
Jakub M. Tomczak
Deep Learning

Deep generative modeling:
Implicit models

TYPES OF GENERATIVE MODELS

2

Generative
model

Autoregressive
(e.g., PixelCNN)

Implicit models
(e.g., GANs)

Prescribed models
(e.g., VAE)

Latent variable
models

Flow-based  
(e.g., RealNVP, GLOW)

GENERATIVE MODELS

3

Training Likelihood Sampling Compression

Autoregressive models
(e.g., PixelCNN) Stable Exact Slow No

Flow-based models 
(e.g., RealNVP) Stable Exact Fast/Slow No

Implicit models 
(e.g., GANs) Unstable No Fast No

Prescribed models 
(e.g., VAEs) Stable Approximate Fast Yes

GENERATIVE MODELS

4

Training Likelihood Sampling Compression

Autoregressive models
(e.g., PixelCNN) Stable Exact Slow No

Flow-based models 
(e.g., RealNVP) Stable Exact Fast/Slow No

Implicit models 
(e.g., GANs) Unstable No Fast No

Prescribed models 
(e.g., VAEs) Stable Approximate Fast Yes

DENSITY NETWORKS

5

Generative process:

1.

2.

The log-likelihood function:

z ∼ pλ(z)

x ∼ pθ(x ∣ z)

log p(x) = log∫ pθ(x ∣ z)pλ(z)dz

GENERATIVE MODELING WITH LATENT VARIABLES

6

Generative process:

1.

2.

The log-likelihood function:

z ∼ pλ(z)

x ∼ pθ(x ∣ z)

log p(x) = log∫ pθ(x ∣ z)pλ(z)dz

≈ log
1
S

S

∑
s=1

exp (log pθ (x ∣ zs))

GENERATIVE MODELING WITH LATENT VARIABLES

7

It could be estimated
by MC samples.

Generative process:

1.

2.

The log-likelihood function:

z ∼ pλ(z)

x ∼ pθ(x ∣ z)

log p(x) = log∫ pθ(x ∣ z)pλ(z)dz

≈ log
1
S

S

∑
s=1

exp (log pθ (x ∣ zs))

GENERATIVE MODELING WITH LATENT VARIABLES

8

It could be estimated
by MC samples. If we take standard Gaussian prior,

we need to model p(x|z) only!

DENSITY NETWORK

9
MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface. Oxford

Let’s consider a
function f that
transforms z to x.

DENSITY NETWORK

10

It must be a powerful (=flexible) transformation!

MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface. Oxford

Let’s consider a
function f that
transforms z to x.

DENSITY NETWORK

11

It must be a powerful (=flexible) transformation!
NEURAL NETWORK 💪

MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface. Oxford

Let’s consider a
function f that
transforms z to x.

DENSITY NETWORK

12

Neural network outputs parameters of a distribution,
e.g., a mixture of Gaussians.

MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface. Oxford

Let’s consider a
function f that
transforms z to x.

The log-likelihood function:

Training procedure:

1. Sample multiple z’s from the prior (e.g., standard Gaussian).

2. Apply log-sum-exp-trick, and apply backpropagation.

log p(x) = log∫ pθ(x ∣ z)pλ(z)dz

≈ log
1
S

S

∑
s=1

exp (log pθ (x ∣ zs))

DENSITY NETWORKS

13

The log-likelihood function:

Training procedure:

1. Sample multiple z’s from the prior (e.g., standard Gaussian).

2. Apply log-sum-exp-trick, and apply backpropagation.

log p(x) = log∫ pθ(x ∣ z)pλ(z)dz

≈ log
1
S

S

∑
s=1

exp (log pθ (x ∣ zs))

DENSITY NETWORKS

14
Drawback: It scales badly in high-dimensional cases…

Advantages

✓Non-linear transformations.

✓Allows to generate.

DENSITY NETWORKS

15

Disadvantages

- No analytical solutions.

- No exact likelihood.

- It requires a lot of samples from
the prior.

- Fails in high-dim.

- It requires an explicit distribution
(e.g., Gaussian).

Advantages

✓Non-linear transformations.

✓Allows to generate.

DENSITY NETWORKS

16

Disadvantages

- No analytical solutions.

- No exact likelihood.

- It requires a lot of samples from
the prior.

- Fails in high-dim.

- It requires an explicit distribution
(e.g., Gaussian).

Can we do better?

IMPLICIT DISTRIBUTIONS

17

Let us look again at the Density Network model.
The idea is to inject noise to a neural network that serves as a generator:

THE IDEA BEHIND IMPLICIT DISTRIBUTIONS

18

0

p(z)

z

Let us look again at the Density Network model.
The idea is to inject noise to a neural network that serves as a generator:

THE IDEA BEHIND IMPLICIT DISTRIBUTIONS

19

0

p(z)

z

But now, we don’t specify the distribution (e.g., MoG), but use a flexible

transformation directly to return an image. This is now implicit.

We have a neural network (generator) that transforms noise into an
image.

THE IDEA BEHIND IMPLICIT DISTRIBUTIONS

20

We have a neural network (generator) that transforms noise into an
image.

It defines an implicit distribution (i.e., we do not assume any form of it),
and it could be seen as Dirac’s delta:

 p(x |z) = δ (x − f(z))

THE IDEA BEHIND IMPLICIT DISTRIBUTIONS

21

We have a neural network (generator) that transforms noise into an
image.

It defines an implicit distribution (i.e., we do not assume any form of it),
and it could be seen as Dirac’s delta:

However, now we cannot use the likelihood-based approach, because
 is ill-defined.

p(x |z) = δ (x − f(z))

ln δ (x − f(z))

THE IDEA BEHIND IMPLICIT DISTRIBUTIONS

22

We have a neural network (generator) that transforms noise into an
image.

It defines an implicit distribution (i.e., we do not assume any form of it),
and it could be seen as Dirac’s delta:

However, now we cannot use the likelihood-based approach, because
 is ill-defined.

We need to use a different approach.

p(x |z) = δ (x − f(z))

ln δ (x − f(z))

THE IDEA BEHIND IMPLICIT DISTRIBUTIONS

23

GENERATIVE ADVERSARIAL NETWORKS

24

BEFORE WE GO INTO MATH…

25

Let’s imagine two actors:

BEFORE WE GO INTO MATH…

26

A fraud

Let’s imagine two actors:

BEFORE WE GO INTO MATH…

27

A fraud

An art expert

Let’s imagine two actors:

BEFORE WE GO INTO MATH…

28

A fraud

An art expert

… and a real artist

Let’s imagine two actors:

BEFORE WE GO INTO MATH…

29

A fraud

An art expert

… and a real artist

The fraud aims to copy
the real artist and cheat
the art expert.

Let’s imagine two actors:

BEFORE WE GO INTO MATH…

30

A fraud

An art expert

… and a real artist

The fraud aims to copy
the real artist and cheat
the art expert.

The expert assesses
a painting and
gives her opinion.

Let’s imagine two actors:

BEFORE WE GO INTO MATH…

31

A fraud

An art expert

… and a real artist

The fraud aims to copy
the real artist and cheat
the art expert.

The expert assesses
a painting and
gives her opinion.

The fraud learns
and tries to fool
the expert.

Let’s imagine two actors:

BEFORE WE GO INTO MATH…

32

A fraud

An art expert

… and a real artist

Hmmm…
A FAKE!

Let’s imagine two actors:

BEFORE WE GO INTO MATH…

33

A fraud

An art expert

… and a real artist

Hmmm…
PABLO!

Let’s imagine two actors:

BEFORE WE GO INTO MATH…

34

A fraud

An art expert

… and a real artist

Let’s imagine two actors:

Hmmm…
PABLO!

HOW WE CAN FORMULATE IT?

35

HOW WE CAN FORMULATE IT?

36

Generator /fraud/

HOW WE CAN FORMULATE IT?

37

Discriminator /expert/

HOW WE CAN FORMULATE IT?

38

1. Sample z.

2. Generate G(z).

3. Discriminate
whether given
image is real or
fake.

HOW WE CAN FORMULATE IT?

39

1. Sample z.

2. Generate G(z).

3. Discriminate
whether given
image is real or
fake.

What about the learning objective?

We can consider the following learning objective:

 minG maxD 𝔼x∼preal
[log D(x)] + 𝔼z∼p(z)[log(1 − D(G(z)))]

ADVERSARIAL LOSS

40 Goodfellow, I., et al. (2014). Generative adversarial nets. In NIPS

We can consider the following learning objective:

 minG maxD 𝔼x∼preal
[log D(x)] + 𝔼z∼p(z)[log(1 − D(G(z)))]

ADVERSARIAL LOSS

41 Goodfellow, I., et al. (2014). Generative adversarial nets. In NIPS

It resemblances the logarithm of the Bernoulli distribution:

 y log p(y = 1) + (1 − y)log(1 − p(y = 1))

We can consider the following learning objective:

 minG maxD 𝔼x∼preal
[log D(x)] + 𝔼z∼p(z)[log(1 − D(G(z)))]

ADVERSARIAL LOSS

42 Goodfellow, I., et al. (2014). Generative adversarial nets. In NIPS

It resemblances the logarithm of the Bernoulli distribution:

 y log p(y = 1) + (1 − y)log(1 − p(y = 1))

We can consider the following learning objective:

 minG maxD 𝔼x∼preal
[log D(x)] + 𝔼z∼p(z)[log(1 − D(G(z)))]

ADVERSARIAL LOSS

43 Goodfellow, I., et al. (2014). Generative adversarial nets. In NIPS

It resemblances the logarithm of the Bernoulli distribution:

Therefore, the discriminator network should end
with a sigmoid function to mimic probability.

y log p(y = 1) + (1 − y)log(1 − p(y = 1))

We can consider the following learning objective:

 minG maxD 𝔼x∼preal
[log D(x)] + 𝔼z∼p(z)[log(1 − D(G(z)))]

ADVERSARIAL LOSS

44 Goodfellow, I., et al. (2014). Generative adversarial nets. In NIPS

We want to minimize wrt. generator.

We can consider the following learning objective:

 minG maxD 𝔼x∼preal
[log D(x)] + 𝔼z∼p(z)[log(1 − D(G(z)))]

ADVERSARIAL LOSS

45 Goodfellow, I., et al. (2014). Generative adversarial nets. In NIPS

We want to maximize wrt. discriminator.

GENERATIVE ADVERSARIAL NETWORKS

46

Generative process:

1. Sample z.

2. Generate G(z).

GENERATIVE ADVERSARIAL NETWORKS

47

Generative process:

1. Sample z.

2. Generate G(z).

The learning objective (adversarial loss):

 minG maxD 𝔼x∼preal
[log D(x)] + 𝔼z∼p(z)[log(1 − D(G(z)))]

GENERATIVE ADVERSARIAL NETWORKS

48

Generative process:

1. Sample z.

2. Generate G(z).

The learning objective (adversarial loss):

Learning:

1. Generate fake images, and minimize wrt. G.

2. Take real & fake images, and maximize wrt. D.

minG maxD 𝔼x∼preal
[log D(x)] + 𝔼z∼p(z)[log(1 − D(G(z)))]

GANS

49

import torch.nn as nn

class GAN(nn.Module):
 def __init__(self, D, M):
 super(GAN, self).__init__()
 self.D = D
 self.M = M

 self.gen1 = nn.Linear(in_features= self.M, out_features=300)
 self.gen2 = nn.Linear(in_features=300, out_features= self.D)

 self.dis1 = nn.Linear(in_features= self.D, out_features=300)
 self.dis2 = nn.Linear(in_features=300, out_features=1)

GANS

50

 def generate(self, N):
 z = torch.randn(size=(N, self.D))
 x_gen = self.gen1(z)
 x_gen = nn.functional.relu(x_gen)
 x_gen = self.gen2(x_gen)
 return x_gen

 def discriminate(self, x):
 y = self.dis1(x)
 y = nn.functional.relu(y)
 y = self.dis2(y)
 y = torch.sigmoid(y)
 return y

GANS

51

 def gen_loss(self, d_gen):
 return torch.log(1. - d_gen)

 def dis_loss(self, d_real, d_gen):
 # We maximize wrt. the discriminator, but optimizers minimize!
 # We need to include the negative sign!
 return -(torch.log(d_real) + torch.log(1. - d_gen))

 def forward(self, x_real):
 x_gen = self.generate(N=x_real.shape[0])
 d_real = self.discriminate(x_real)
 d_gen = self.discriminate(x_gen)
 return d_real, d_gen

GANS

52

 def gen_loss(self, d_gen):
 return torch.log(1. - d_gem)

 def dis_loss(self, d_real, d_gen):
 # We maximize wrt. the discriminator, but optimizers minimize!
 # We need to include the negative sign!
 return -(torch.log(d_real) + torch.log(1. - d_gen))

 def forward(self, x_real):
 x_gen = self.generate(N=x_real.shape[0])
 d_real = self.discriminate(x_real)
 d_gen = self.discriminate(x_gen)
 return d_real, d_gen

We can use two optimizers, one for d_real & d_gen, and one for d_gen.

GENERATIONS

53
Salimans, T., et al. (2016). Improved techniques for training GANs. NeurIPS

Advantages

✓Non-linear transformations.

✓Allows to generate.

✓Learnable loss.

✓Allows implicit models.

✓Works in high-dim.

GANS

54

Disadvantages

- No exact likelihood.

- Unstable training.

- Missing mode problem (i.e., it
doesn’t cover the whole space).

- No clear way for quantitative
assessment.

Before, the motivation for the adversarial loss was the Bernoulli
distribution. But we can use other ideas.

WASSERSTEIN GAN

55

Before, the motivation for the adversarial loss was the Bernoulli
distribution. But we can use other ideas.

For instance, we can use the earth-mover distance:

where the discriminator is a 1-Lipschitz function.

minG maxD∈𝒲 𝔼x∼preal
[D(x)] − 𝔼z∼p(z)[D(G(z))]

WASSERSTEIN GAN

56
Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. arXiv preprint arXiv:1701.07875.

Before, the motivation for the adversarial loss was the Bernoulli
distribution. But we can use other ideas.

For instance, we can use the earth-mover distance:

where the discriminator is a 1-Lipschitz function.

We need to clip weights of the discriminator: clip(weights, -c, c)

minG maxD∈𝒲 𝔼x∼preal
[D(x)] − 𝔼z∼p(z)[D(G(z))]

WASSERSTEIN GAN

57
Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. arXiv preprint arXiv:1701.07875.

Before, the motivation for the adversarial loss was the Bernoulli
distribution. But we can use other ideas.

For instance, we can use the earth-mover distance:

where the discriminator is a 1-Lipschitz function.

We need to clip weights of the discriminator: clip(weights, -c, c)

It stabilizes training, but other problems remain.

minG maxD∈𝒲 𝔼x∼preal
[D(x)] − 𝔼z∼p(z)[D(G(z))]

WASSERSTEIN GAN

58
Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. arXiv preprint arXiv:1701.07875.

Thank you!

