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THE PLAN

part 1: Introduction - Why graphs? What are embeddings?

part 2: Graph Embedding Techniques

part 3: Graph Neural Networks

part 4: Application - Query embedding




INTRODUCTION - GRAPHS




A\\/hen was the last time you ...

reconnected with a friend?

@% Facebook Social Graph

http://www.businessinsider.com/explainer-
what-exactly-is-the-social-graph-2012-3




A\\/hen was the last time you ...

reconnected with a friend?

visited a doctor?

%}:@f; IBM Watson

Next comes the “ingestion™ process: Watson preprocesses the information, building indices
and other metadata that make the content more efficient to work with. It may also create a
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1owledge graph to represent and leverage key concepts and relationships within a domain.
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https://www.ibm.com/think/marketing/how-watson-learns/
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A\\/hen was the last time you ...

reconnected with a friend?
visited a doctor?

browsed through products in a webshop?

@%Amazon Product Graph



A\\/hen was the last time you ...

reconnected with a friend?

visited a doctor?

browsed through products_in a.webshop£
did a web search?

ﬁgi Google Knowledge Graph 4

https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html




A\\/hen was the last time you ...

browsed through products in a webshop?

reconnected with a friend?

visited a doctor?
did a web search?

Knowledge graphs are all around us.

Other examples: Cyc, Freebase, DBPedia, Wikidata,

YAGO, Thomson Reuters, Microsoft Satori, Yahoo
KG, Springer, ...



Graphs - Undirected - Simple Graphs




Graphs - Undirected - Self loop




Graphs - Undirected - multigraph




Graphs - Directed




Graphs - Edge and node labels/types

Likes

Double
Cream

Likes

Coffee
cream

Dislikes

Similar to
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Graphs - Edge and node labels/types - RDF (simplified)

http://exa
mple.com http://exa
/Bob nple.com

http://exa
mple.com

ttp://example.com

http://exa
mple.com
[Coffee ¢

ream

http://example.com/Similar_to

http://example.com/Dislikes

http://exa

mple.com
/cheese

http://exampleicom/Similar_to

http://exa
mple.com
/Milk
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http://exa
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/Double
Cream

http://exa
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/Fat_pé
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Graphs - Edge and node labels/types + weights

Likes 0.8

Double
Likes 0.9 Cream

Similar to 0.

Dislikes 0.7

Similar to 0.8
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Graphs - Edge and node labels/types + weights

Likes
weight: 0.8
. morning

Double

le§5 strawberries Cream
weight: 0.€
en: evening

with: Coffee

Similar ta
eight: 0.5

Dislikes
weight: 0.7
when: always

Similar to
weight: 0.8

16



Graphs - summary

. For a given graph, you should know whether it has:
. Self loops or not
. Multigraph or not
. Directed/undirected/mix
. Edge labels (unique?)
. Node labels (unique?)
. Properties on edges (also called qualifiers)
. Edge weights
. Any combination of these is possible

. VU



What is now a knowledge graph?

Likes
weight: 0.8

when:
evening

per
cen

tag
: http://examp o
— /Dislik
Dislikes
weight:
0.7
when:

always

Similar
to Milk
weight:

0.8
18




INTRODUCTION - EMBEDDINGS




Embeddings

Embeddings are low dimensional representations of objects

. Low dimension: Much lower as the original size
. Representation: There is some meaning to it, a representation

corresponds to something
. Objects: Words, sentences, images, audio, graphs, ....

20



Embedding of images

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
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image source: https://cs231n.github.io/convolutional-networks/#fc



Embedding of images - navigable space

7 A 2 & 'lalay
@e@edd

https://arxiv.org/
abs/1911.05627
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Embeddings of words

Distributional hypothesis

. “You shall know a word by the company it keeps” Firth 1957
. “If units of text have similar vectors in a text frequency matrix, then
they tend to have similar meaning” Turney and Pantel (2010)

For example, the word ‘cat’ occurs often in the context of the word
‘animal’, and so do words like ‘dog’ and ‘fish’.

But, the word ‘loudspeaker’ hardly ever co-occurs with ‘animal’

. VU



Embeddings of words

Distributional hypothesis

=> We can use context information to define embeddings for words.
One vector representation for each word

Generally, we can train them (see lecture on word2vec)



Embedding of words - navigation

woman .
ri
man \ e} slower
\ father 4‘ con slow

slowest
dog \ mother <‘ faster
daughter

fast

dogs England longer
/ he fastest
Paris / Italy \ she long
London \
/ himself longest

herself
Rome

https://samyzaf.com/ML/nlp/nl

oe p.html VU

N



Graphs - why use them as input to machine learning?

Classification, Regression, Clustering of nodes/edges/whole graph
Recommender systems (who likes what)
Document modeling

Entity and Document similarity (Use concepts from a graph)
Alignment of graphs (which nodes are similar?)
Link prediction and error detection

Linking text and semi-structured knowledge to graphs

§ VU



Graph Embedding Techniques




The Challenge
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Graphs - model mismatch




What we skip

. Traditional ML on graphs
. Often have problems with scalability
. Often need manual feature engineering
. Task Specific

31



Embedding Knowledge Graphs in Vector Spaces




Embedding - propositionalization

X

XX XX

One vector for each entity

X  Compatible with traditional data mining algorithms
and tools

Preserve the information

Unsupervised
X task and dataset independent

E Fficient computation
Low dimensional representation



Two Major Visions

Preserve Topology Preserve Similarity

e Keep neighbours close e Keep similar nodes
together close together

e Furope - Germany e Furope - Africa

e Africa- Algeria e (ermany - Algeria



Two Major Targets

Improve original data

e Knowledge Graph
Completion

e Link Prediction
e Anomaly Detection

Downstream ML Tasks

o C(lassification/Regressio
n/Clustering/K-NN

e Thenused as partof a
larger process
o (A/dialog systems
o Translation
o Image segmentation



How ?
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Three Major Approaches for Propositionalization

Translational Tensor Factorization = Random Walk Based
e |[nterpret e MakeadD e Usethe context
relations as matrix ana of a concept to
translations of Factorize it embed it
concept in the e Reconstructing o Usethe
embedded the original hints distributional
space which edges hypothesis

were missing



Translational




XTransX - translational embedding
(Bordes et al. NIPS 2013, Lin et al.,, AAAI'1S)

Transk
TransH
TransR
ClransR
P lranst.

XX XX XX




Transk - translational embedding
(Bordes et al. NIPS 2013)

O Vertex —>» Edge @ Vertex embedding —» Edge embedding

A
Vh
o e
v
. >
KG triple Embedding space

(a) An illustration of TransE

Source: Structured query construction via knowledge graph
embedding, 2019, Ruijie Wang et al.
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TranskE - translational embedding
(Bordes et al. NIPS 2013)

X Iranst
X Geth+lclosetot
m |f (h|t)is agood triple
X Geth+l far fromt
m |f (h|t)isabadtriple

L= het)es 2o te)es),, Y T AR+ £,t) —d(h +£,t)],




XTransX - translational embedding
(Bordes et al. NIPS 2013, Lin et al., AAAI"1S)

X

X lransH

X TransR Conceptually
X ClransR Easy

X Plranst

X

Transkt

Embedding
Quality

The better the

model, the
less scalable

One Hop



Matrix Factorization




RESCAL - Tensor Factorization
(Nickel and Tresp, ECML PKDD 2013)

7-th entity
| : 1-th
ity of | iy
ON
o
k-th ~
relation N

\ / rela]%{ct)g ~d \\/



Tensor Factorization

Conceptually
Easy

Good for link
prediction

Usually
Scalable

Multi hop

Explainable Embedding
Quality for ML
Numeric tasks
attributes can  The better the
be included model, the
somehow less scalable



Random Walk Based




Random Walk based methods
(Cochez, et al.,ISWC "17, Cochez, et al. WIMS'17, Ristoski et

al. ISWC '16, Grover, Leskovec KDD '16)

e Userandom walks to extract a context for

each node
e Use this context as input to word embedding

techniques



Random Walk based methods - RDF2Vec and Node2Vec
(Cochez, et al. WIMS'17, Ristoski et al. ISWC '16, Grover,
Leskovec KDD '16)

e Userandom walks to create sequences on
the graph.
e f[eed these to word2vec

e Biasing the walks helps for specific cases
e Also some other graph kernels have been
used



Global Embeddings - KGloVe
(Cochez, Ristoski, et al., ISWC '17)

e C(reate co-occurrence stats using

Personalized PageRank
o All pairs PPR

e Apply the GloVe model
o Similar things will have similar contexts

o (Optimizes for preserving analogy

m King - Man + Woman = Queen
m Berlin - Germany + Austria = Vienna

o Complete context captured



Random walk based methods
(Cochez, et al.,ISWC 17, Cochez, et al. WIMS'17, Ristoski et
al. ISWC '16, Grover, Leskovec KDD '16)

Deals with large  Likely or Link
Graphs partially Prediction
Good Explainable

Embeddings | arger

Good Training Context Used

Time



Graph Neural Networks




Graph Convolutional Networks (GCN: Kipf and Welling,
ICLR'17, RGCN: Schlichtkrull et al. ESWC'18)

e How can we directly incorporate graph
information into a machine learning

algorithm?
o Especially for end-to-end learning






Graph Convolutional Network - Merge the two worlds
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GCN - Example Graph




GCN - Example Graph -1 Layer




GCN - Example Graph - 2 Layer




GCN - Example Graph - 2 Layer with Connections




GCN - Example Graph - Multi Layer



GCN - Example Graph - Weights

- EachEdgeisa
nevural network!

B w




GCN - Example Graph - Weights

The input to EACH
Node is a vector!

C >




GCN - Example Graph - Weights

\ The output for

EACH Nodeis a
vector!

CX
C >




GCN - Example Graph - Weights Sharing

- The weight
matrix is shared!




.. and self-loops
are added




GCN - A different view - sparse matrix multiplications

In practise what was presented does not scale well
. (Except with clever engineering)

In practise more normalization is needed

65



GCN - A different view - sparse matrix multiplications

Reformulation:

~

g+ _ g( A Ha)W(z))

H" is the I-th layer in the unrolled network (the I-th time-step)

A is the adjacency matrix, A is the same with also the diagonal set to 1

W is a learnable weight matrix for layer |

§ VU



GCN - A different view - sparse matrix multiplications

Reformulation:

g+ _ g( D-% AD- <Z>W<z>)

H" is the I-th layer in the unrolled network (the I-th time-step)

A is the adjacency matrix, A is the same with also the diagonal set to 1

Di; = ) _; Ay
W is a learnable weight matrix for layer |

§ VU

Used for normalization



That's it, we can include this
structure into a larger network.



Examples of tasks

Node classification

. What is the type of a node?
Regression of attributes in the graph

. What is the price of the product?

Regression/classification on the complete graph (by combining the
output)

. What is the boiling point of a molecule?
. Is this molecule poisonous?

§ VU



What if the graph has typed edges?



The weight
matrix is shared
per edge type!

C >




RGCN - Reverse edges

Also reverse edges
(inverse relations)

are added




RGCN - formally

In matrix multiplication form, the R-GCN is computed as follows:

= [ 3D - L wORY 4 wOp®
TER]GN”’ bh

-> this formulation is per node in the graph, not for all at once, as was
done in the GCN formulation!

§ VU



RGCN - formally

In matrix multiplication form, the R-GCN is computed as follows:

pith — & Z

reR

h " is the i-th node, in the I-th layer (=I-th message passing step)

(R is the set of all relations)

) VU



RGCN - formally

In matrix multiplication form, the R-GCN is computed as follows:

W =o (¥

rER JENT
h " is the i-th node, in the I-th layer (=I-th message passing step)

(R is the set of all relations)

N." is the set of neighbours of node i with respect to relation r

. VU



RGCN - formally

In matrix multiplication form, the R-GCN is computed as follows:

B =0 [ Y)Y wORY

reER jENT
h " is the i-th node, in the I-th layer (=I-th message passing step)

W Y is the weight matrix for relation r at layer | (R is the set of all relations)

N." is the set of neighbours of node i with respect to relation r

. VU



RGCN - formally

In matrix multiplication form, the R-GCN is computed as follows:

(I+1) _ 1) 7, (1) (1) 3. (1)
by =0 [ Y Y WORY + Wk,
reER jENT
h " is the i-th node, in the I-th layer (=I-th message passing step)
W Y is the weight matrix for relation r at layer | (R is the set of all relations)

W, is the weight matrix for the self loop

N." is the set of neighbours of node i with respect to relation r

§ VU



RGCN - formally

In matrix multiplication form, the R-GCN is computed as follows:

DR+ Wi pH

h " is the i-thpaadaiathal sh lavAc Lol th saccacangssing step)

" C. is a normalization constant. |
W "is the wq o' he set of all relations)

Usually ¢ is [N/

WO IS T

N." is the set of neighbours of node Twith respect To relation r

. VU



In general, we can do whatever we
want in the unrolled view...

and see whether we can implement
it somehow more efficiently...



GCN - We can do whatever we want

PN

s

|Each Edgeisa
neural network!




GCN - Example Graph - Weights Sharing

— —

\' he weight
atrix is shared!

A
"The graph neural network
model. IEEE Transactions on
Neural Networks 20.1 (2008):
61-80.

See also Scarselli, Franco, et al.

‘




Application - Query embedding

https://arxiv.org/abs/2002.02406



https://arxiv.org/abs/2002.02406

e Can model interactions and properties

KR2

o  Medicine, biology, world facts, ...

BO

® In general, useful for

A2 o  Storing facts about entities and
relations

o  Answering questions about them

CE

VRIJE
UNIVERSITEIT - | o | .
AMSTERDAM https://commons.wikimedia.org/wiki/File:Moreno_Sociogram_1 e
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https://commons.wikimedia.org/wiki/File:Moreno_Sociogram_1st_Grade.png

Queries on knowledge graphs

® @ e SPARQL queries operate on existing edges
o  Select all Projects, related to ML, on
Q\ / which Alice works
@ o  Answer: Projl
-

VU
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Queries on knowledge graphs

® @ e SPARQL queries operate on existing edges
o  Select all Projects, related to ML, on
Q\ @ @ o which Alice works
/ @ o  Answer: Projl
& e IsProj2a likely answer?
-

VU
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VU%

® Assign avectorin d to every node: an

embedding

Alice ® The score of an edge is a function of the
embeddings of entities involved

e Optimize:

o  Maximize scores of existing edges

Proj2

Bob
o  Minimize scores of random edges

e Examples: TransE, DistMult, ComplEx

VRIJE

UNIVERSITEIT V U
AMSTERDAM
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Alice

Bob

VRIJE
UNIVERSITEIT
AMSTERDAM

Proj1 ‘

Proj2

Select all topics T,

where T is related to a project P,

and Alice and Bob work on P.

Link prediction requires enumerating all
possible Tand P

o  Grows exponentially!

VU

N



Link prediction for complex queries?

VRIJE
UNIVERSITEIT
AMSTERDAM

A subset of Wikidata

Select all topics T,

where T is related to a project P,

and Alice and Bob work on P.

Link prediction requires enumerating all

possible Tand P

O

Grows exponentially!




Queries are graphs too

e In particular, Basic Graph Patterns?

1 Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 query language. W3C recommendation 21(10) (2013)

VU
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e In particular, Basic Graph Patterns?

e Select all topics T where
o Tisrelated to project P

o  Alice works on P and Bob works on P

Alice P

T (target node)
Bob

1 Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 query language. W3C recommendation 21(10) (2013)

VU%

VRIJE
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Embedding queries

ex:Author

rdf:type S I

llBOb”

ex:wrote

a Query Encoder

:S1 hasSubject :Bob.
:S1 hasPredictate rdf:type.

:S1 hasObiject ex:author. ,
Alice

Projl

VU ML

Proj2
VRIJE Bob

UNIVERSITEIT V U
AMSTERDAM

VU
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Embedding queries

Alice ‘ P \
. ] - Nearest Neighbor Answer
ij//” earch
_ \
Query Encoder \

Alice

Projl

I ML
Bob Proj2

VRIJE
UNIVERSITEIT V U |
AMSTERDAM S

VU



The query encoder

Alice P

. O T (target node)
e Graph Convolutional Networks operate on

graphs, by applying message passing:
0  Messages are vectors

Bob

e Message-Passing Query Embedding:

0 Learnable parameters include both
entity and variable node embeddings O ® ® ®

o  Propagate messages across the BGP

VRIJE

UNIVERSITEIT V U
AMSTERDAM

VU%
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The query encoder

e Graph Convolutional Networks operate on
graphs, by applying message passing:
0  Messages are vectors

e Message-Passing Query Embedding: Alice
P

O Learnable parameters include both O T (target node)
entity and variable node embeddings Bob

o  Propagate messages across the BGP

VRIJE

UNIVERSITEIT V U
AMSTERDAM

VU%
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The query encoder

e Graph Convolutional Networks operate on
graphs, by applying message passing:
0  Messages are vectors

e Message-Passing Query Embedding: Alice
P

O Learnable parameters include both O T (target node)
entity and variable node embeddings Bob

o  Propagate messages across the BGP

VRIJE

UNIVERSITEIT V U
AMSTERDAM

VU%
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The query encoder

VU%

Graph Convolutional Networks operate on
graphs, by applying message passing:
0  Messages are vectors

Message-Passing Query Embedding:

0 Learnable parameters include both
entity and variable node embeddings

o  Propagate messages across the BGP

o  After k steps of MP, map all node
messages to a single query embedding

VRIJE
UNIVERSITEIT
AMSTERDAM

Alice

Bob

P

O

O

Query embedding

T

(target node)

VU

ke



Graph aggregation functions

e Map node messages to query embedding

e Ideally permutation invariant

e (Can contain learnable parameters for increased flexibility
e Simplest form: message at the target node

VRIJE
UNIVERSITEIT
AMSTERDAM

VU%

Alice

Bob

P

O

O

Query embedding

T

(target node)

VU

N



Graph aggregation functions

e Sum
® Max
e MLP
qa= Y MLP (h,(UL))
vEVq
e CMLP
_ (1) (L)
® q= Y MLP(h{,... )]
.\ veEV, ( )
>
e J[MLP
VRIJE q= Z MLP [h,(UL),hgi')]
VU S M) ute




e Query encoded in embedding space before matching

e Answering is then O(n) instead of exponential

Alice P

e MPQE encodes arbitrary queries
O T (target node)

Bob

O

Query embedding

VRIJE
UNIVERSITEIT V U |
AMSTERDAM S

VU%



Evaluation

Alice
I P
. . T
e Queries obtained from KG:
o  Sample subgraphs
o  Replace some entities by variables
Alice

Alice

. Proj1 ‘
Bob Pr012 @

VRIJE Bob

UNIVERSITEIT ‘J U |
AMSTERDAM s

Bob

Alice

N

VU%



Evaluation

VU%

Queries for training obtained after dropping some edges

4 knowledge graphs
AIFB MUTAG AM Bio
Entities 2,601 22.372 372,584 162,622
Entity types 6 4 S S
Relations 39,436 81,332 1,193,402 8,045,726
Relation types 49 3 19 56

VRIJE
UNIVERSITEIT
AMSTERDAM

VU
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Evaluation

® Crucial question: how does a method generalize to unseen queries?
® Two scenarios:

o  Train on all 7 structures, evaluate on same structures

o  Train on 1-chain queries only, evaluate on all 7 structures

~ ,. " - - -
e - TN -'4_ o (&, "
. - i s v g _—— .
- o~ .' : 4 p b"\ :_' o nc- of ~
- = - . v -y [ S
e | P~ o “ " ~ - A
S (g < R YN I i 24 §
F. ' - [ vy - "N »';.
: 1
-
<
G
/?' s ) e
b} red
‘ % .'\
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Results - all query types

I
AIFB MUTAG AM Bio
AUC APR AUC APR AUC APR AUC APR

Method Base All Base All Base All Base All Base All Base All Base All Base All
GQE-TransE 85.1 &83.1 879 867 945 788 939 810 924 809 921 823 946 874 954 K89
GQE-DistMult  85.1 83.8 866 860 &l1.3 80.6 ZI.8 8l.1 839 829 848 832 97.0 90.0 96.5 90.3
GQE-Bilinear 86.0 834 840 K833 940 785 940 797 910 80.7 915 844 98.1 905 974 90.8
RGCN-TM 89.3 849 900 874 912 7677 909 776 920 842 924 863 98.2 888 97.7 R98
RGCN-sum 88. 1 847 887 868 924 746 909 7T3.1 90.1 809 91.0 &83.6 98.1 90.0 97.3 90.5
RGCN-max 87.6 834 88.l 859 914 749 894 7277 903 809 906 825 973 883 964 88.7
RGCN-MLP 89.2 858 90.7 873 909 737 909 748 920 829 917 841 978 8899 972 90.0
RGCN-CMLP 90.0 863 916 891 920 743 91.2 725 919 825 923 855 980 90.1 97.3 90.2
RGCN-TMLP 89.3 855 902 874 9177 744 90.7 73.6 9l.1 83.3 914 849 980 90.2 976 90.6

VU%

We obtain competitive performance with previous work.

Message-passing alone(RGCN-TM) is an effective mechanism

VRIJE
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Results - 1-chain queries

VRIJE

AIFB MUTAG AM Bio
Method ch all ch all ch all ch all
GQE-TransE 74.0 — 39.4 — 85.8 — 8. —
GQE-DistMult  72.8 — 85.4 — 82.4 — 95.9 —
GQE-Bilinear 127 — 89.1 — 35.9 — 85.8 —
RGCN-TM 77.0 755 868 77.2 850 81.6 964 83.9
RGCN-sum 698 696 828 740 525 539 924  80.0
RGCN-max 4.1 719 T77.1 T71.6 51.2 530 920 799
RGCN-MLP 69.1 68.0 760 700 S51.3 538 90.7 78.7
RGCN-CMLP 69.7 69.1 846 742 515 538 89.8 783
RGCN-TMLP 75.0 754 80.1 71.9 531 535 914 794

UNIVERSITEIT
AMSTERDAM

By training for link prediction only, our method generalizes to other 6, more complex query
structures that were not seen during training

VU%

VU
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Learned representations

e Compared to previous methods (right), our method (left) learns embeddings that cluster according to
the type of the entity.

e This points to future applications in learning better embeddings for KGs

VRIJE
V U UNIVERSITEIT V U #
R°  AMSTERDAM o>




Using R-GCN for Query embedding - Conclusion

e The proposed architecture is simple and learns entity and type embeddings useful for solving the
task

e Our method allows encoding a general set of queries defined in terms of BGPs, by learning entity
and variable embeddings and not constraining the query structure

® The message passing mechanism across the BGP exhibits superior generalization than previous
methods

e Embeddings successfully capture the notion of entity types without supervision
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THE PLAN

part 1: Introduction - Why graphs? What are embeddings?

part 2: Graph Embedding Techniques

part 3: Graph Neural Networks

part 4: Application - Query embedding
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