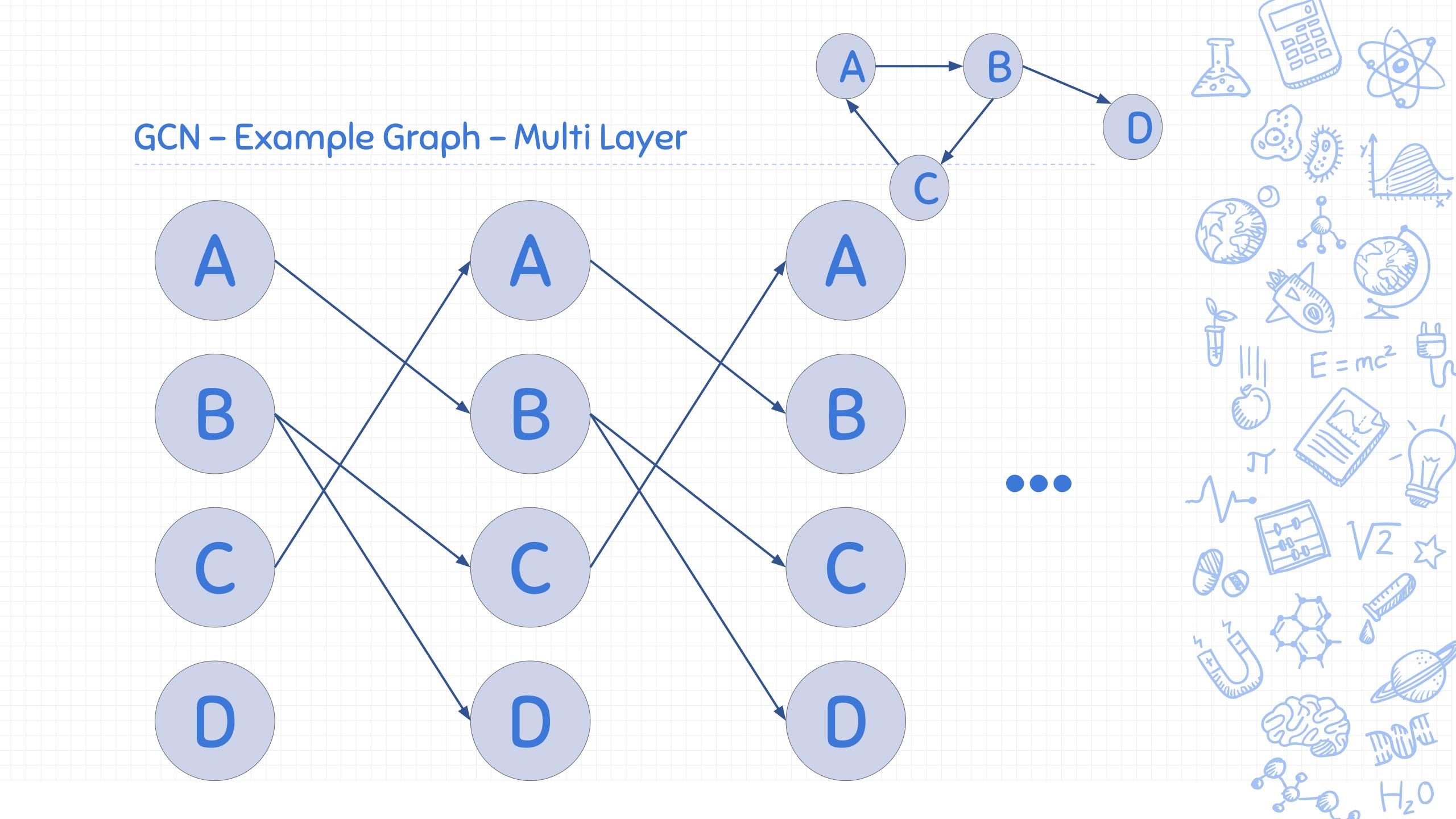
GCN – Example Graph – 1 Layer R

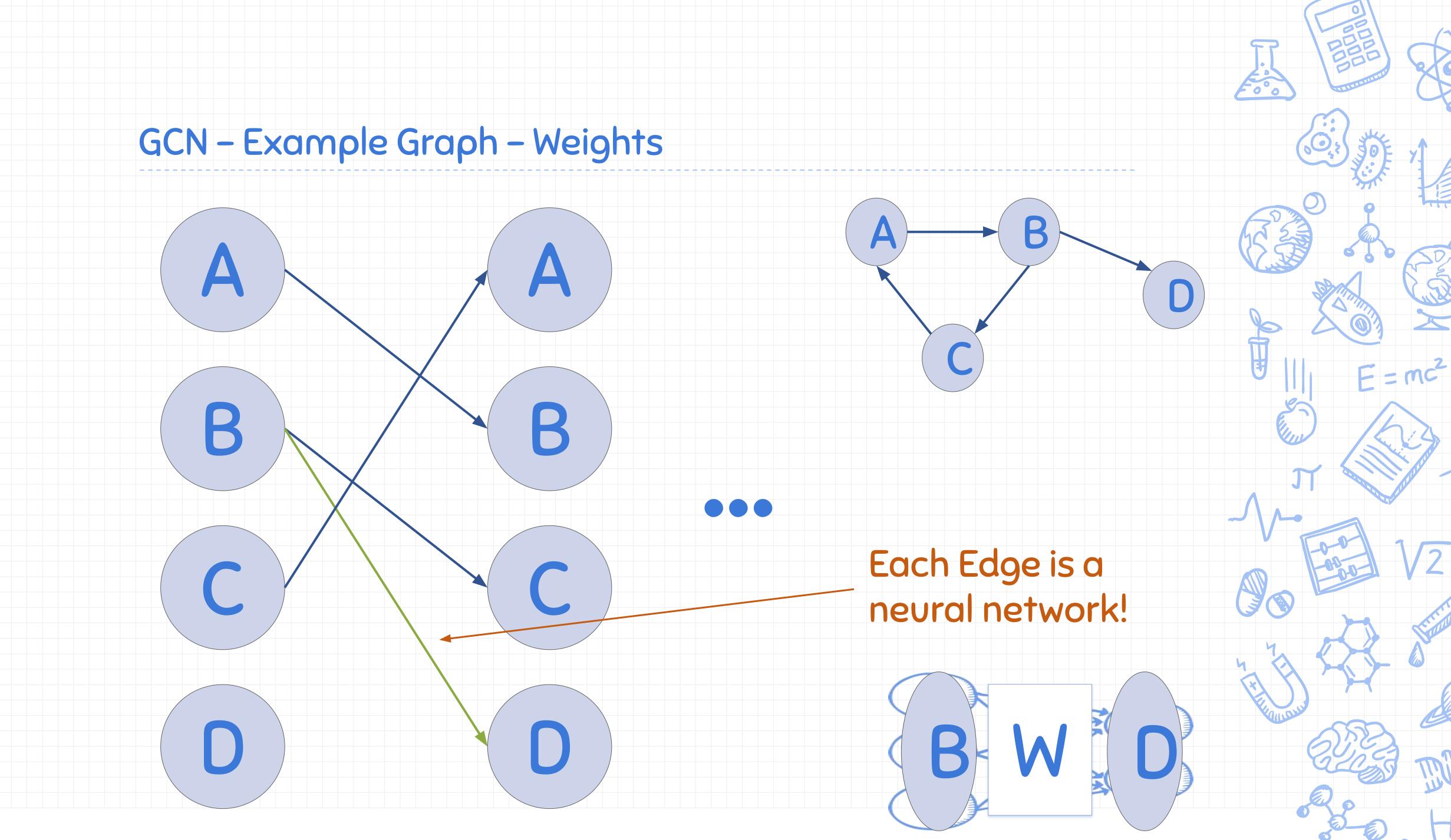


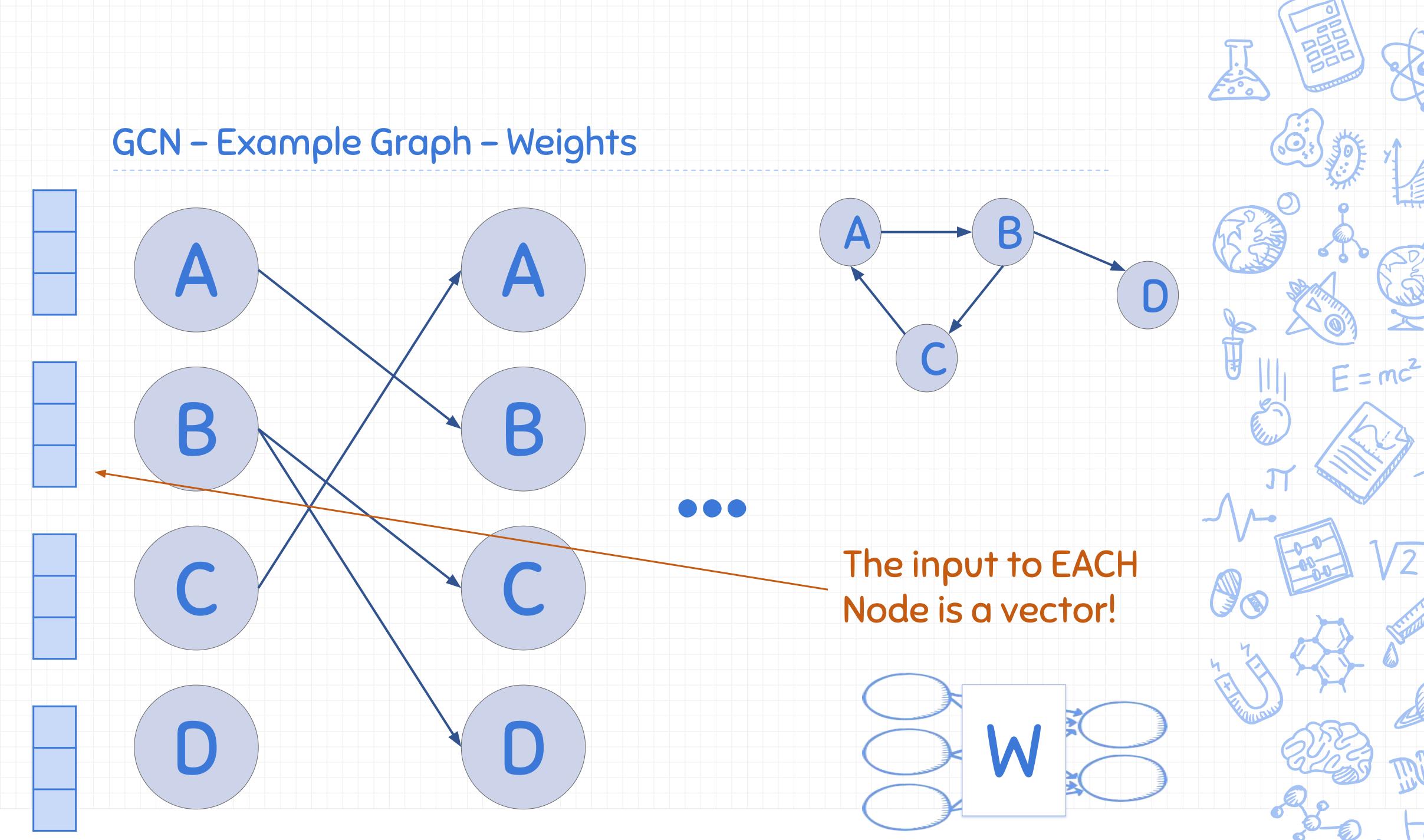
GCN – Example Graph – 2 Layer R B



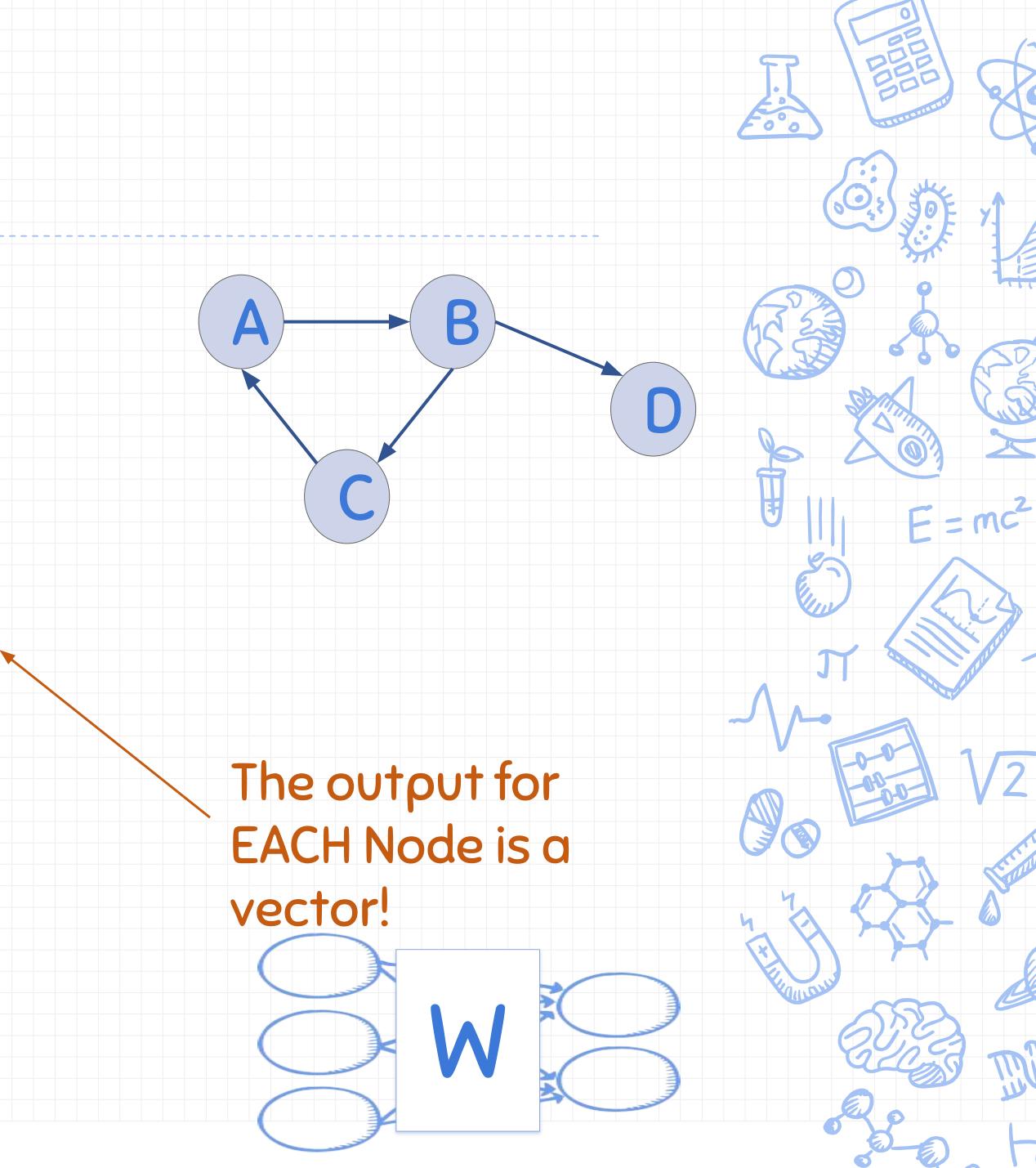


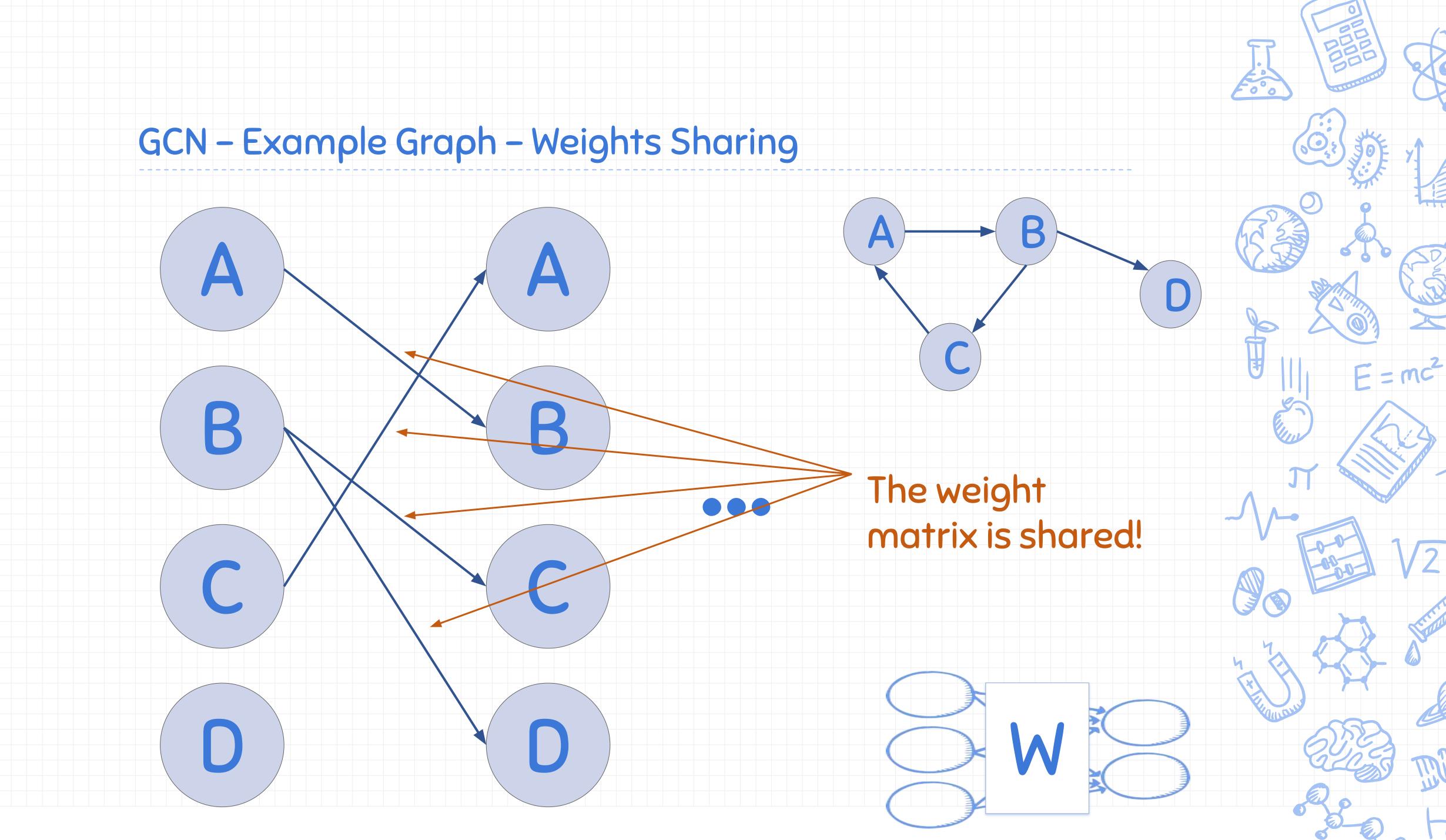


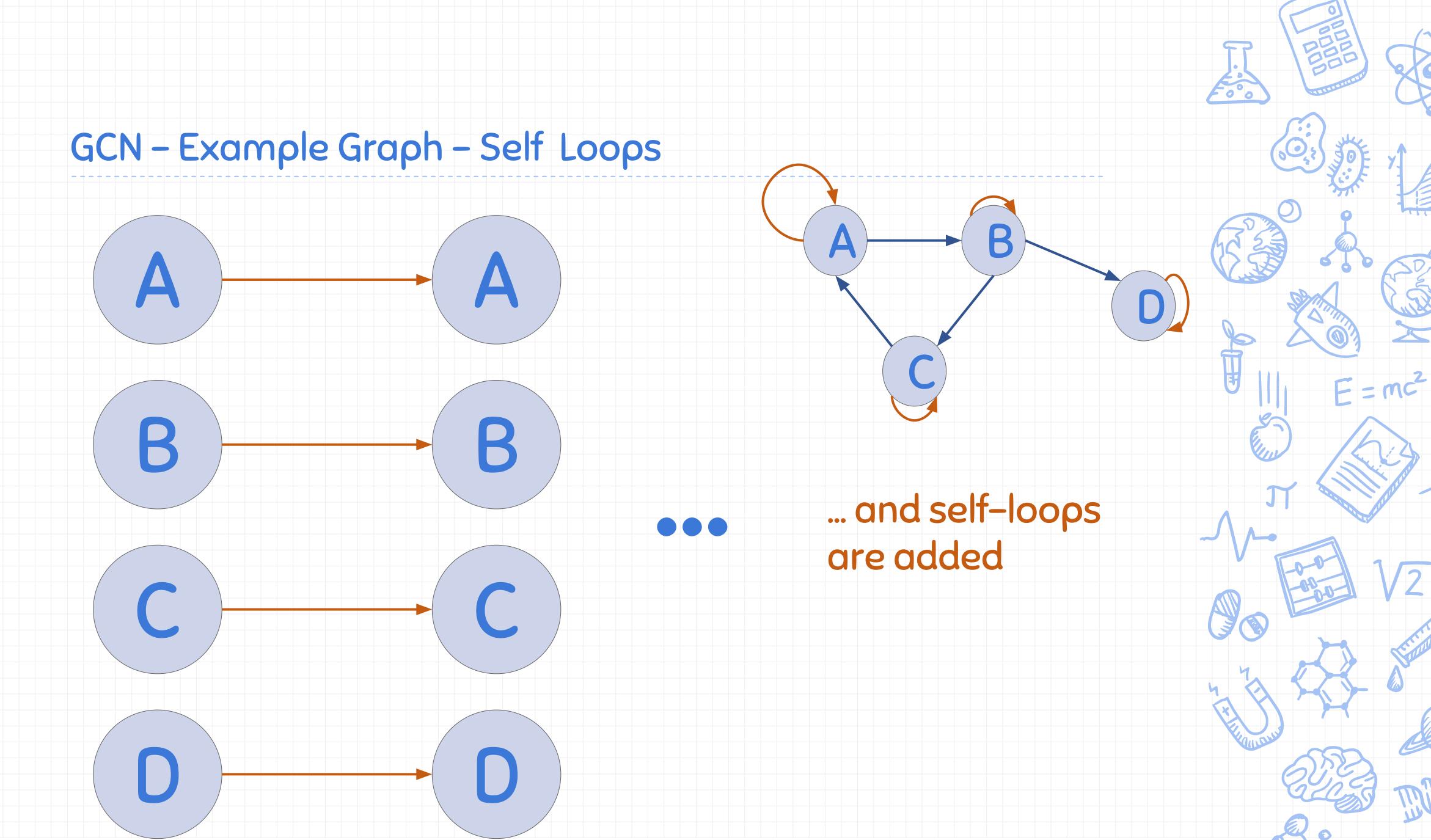




GCN – Example Graph – Weights R







GCN - A different view - sparse matrix multiplications

- In practise what was presented does not scale well
 - (Except with clever engineering)
- In practise more normalization is needed

GCN - A different view - sparse matrix multiplications

Reformulation:

 $H^{(I)}$ is the I-th layer in the unrolled network (the I-th time-step) A is the adjacency matrix, \tilde{A} is the same with also the diagonal set to 1

W^(I) is a learnable weight matrix for layer I

$H^{(l+1)} = \sigma \left(\tilde{A} \quad H^{(l)} W^{(l)} \right)$

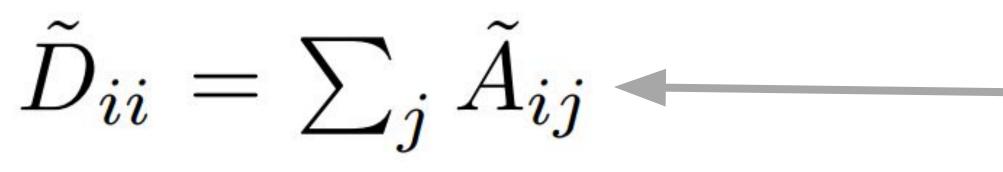
GCN - A different view - sparse matrix multiplications

Reformulation:

$$H^{(l+1)} = \sigma \Big(\tilde{D}^{-1} \Big)$$

 $H^{(I)}$ is the I-th layer in the unrolled network (the I-th time-step)

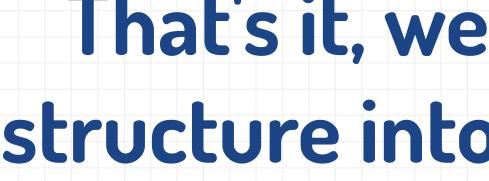
A is the adjacency matrix, \tilde{A} is the same with also the diagonal set to 1

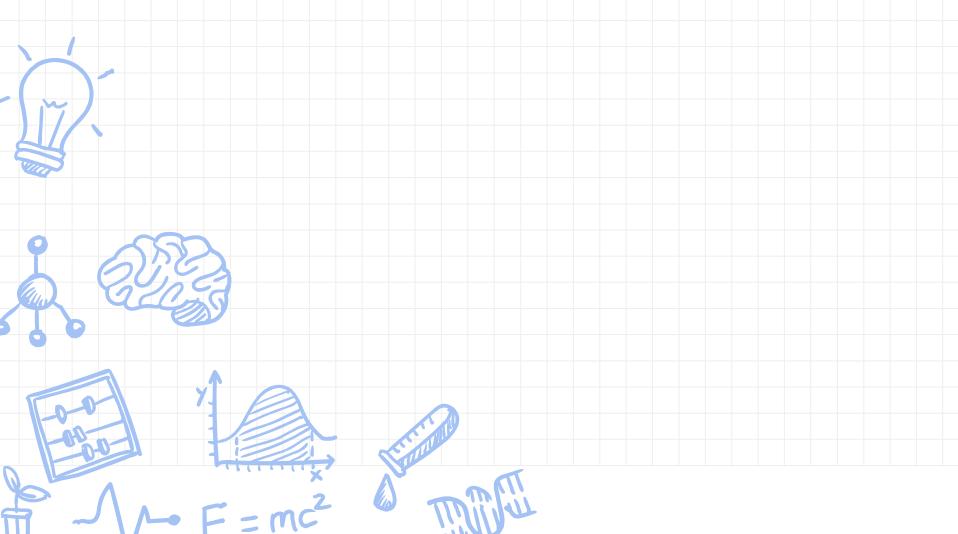


W^(I) is a learnable weight matrix for layer I

 $\frac{1}{2}\tilde{A}\tilde{D}^{-\frac{1}{2}}H^{(l)}W^{(l)}$

Used for normalization





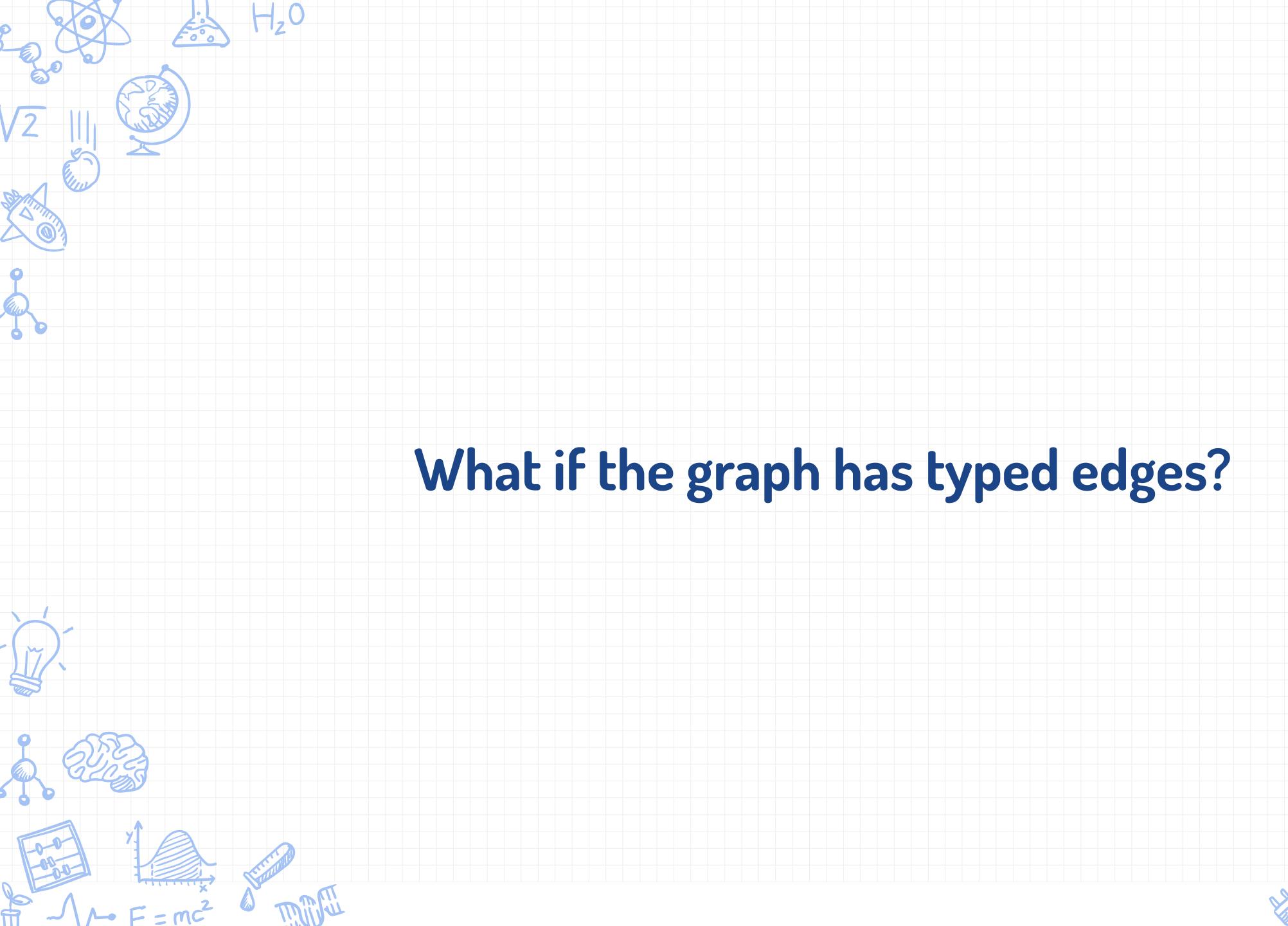
 $\sqrt{2}$

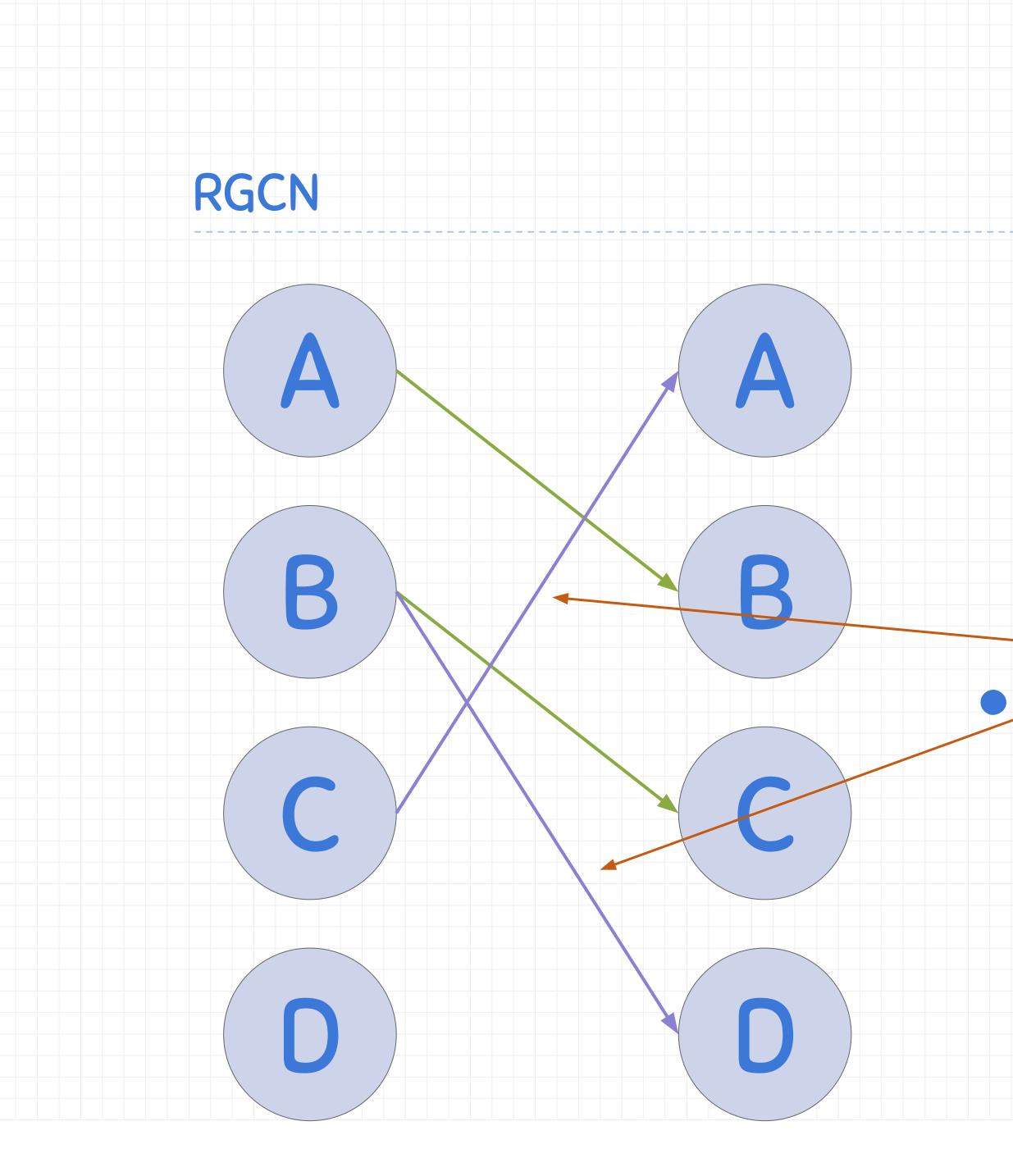
That's it, we can include this

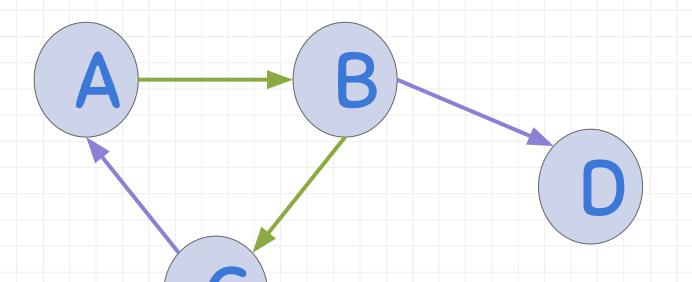
structure into a larger network.

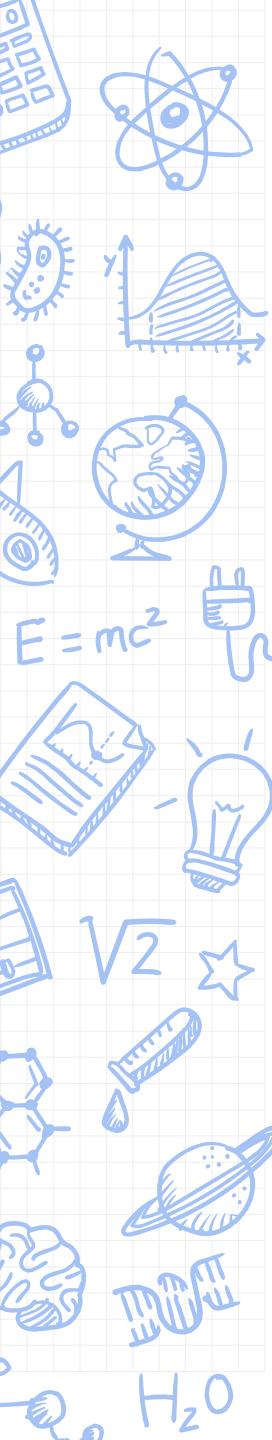
Node classification

- ^o What is the type of a node?
- Regression of attributes in the graph
 - What is the price of the product?
- Regression/classification on the complete graph (by combining the output)
 - . What is the boiling point of a molecule?
 - . Is this molecule poisonous?



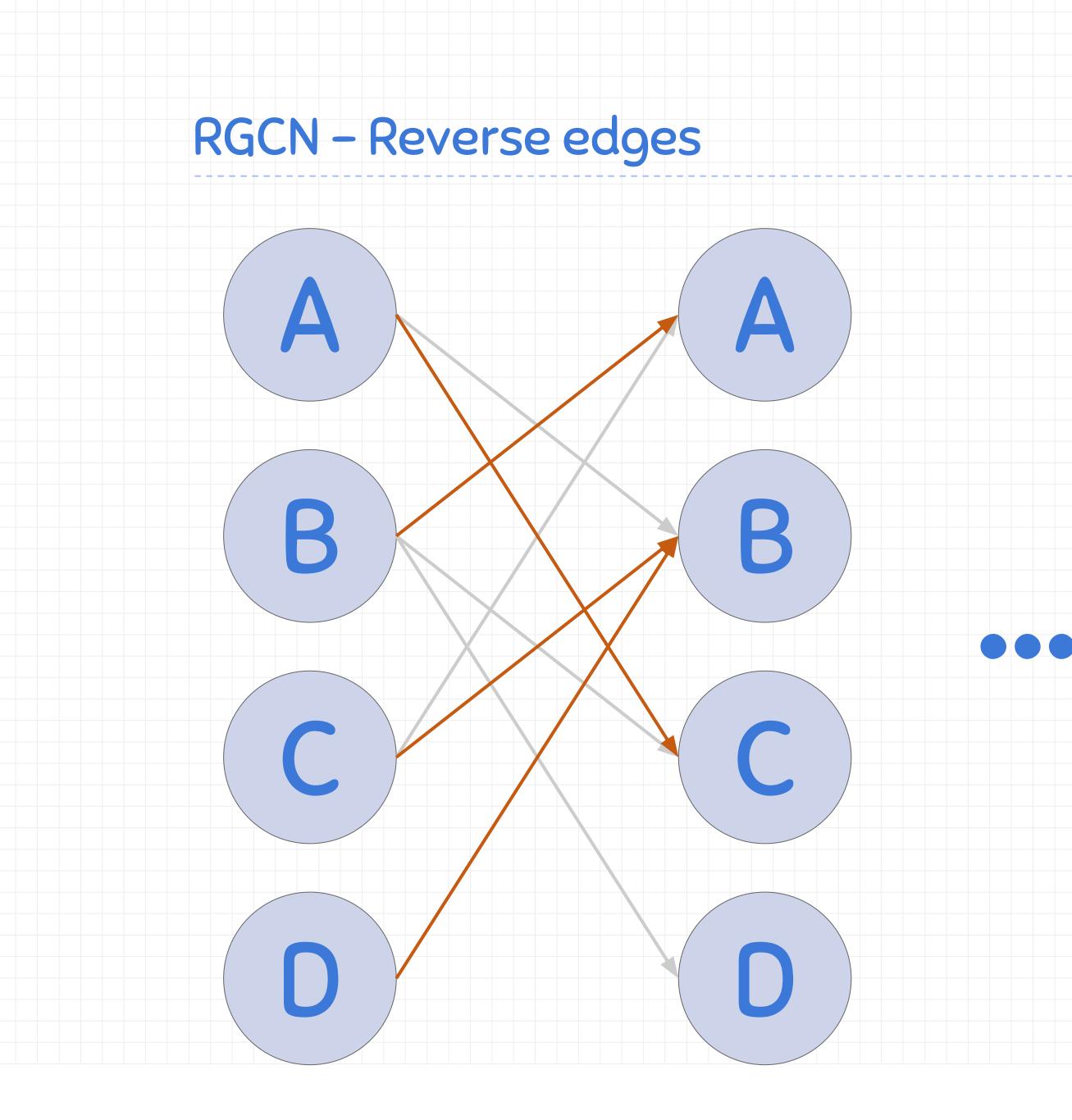






Ŧ

Canon



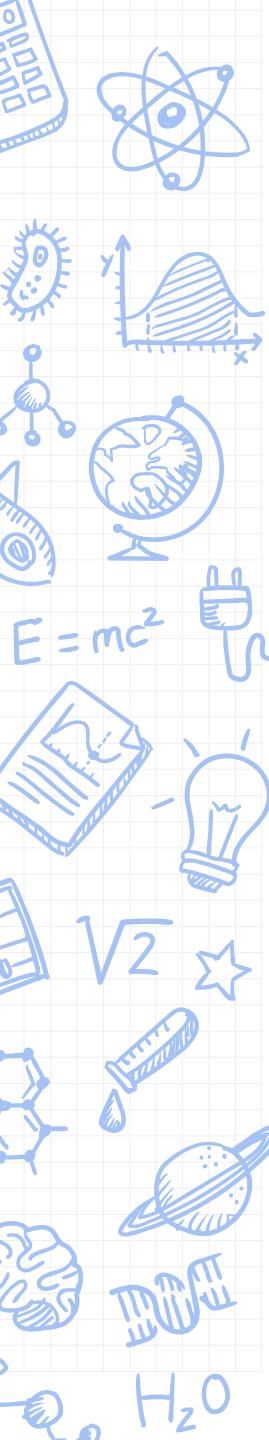
Also reverse edges (inverse relations) are added

B

Ŧ

2

Kannus



$$h_i^{(l+1)} = \sigma \left(\sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}_i^r} \frac{1}{c_{i,r}} W_r^{(l)} h_j^{(l)} + W_0^{(l)} h_i^{(l)} \right)$$

-> this formulation is per node in the graph, not for all at once, as was done in the GCN formulation!

$$h_i^{(l+1)} = \sigma \left(\sum_{r \in \mathcal{R}} \right)$$

h^(I) is the i-th node, in the I-th layer (=I-th message passing step)

(R is the set of all relations)

$$h_i^{(l+1)} = \sigma \left(\sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}_i^r} \right)$$

h^(I) is the i-th node, in the I-th layer (=I-th message passing step)

N^r is the set of neighbours of node i with respect to relation r

(R is the set of all relations)

$$h_i^{(l+1)} = \sigma \left(\sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}_i^r} \right)$$

h^(I) is the i-th node, in the I-th layer (=I-th message passing step)

N^r is the set of neighbours of node i with respect to relation r

$$W_r^{(l)}h_j^{(l)}$$

- $W_{r}^{(I)}$ is the weight matrix for relation r at layer I (R is the set of all relations)

$$h_i^{(l+1)} = \sigma \left(\sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}_i^r} \right)$$

h^(I) is the i-th node, in the I-th layer (=I-th message passing step)

 $W_{\mbox{\scriptsize o}}$ is the weight matrix for the self loop

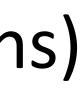
N^r is the set of neighbours of node i with respect to relation r

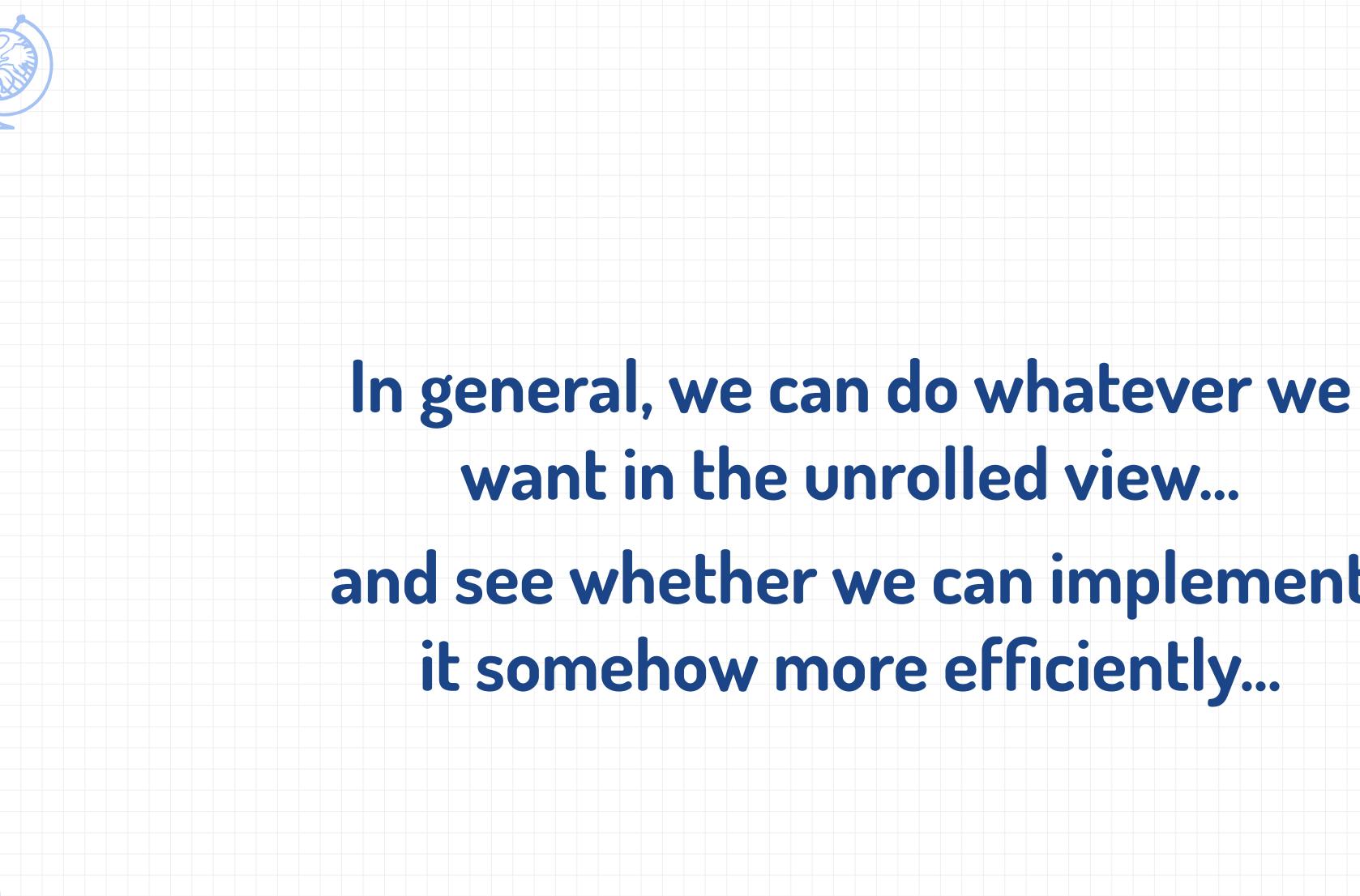
$$W_r^{(l)}h_j^{(l)} + W_0^{(l)}h_i^{(l)}$$

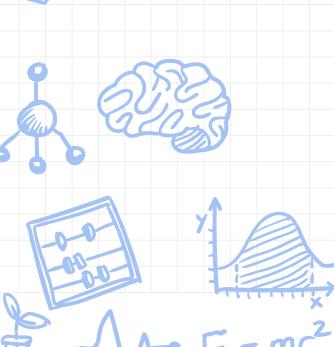
- $W_{r}^{(I)}$ is the weight matrix for relation r at layer I (R is the set of all relations)

$$h_{i}^{(l+1)} = \sigma \left(\sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}_{i}^{r}} \boxed{\frac{1}{c_{i,r}}} W_{r}^{(l)} h_{j}^{(l)} + W_{0}^{(l)} h_{i}^{(l)} \right)$$

$$h_{i}^{(l)} \text{ is the i-th node in the label th layer (-1 th message massing step)} C_{i,r} \text{ is a normalization constant.} \text{ he set of all relation} W_{r}^{(l)} \text{ is the we } U_{i,r} \text{ is a normalization constant.} \text{ he set of all relation} \text{ he set of all relation} \text{ N}_{i}^{r} \text{ is the set of neighbours of node i with respect to relation relation relation} \text{ he set of neighbours of node i with respect to relation relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of node i with respect to relation} \text{ the set of neighbours of neighbours$$







marti

V2 |

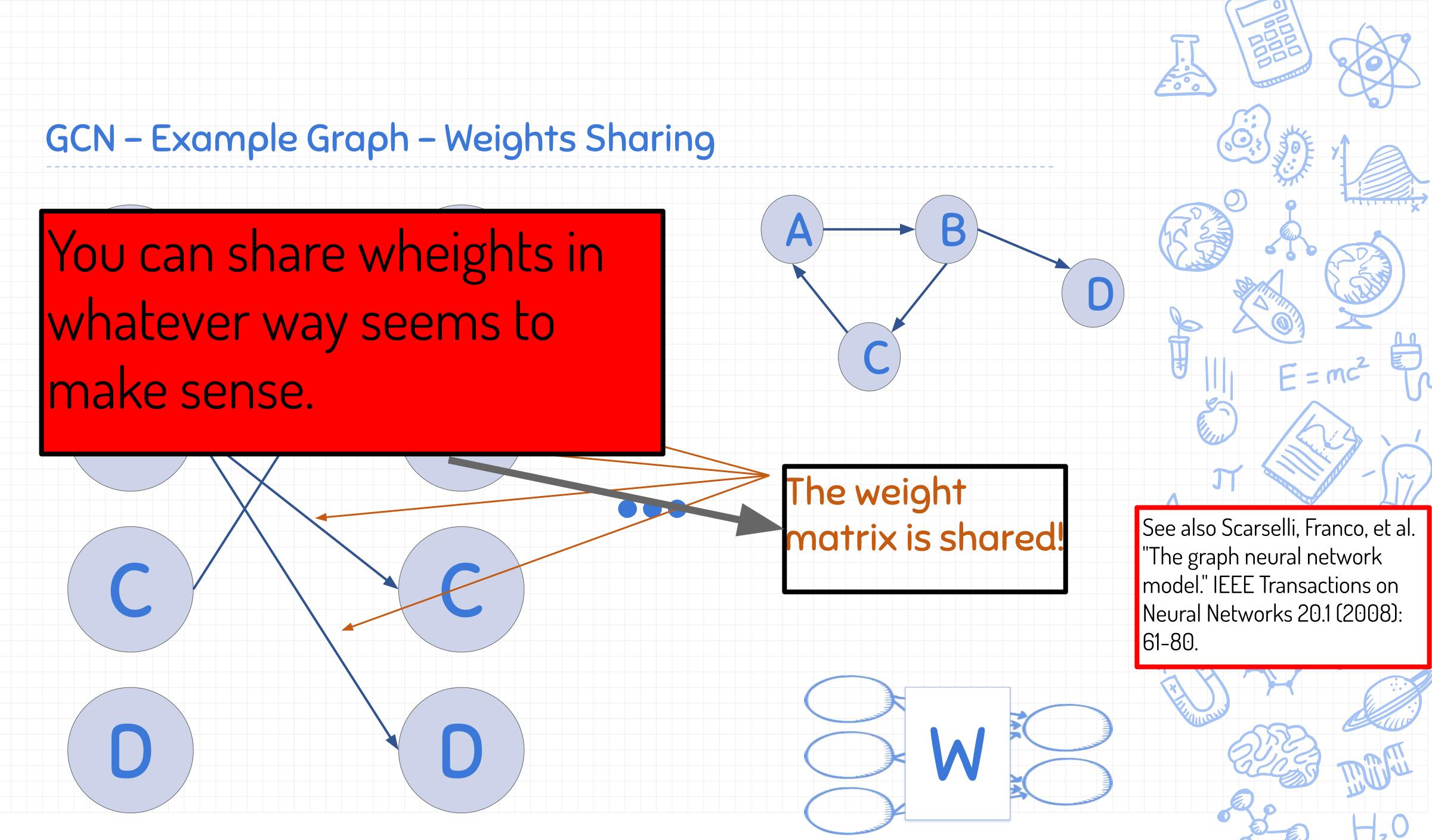
want in the unrolled view...

and see whether we can implement it somehow more efficiently...

GCN - We can do whatever we want

This neural network can be whatever architecture you have seen in this course!!!

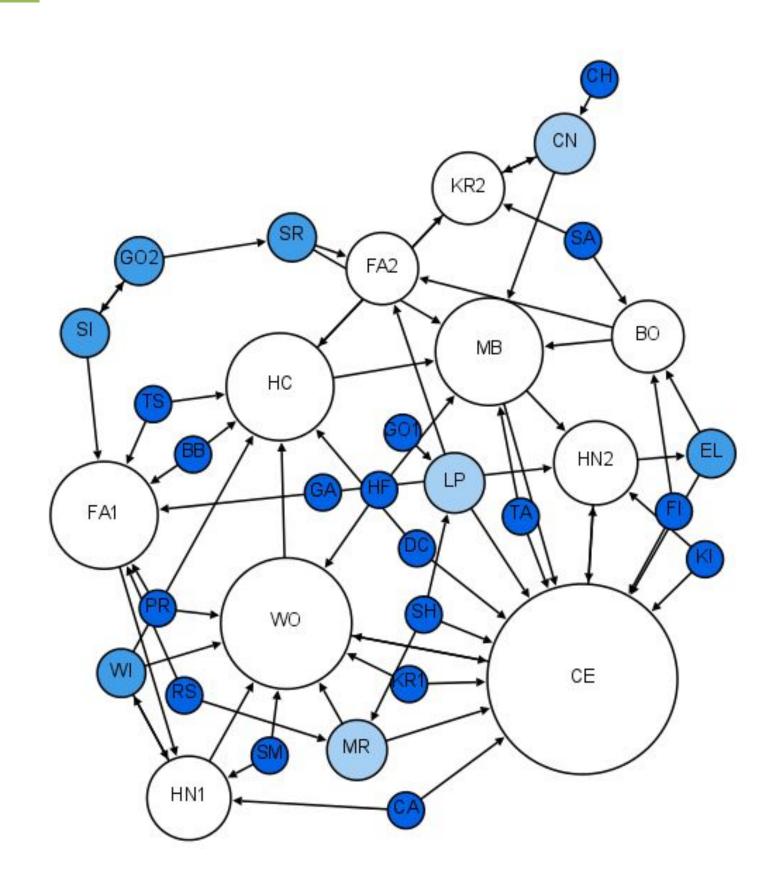
Each Edge is a neural network!



PART FOUR: Application - Query embedding

https://arxiv.org/abs/2002.02406

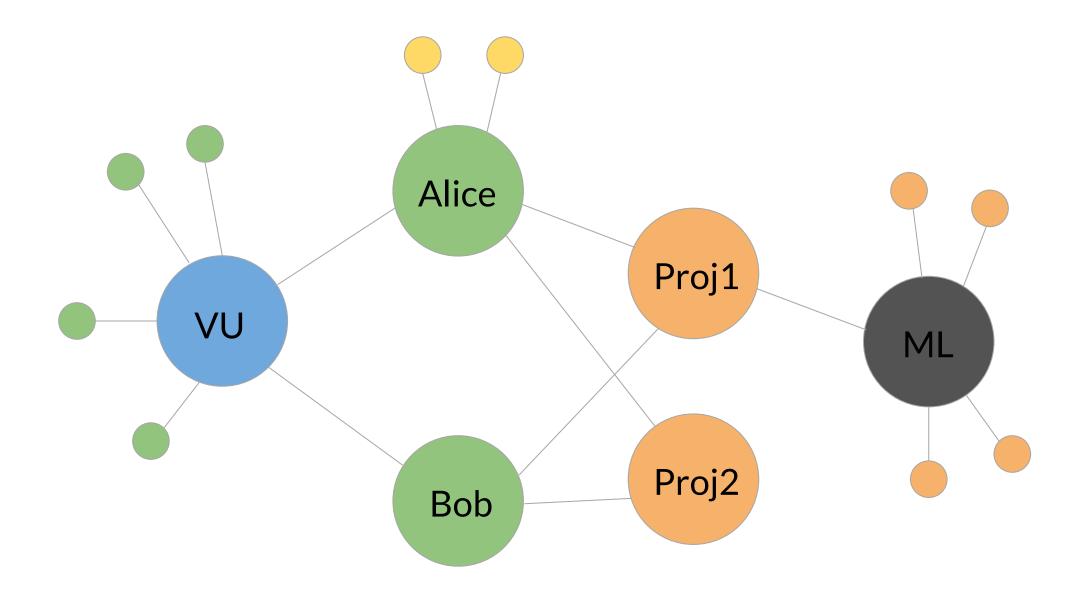
Knowledge graphs



- Can model interactions and properties
 - Medicine, biology, world facts, ...
- In general, useful for
 - Storing facts about entities and relations
 - Answering questions about them

https://commons.wikimedia.org/wiki/File:Moreno_Sociogram_1st/G

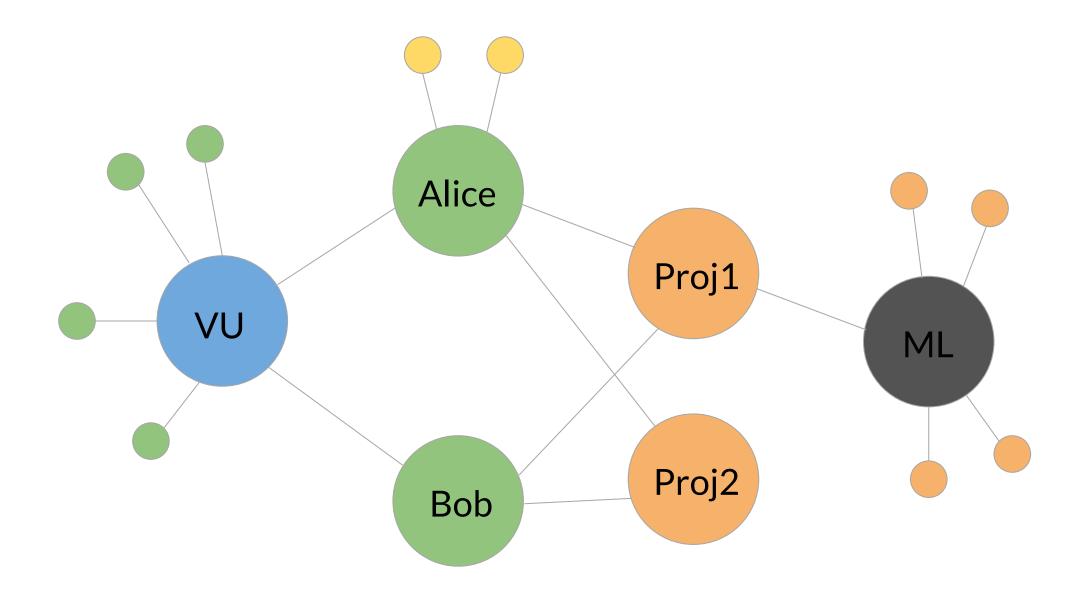
Queries on knowledge graphs



SPARQL queries operate on existing edges

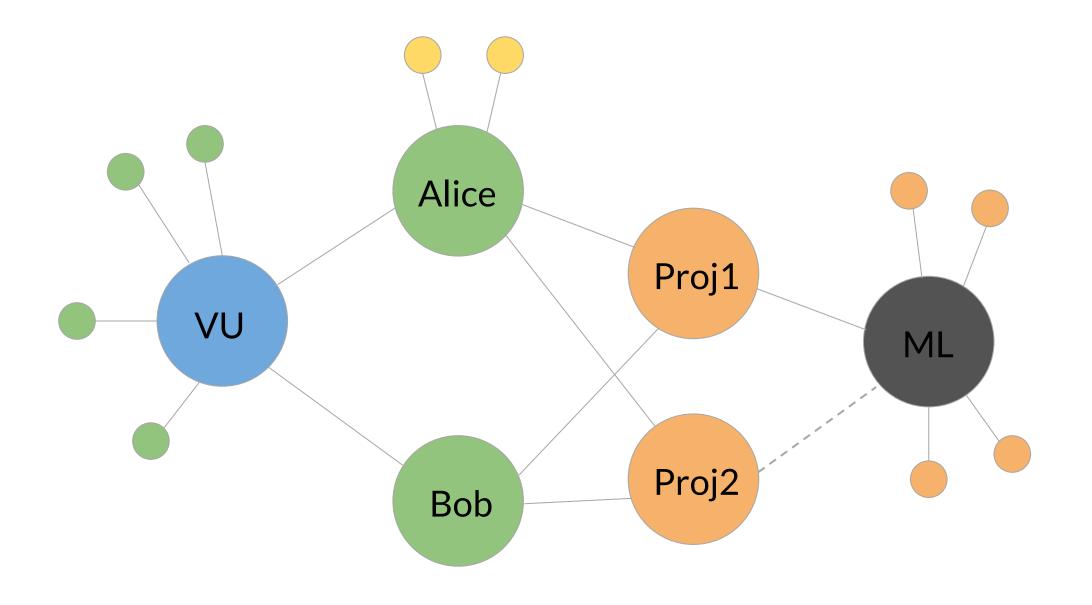
- Select all Projects, related to ML, on Ο which Alice works
- Answer: Proj1 Ο

Queries on knowledge graphs



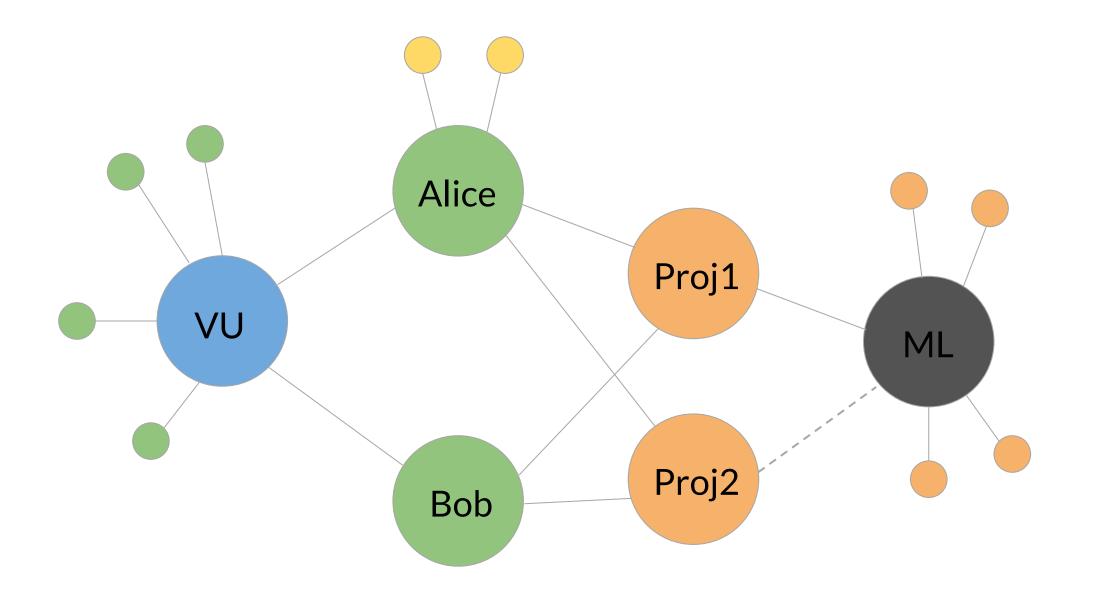
- SPARQL queries operate on existing edges
 - Select all Projects, related to ML, on Ο which Alice works
 - Answer: Proj1 Ο
- Is **Proj2** a *likely* answer?

Link prediction on knowledge graphs



- Assign a vector in \mathbb{R}^d to every node: an *embedding*
- The score of an edge is a function of the embeddings of entities involved
- Optimize:
 - Maximize scores of existing edges
 - Minimize scores of random edges
- Examples: TransE, DistMult, ComplEx

Link prediction for complex queries?



- Select all topics T,
- where T is related to a project P,
- and Alice and Bob work on P.
- Link prediction requires enumerating all possible T and P
 - Grows exponentially!

Link prediction for complex queries?

A subset of Wikidata

- Select all topics T,
- where T is related to a project P,
- and Alice and Bob work on P.
- Link prediction requires enumerating all possible T and P
 - Grows exponentially!

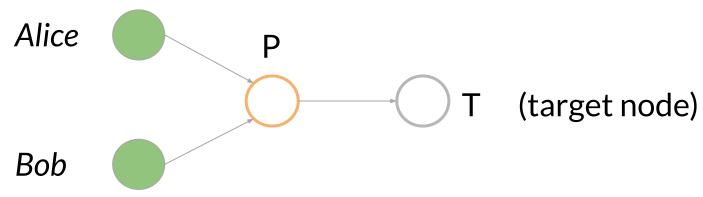
Queries are graphs too

• In particular, *Basic Graph Patterns*¹

¹ Harris, S., Seaborne, A., Prud'hommeaux, E.: SPARQL 1.1 query language. W3C recommendation 21(10) (2013)

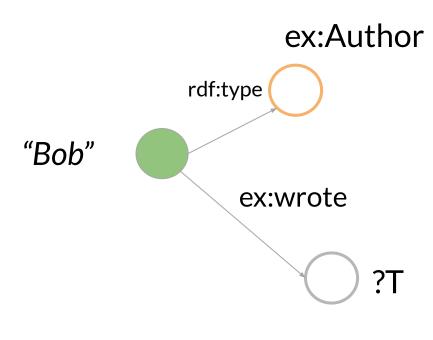
Queries are graphs too

- In particular, *Basic Graph Patterns*¹
- Select all topics T where
 - T is related to project P Ο
 - Alice works on P and Bob works on P Ο



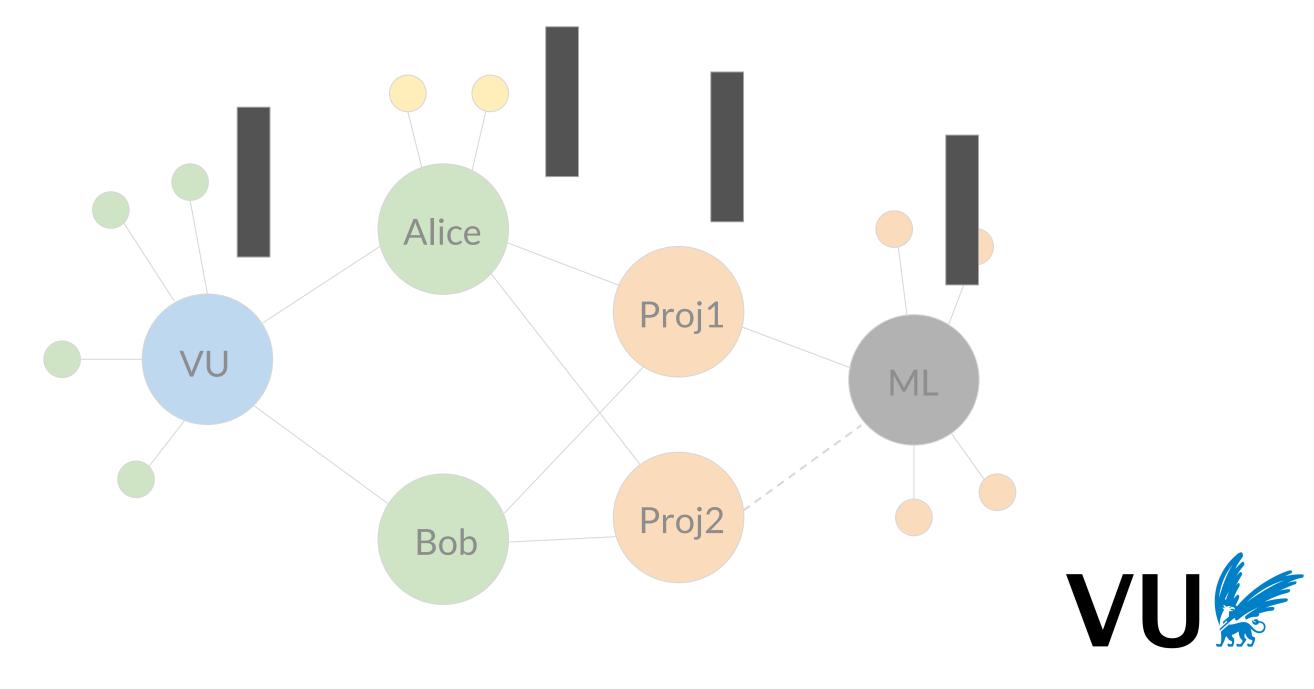
¹ Harris, S., Seaborne, A., Prud'hommeaux, E.: SPARQL 1.1 query language. W3C recommendation 21(10) (2013)

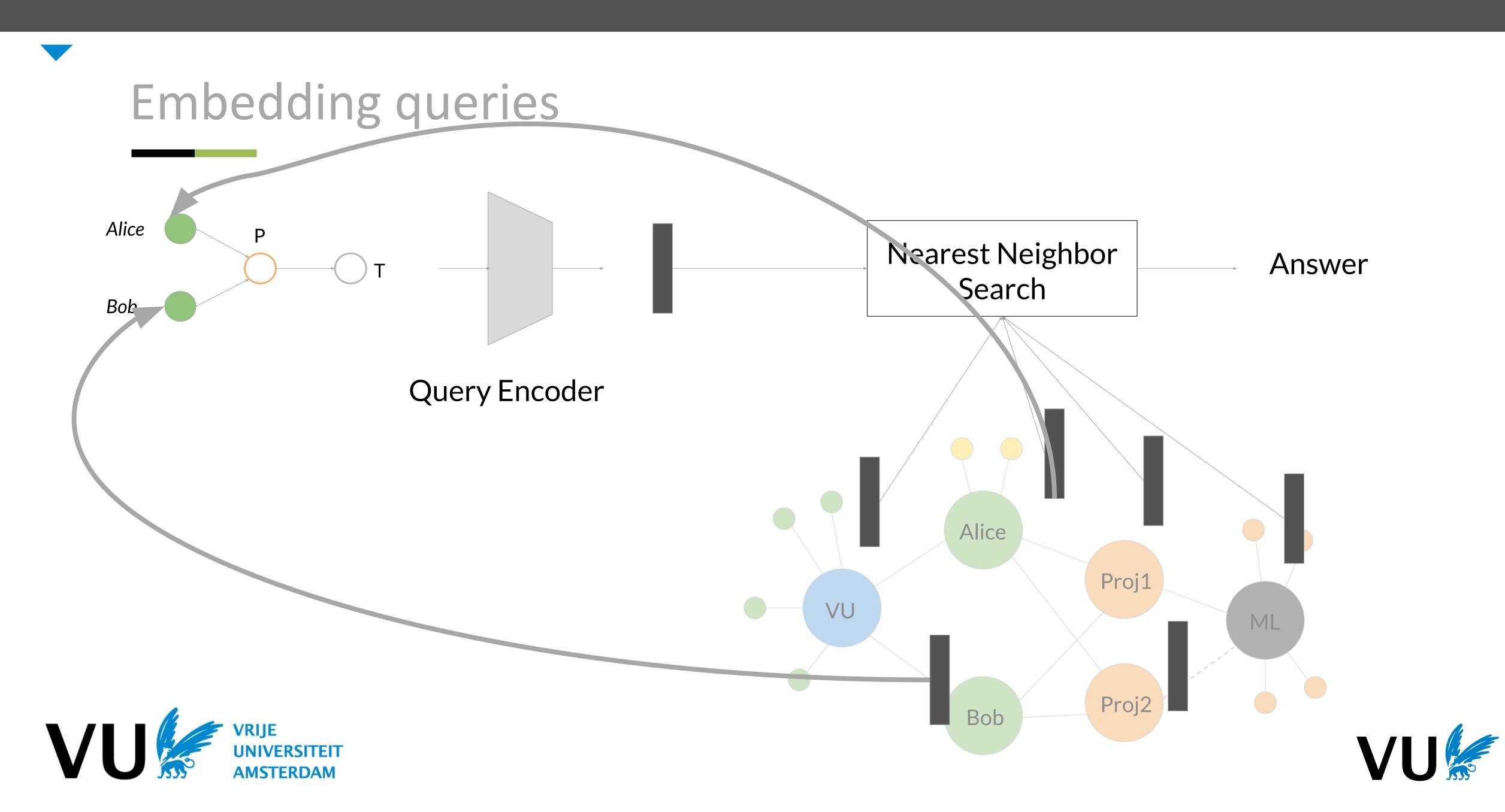
Embedding queries



Query Encoder

:S1 hasSubject :Bob. :S1 hasPredictate rdf:type. :S1 hasObject ex:author.

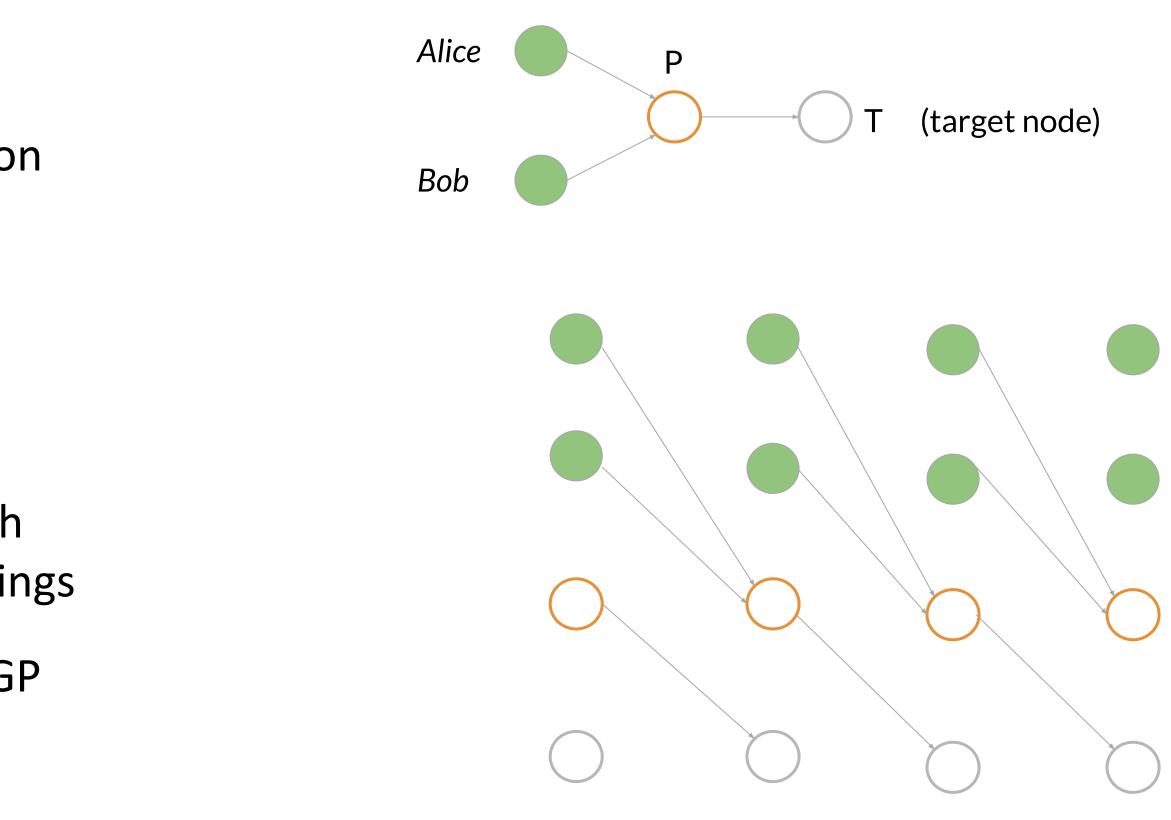




Graph Convolutional Networks operate on graphs, by applying message passing:
 Messages are vectors

• Message-Passing Query Embedding:

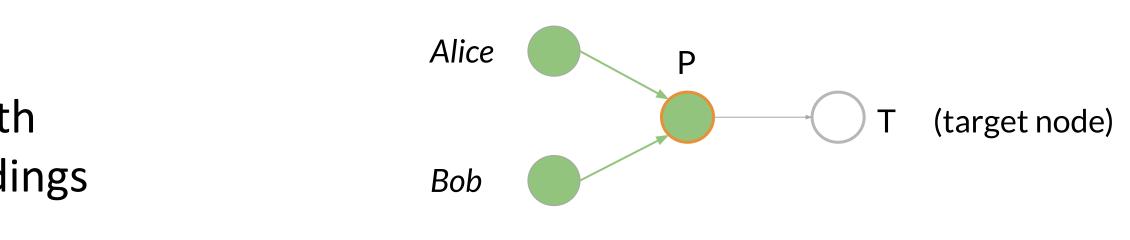
- Learnable parameters include both
 entity and variable node embeddings
- Propagate messages across the BGP



Graph Convolutional Networks operate on graphs, by applying message passing: Messages are vectors Ο

Message-Passing Query Embedding:

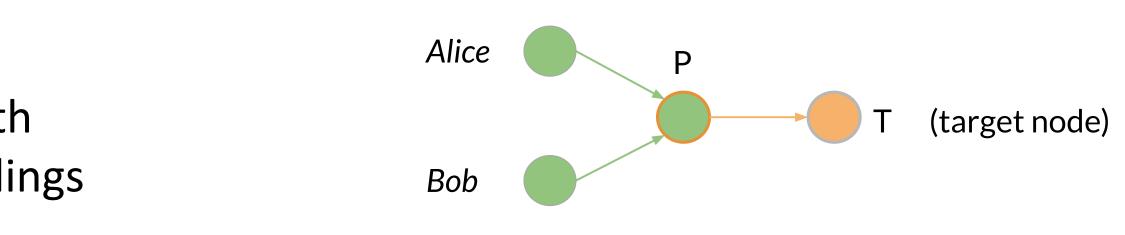
- Learnable parameters include both Ο entity and variable node embeddings
- Propagate messages across the BGP Ο



Graph Convolutional Networks operate on graphs, by applying message passing: Messages are vectors Ο

Message-Passing Query Embedding:

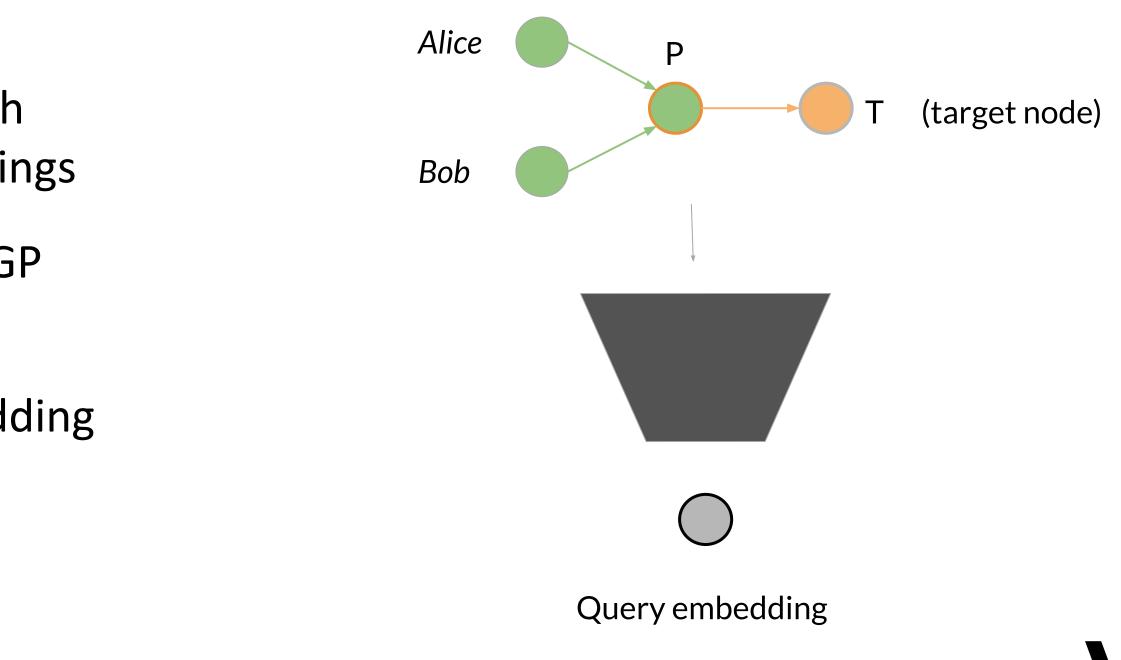
- Learnable parameters include both Ο entity and variable node embeddings
- Propagate messages across the BGP Ο



Graph Convolutional Networks operate on graphs, by applying message passing: Messages are vectors Ο

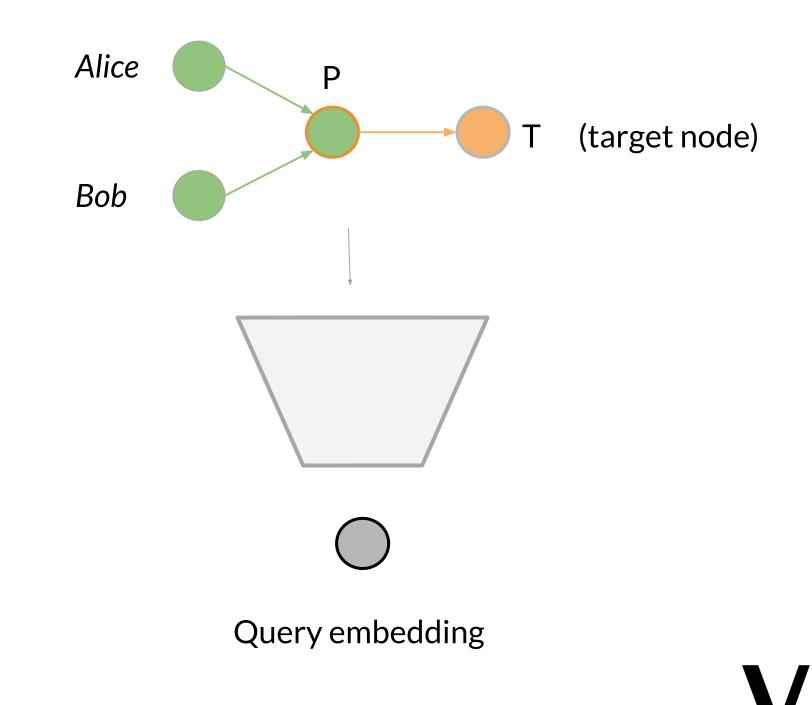
Message-Passing Query Embedding:

- Learnable parameters include both Ο entity and variable node embeddings
- Propagate messages across the BGP Ο
- After k steps of MP, map all node Ο messages to a single query embedding

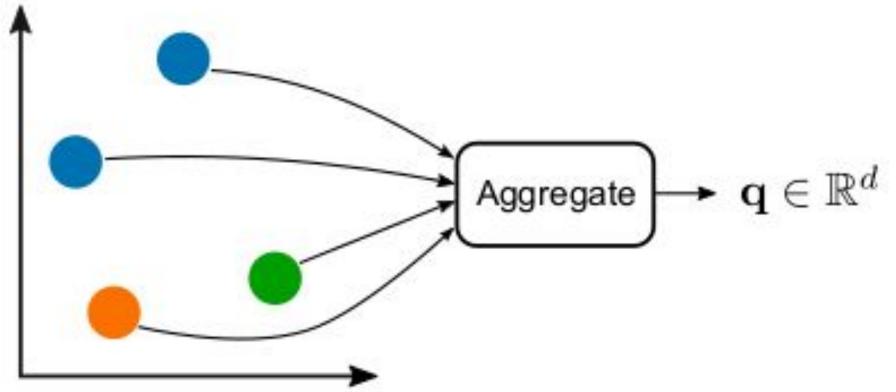


Graph aggregation functions

- Map node messages to query embedding
- Ideally permutation invariant
- Can contain learnable parameters for increased flexibility
- Simplest form: message at the target node



Graph aggregation functions



Sum

Max

MLP

$$\mathbf{q} = \sum_{v \in \mathcal{V}_q} \mathrm{MLP}\left(\mathbf{h}_v^{(L)}\right)$$

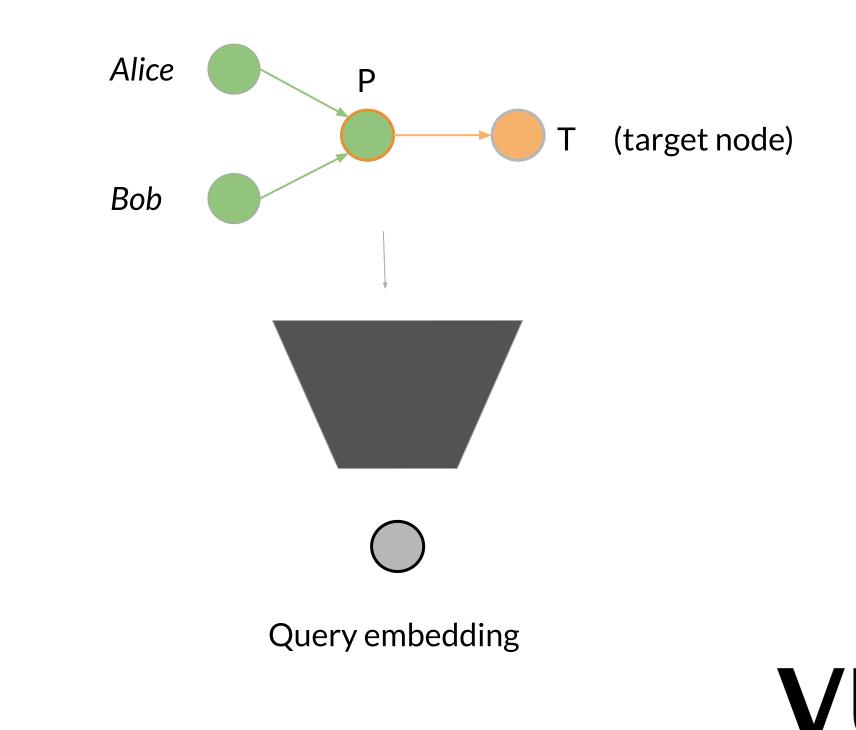
$$\mathbf{q} = \sum_{v \in \mathcal{V}_q} \text{MLP}\left([\mathbf{h}_v^{(1)}, \dots, \mathbf{h}_v^{(L)}] \right)$$

TMLP

$$\mathbf{q} = \sum_{v \in \mathcal{V}_q} \text{MLP}\left([\mathbf{h}_v^{(L)}, \mathbf{h}_{V_a}^{(L)}] \right)$$

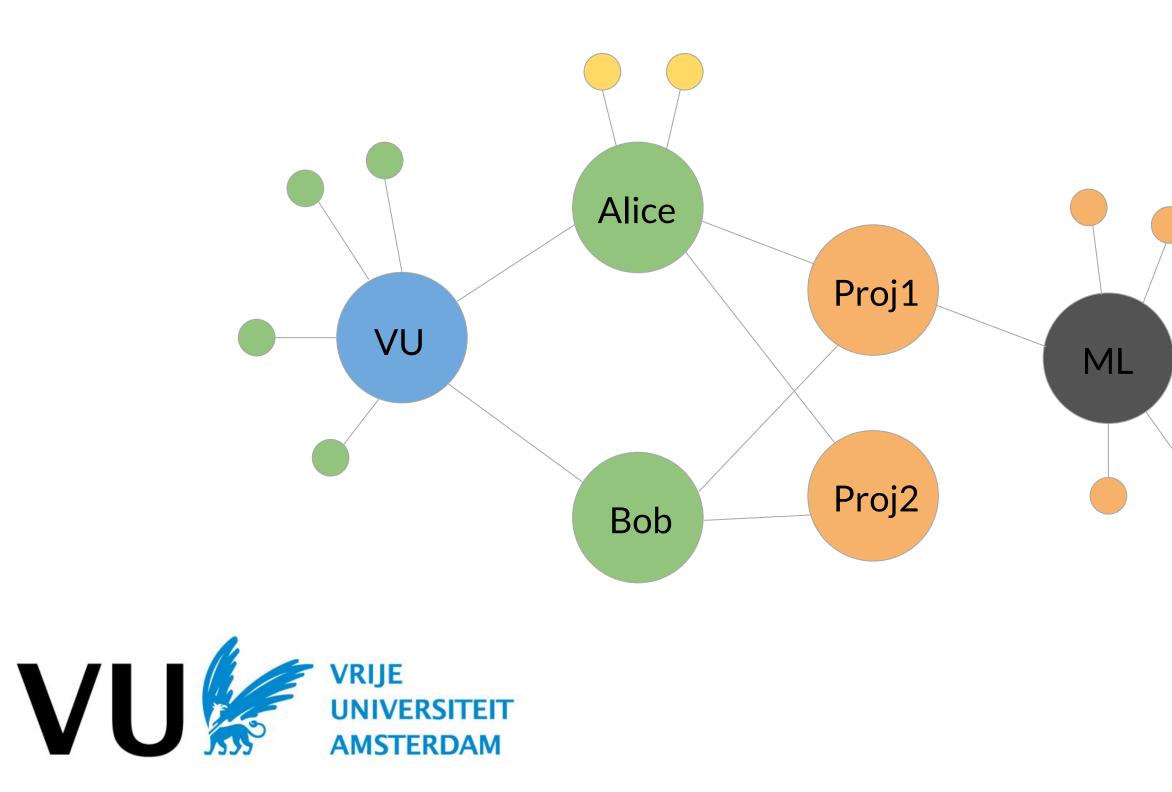
Why is this a good idea?

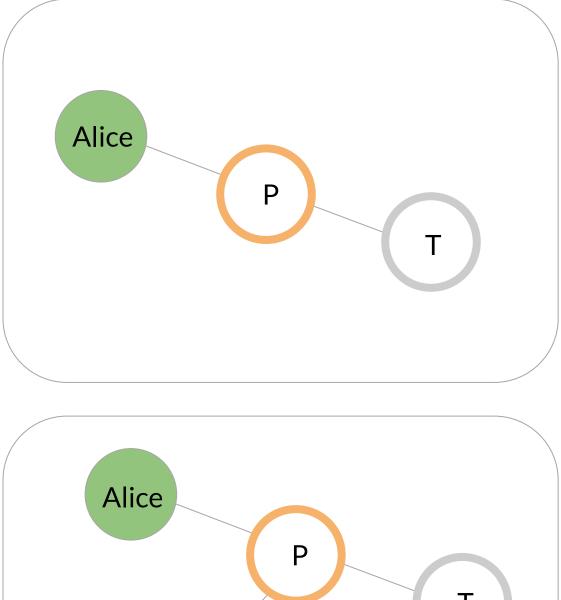
- Query encoded in embedding space before matching
- Answering is then O(n) instead of exponential
- MPQE encodes arbitrary queries

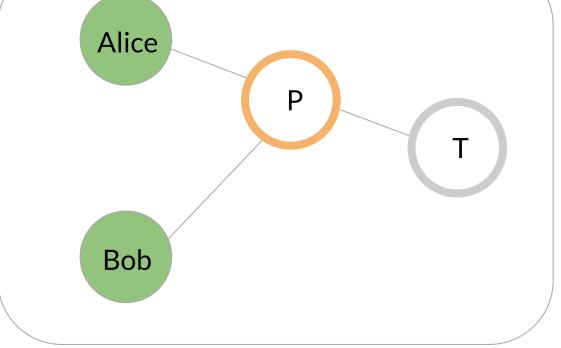


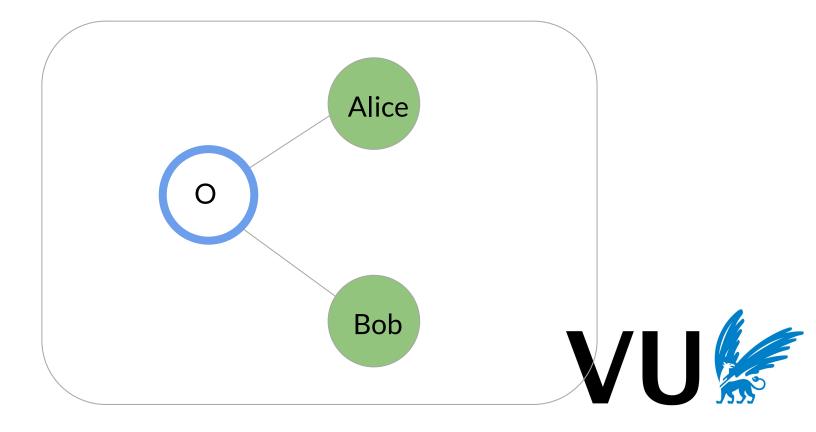
Evaluation

- Queries obtained from KG:
 - Sample subgraphs Ο
 - Replace some entities by variables 0









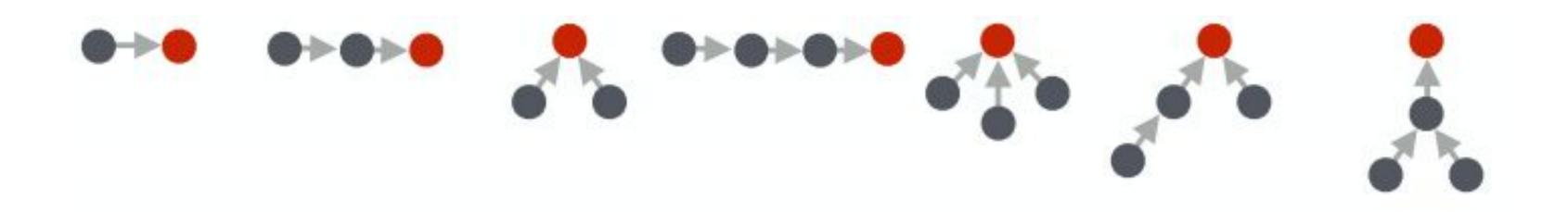
Evaluation

- Queries for training obtained after dropping some edges
- 4 knowledge graphs

	AIFB	MUTAG	AM	Bio
Entities	2,601	22,372	372,584	162,622
Entity types	6	4	5	5
Relations	39,436	81,332	1,193,402	8,045,726
Relation types	49	8	19	56

Evaluation

- Crucial question: how does a method generalize to unseen queries?
- Two scenarios:
 - Train on all 7 structures, evaluate on same structures Ο
 - Train on **1-chain queries only**, evaluate on all 7 structures Ο



Results - all query types

	AIFB			MUTAG			AM				Bio					
Method	AUC		APR		AUC		APR		AUC		APR		AUC		APR	
	Base	All	Base	All	Base	All	Base	All	Base	All	Base	All	Base	All	Base	All
GQE-TransE	85.1	83.1	87.9	86.7	94.5	78.8	93.9	81.0	92.4	80.9	92.1	82.3	94.6	87.4	95.4	88.9
GQE-DistMult	85.1	83.8	86.6	86.0	81.3	80.6	81.8	81.1	83.9	82.9	84.8	83.2	97.0	90.0	96.5	90.3
GQE-Bilinear	86.0	83.4	84.0	83.3	94.0	78.5	94.0	79.7	91.0	80.7	91.5	84.4	98.1	90.5	97.4	90.8
RGCN-TM	89.3	84.9	90.0	87.4	91.2	76.7	90.9	77.6	92.0	84.2	92.4	86.3	98.2	88.8	97.7	89.8
RGCN-sum	88.1	84.7	88.7	86.8	92.4	74.6	90.9	73.1	90.1	80.9	91.0	83.6	98.1	90.0	97.3	90.
RGCN-max	87.6	83.4	88.1	85.9	91.4	74.9	89.4	72.7	90.3	80.9	90.6	82.5	97.3	88.3	96.4	88.
RGCN-MLP	89.2	85.8	90.7	87.3	90.9	73.7	90.9	74.8	92.0	82.9	91.7	84.1	97.8	89.9	97.2	90.
RGCN-CMLP	90.0	86.3	91.6	89.1	92.0	74.3	91.2	72.5	91.9	82.5	92.3	85.5	98.0	90.1	97.3	90.
RGCN-TMLP	89.3	85.5	90.2	87.4	91.7	74.4	90.7	73.6	91.1	83.3	91.4	84.9	98.0	90.2	97.6	90.

- We obtain competitive performance with previous work.
- Message-passing alone(RGCN-TM) is an effective mechanism

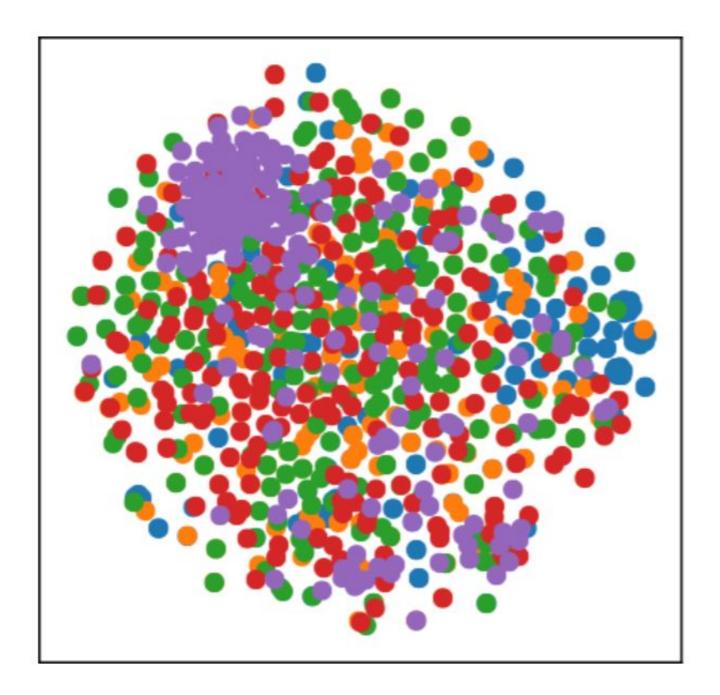
Results - 1-chain queries

	1 - 1940.0				(120) - i				
	AI	AIFB		TAG	A	Μ	Bio		
Method	ch	all	ch	all	ch	all	ch	all	
GQE-TransE	74.0		89.4		85.8		85.5		
GQE-DistMult	72.8		85.4		82.4		95.9	_	
GQE-Bilinear	72.7		89.1		85.9		85.8		
RGCN-TM	77.0	75.5	86.8	77.2	85.0	81.6	96.4	83.9	
RGCN-sum	69.8	69.6	82.8	74.0	52.5	53.9	92.4	80.0	
RGCN-max	74.1	71.9	77.1	71.6	51.2	53.0	92.0	79.9	
RGCN-MLP	69.1	68.0	76.0	70.0	51.3	53.8	90.7	78.7	
RGCN-CMLP	69.7	69.1	84.6	74.2	51.5	53.8	89.8	78.3	
RGCN-TMLP	75.0	75.4	80.1	71.9	53.1	53.5	91.4	79.4	

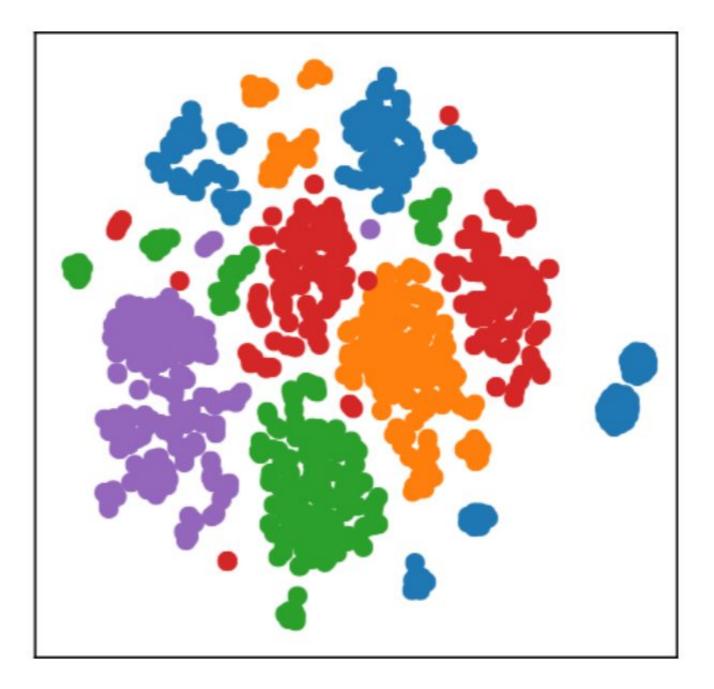
structures that were not seen during training

By training for link prediction only, our method generalizes to other 6, more complex query

Learned representations



the type of the entity.



Compared to previous methods (right), our method (left) learns embeddings that cluster according to

Using R-GCN for Query embedding - Conclusion

- task
- and variable embeddings and not constraining the query structure
- methods
- Embeddings successfully capture the notion of entity types without supervision

The proposed architecture is simple and learns entity and type embeddings useful for solving the

Our method allows encoding a general set of queries defined in terms of BGPs, by learning entity

The message passing mechanism across the BGP exhibits superior generalization than previous

part 1: Introduction - Why graphs? What are embeddings?

part 2: Graph Embedding Techniques

part 3: Graph Neural Networks

part 4: Application - Query embedding

VU

