Deep generative modeling:
Implicit models

Jakub M. Tomczak
Deep Learning

VRIJE
UNIVERSITEIT
AN° AMSTERDAM

TYPES OF GENERATIVE MODELS

Generative
model
Autoregressive Flow-based Latent variable
(e.g., PixelCNN) (e.g., RealNVP, GLOW) models
Implicit models Prescribed models
(e.g., GANSs) (e.g., VAE)

: VU

GENERATIVE MODELS

Autoregressive models
(e.g., PixelCNN)

Training

Stable

Likelihood

Sampling

Slow

Compression

Flow-based models
(e.g., RealNVP)

Implicit models

(e.g., GANSs)

Prescribed models
(e.g., VAES)

Stable Exact Fast/Slow No
Unstable No Fast No
Stable Approximate Fast Yes

VU¥

GENERATIVE MODELS

Autoregressive models
(e.g., PixelCNN)

Training

Stable

Likelihood

Sampling

Slow

Compression

Flow-based models
(e.g., RealNVP)

Implicit models
(e.g., GANSs)

Prescribed models
(e.g., VAES)

Stable

Unstable

Stable

Approximate

Fast/Slow

Fast

VU¥

DENSITY NETWORKS

: VU

GENERATIVE MODELING WITH LATENT VARIABLES

Generative process:

1.2 ~ p)(z)
2.X ~ py(x | 2)
The log-likelihood function:

log p(x) = log [pe(x | Z)p,(z)dz

GENERATIVE MODELING WITH LATENT VARIABLES

Generative process:

1.2 ~ p)(z)
2.X ~ py(x | 2)
The log-likelihood function:

log p(x) = log [pe(x | Z)p,(z)dz

1 S
~ log S Z exp (logpe (X | zs) >

It could be estimated s=1
by MC samples.

GENERATIVE MODELING WITH LATENT VARIABLES

Generative process:

1.2 ~ p)(z)
2.X ~ py(x | 2)
The log-likelihood function:

log p(x) = log [pe(x | Z)p,(z)dz

1 S
~ log S Z exp (logpe (X | zs) >

It could be estimated s=1
by MC samples. If we take standard Gaussian prior,
8 we need to model p(xiz) only!

DENSITY NETWORK

Let’s consider a
function fthat
transforms z to x.

QO]

< (OO0

z~pa(z) f(z)

: VU

MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface. Oxford

DENSITY NETWORK

Let’s consider a
function fthat
transforms z to x.

QO]

< (OO0

z ~ px(z) @

It must be a powerful (=flexible) transformation!

. VUf¥

MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface. Oxford

DENSITY NETWORK

Let’s consider a
function fthat
transforms z to x.

QO]

< (OO0

z ~ px(z) @

It must be a powerful (=flexible) transformation!
NEURAL NETWORK [,
' VU

MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface. Oxford

DENSITY NETWORK

Let’s consider a
function fthat
transforms z to x.

QO]

< (OO0

z ~ px(z) @

Neural network outputs parameters of a distribution,
e.g., a mixture of Gaussians.

. VUf¥

MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface. Oxford

DENSITY NETWORKS

The log-likelihood function:

log p(x) = log Jpe(x | Z)p,(z)dz

(e]e)e)

J(eJeoJe)

13
~ log S Z CXp (108179 (X | Zs)) z ~px(z) f(z)

s=1
Training procedure:

1. Sample multiple z’s from the prior (e.g., standard Gaussian).

2. Apply log-sum-exp-trick, and apply backpropagation.
: VU¥

DENSITY NETWORKS

The log-likelihood function:

log p(x) = log Jpe(x | Z)p,(z)dz

(e]e)e)

J(eJeoJe)

13
~ log S Z CXp (108179 (X | Zs)) z ~px(z) f(z)

s=1
Training procedure:
1. Sample multiple z’s from the prior (e.g., standard Gaussian).
2. Apply log-sum-exp-trick, and apply backpropagation.

Drawback: It scales badly in high-dimensional cases... VU%

14

DENSITY NETWORKS

Advantages Disadvantages

v Non-linear transformations. No analytical solutions.

v Allows to generate. No exact likelihood.

It requires a lot of samples from
the prior.

Fails in high-dim.

It requires an explicit distribution
(e.g., Gaussian).

. VUf¥

DENSITY NETWORKS

Advantages Disadvantages
v Non-linear transformations. - No analytical solutions.
v Allows to generate. - No exactdixelinoog—_

_~~ It requires a lot of samples from
the prior.

- Fails in high-dim.

- It requires an explicit distribution ,
. (e.g., Gaussian).

S—— - »
0 Can we do better? econne VUQ{

IMPLICIT DISTRIBUTIONS

., VU

THE IDEA BEHIND IMPLICIT DISTRIBUTIONS

Let us look again at the Density Network model.
The idea is to inject noise to a neural network that serves as a generator:

THE IDEA BEHIND IMPLICIT DISTRIBUTIONS

Let us look again at the Density Network model.
The idea is to inject noise to a neural network that serves as a generator:

But now, we don’t specify the distribution (e.g., MoG), but use a flexible

, transformation directly to return an image. This is now implicit. VU%{

THE IDEA BEHIND IMPLICIT DISTRIBUTIONS

We have a neural network (generator) that transforms noise into an
image.

. VU

THE IDEA BEHIND IMPLICIT DISTRIBUTIONS

We have a neural network (generator) that transforms noise into an
image.

It defines an implicit distribution (i.e., we do not assume any form of it),
and it could be seen as Dirac’s delta:

p(x|z) =6 (x — f(z))

. VUf¥

THE IDEA BEHIND IMPLICIT DISTRIBUTIONS

We have a neural network (generator) that transforms noise into an
image.

It defines an implicit distribution (i.e., we do not assume any form of it),
and it could be seen as Dirac’s delta:

p(x|z) =6 (x — f(z))

However, now we cannot use the likelihood-based approach, because
Ing (x — f(z)) is ill-defined.

. VUf¥

THE IDEA BEHIND IMPLICIT DISTRIBUTIONS

We have a neural network (generator) that transforms noise into an
image.

It defines an implicit distribution (i.e., we do not assume any form of it),
and it could be seen as Dirac’s delta:

p(x|z) =6 (x — f(z))

However, now we cannot use the likelihood-based approach, because
Ing (x — f(z)) is ill-defined.

We need to use a different approach.

, VUf¥

GENERATIVE ADVERSARIAL NETWORKS

y VU

BEFORE WE GO INTO MATH...

Let’s imagine two actors:

. VU

BEFORE WE GO INTO MATH...

Let’s imagine two actors:

A fraud

. VU

BEFORE WE GO INTO MATH...

Let’s imagine two actors:

A fraud

\ ﬁ

An art expert

. VU

BEFORE WE GO INTO MATH...

Let’s imagine two actors:

An art expert

VU¥

28

BEFORE WE GO INTO MATH...

o The fraud aims to copy
Let's imagine two actors: the real artist and cheat
the art expert.

A fraud

... and a real artist

An art expert

VU¥

29

BEFORE WE GO INTO MATH...

o The fraud aims to copy
Let's imagine two actors: the real artist and cheat
the art expert.

An art expert
The expert assesses
a painting and
gives her opinion.

VU¥

30

BEFORE WE GO INTO MATH...

The fraud aims to copy
the real artist and cheat
the art expert.

Let’s imagine two actors:

The fraud learns
and tries to fool
the expert.

A fraud

... and a real artist

An art expert
The expert assesses

a painting and
gives her opinion.

31

VU¥

BEFORE WE GO INTO MATH...

Let’s imagine two actors:

Hmmm...
A FAKE!

Ho, —

An art expert

VU¥

32

BEFORE WE GO INTO MATH...

Let’s imagine two actors:

Hmmm...
PABLO!

A fraud

... and a real artist

An art expert

VU¥

33

BEFORE WE GO INTO MATH...

Let’s imagine two actors:

Hmmm...
PABLO!

An art expert

VU¥

34

HOW WE CAN FORMULATE IT?

O
O —
© O
z ~ px(2) | O
o9
Q D()
@

. Xreal VU k

HOW WE CAN FORMULATE IT?

6 Generator /fraud/

O

© O
1O—O

36

VU¥

HOW WE CAN FORMULATE IT?

s (OO0

(elole)

Discriminator /expert/

. Xreal VU k

HOW WE CAN FORMULATE IT?

1. Sample z.

2. Generate G(z).

3. Discriminate
whether given

image is real or
fake.

s (OO0

()

(elole)
IS -

. Xreal VU

HOW WE CAN FORMULATE IT?

1. Sample z.

2. Generate G(z).

3. Discriminate
whether given

image is real or
fake.

s (OO0

()

What about the learning objective?

» Xreal VU k

(elele)
IS -

ADVERSARIAL LOSS

We can consider the following learning objective:

ming max, E, . [log D(X)] + E,_,,[log(1 — D(G(z)))]

40 Goodfellow, I, et al. (2014). Generative adversarial nets. In NIPS VU g!ég

ADVERSARIAL LOSS

We can consider the following learning objective:

ming max, E, . [log D(X)] + E,_,,[log(1 — D(G(z)))]

It resemblances the logarithm of the Bernoulli distribution:

ylogp(y = 1)+ (1 —ylog(l —p(y = 1))

41 Goodfellow, I., et al. (2014). Generative adversarial nets. In NIPS VU g!;g

ADVERSARIAL LOSS

We can consider the following learning objective:

ming max, E, . [log D(x)] + E,_,,[log(1 — D(G(2)))]

rithm of the Bernoulli disStribution:

ylogp(y = 1)+ (1 —ylog(l —p(y = 1))

It resemblances the lo

42 Goodfellow, I, et al. (2014). Generative adversarial nets. In NIPS VU !!;g

ADVERSARIAL LOSS

We can consider the following learning objective:

ming max, E, . [log D(x)] + E,_,,[log(1 — D(G(2)))]

rithm of the Bernoulli disStribution:

ylogp(y = 1) + (1 — y)log(l — p(y = 1))
Therefore, the discriminator network should end

It resemblances the lo

with a sigmoid function to mimic probability.

VU¥

43 Goodfellow, I, et al. (2014). Generative adversarial nets. In NIPS

ADVERSARIAL LOSS

We can consider the following learning objective:

- D(G(@))

==

(mingmax, Ey.., [log D] E, . [log(!

We want to minimize wrt. generator.

44 Goodfellow, I, et al. (2014). Generative adversarial nets. In NIPS VU !!;g

ADVERSARIAL LOSS

We can consider the following learning objective:

S

D®)] +E,_pllog(l — DG@N

ming; maxgL

N

[log

- Nprea

We want to maximize wrt. discriminator.

45 Goodfellow, I, et al. (2014). Generative adversarial nets. In NIPS VU g!ég

GENERATIVE ADVERSARIAL NETWORKS

Generative process:

1. Sample z. 8
2. Generate G(z). O \\ 6
RURTES 0 e
q. g
O" D(-)
O
Xreal

. VU

GENERATIVE ADVERSARIAL NETWORKS

Generative process:

1. Sample z.

2. Generate G(z).

(eJele)

The learning objective (adversarial loss):

O
z ~pr(z) G(z) }O-»Q

ming maxp By, [log D(X)] + E,_,,[log(1 — D(G(2)))]

(elel0]
B

Xreal

; VUf¥

GENERATIVE ADVERSARIAL NETWORKS

Generative process:

1. Sample z.

2. Generate G(z).

(eJele)

The learning objective (adversarial loss):

O
z ~pr(z) G(z) }O-»Q

ming maxp By, [log D(X)] + E,_,,[log(1 — D(G(2)))]

Learning:

OO0
E

1. Generate fake images, and minimize wrt. G. X, oal

2. Take real & fake images, and maximize wrt. D.

. VUf¥

49

import torch.nn as nn

class GAN (nn.Module) :
def 1init (self, D, M):

super (GAN,

self.D =
self.M =

self.genl
self.gen?2

self.disl
self.dis?

nn
nn

nn
nn

self). 1init ()

.Linear (in_ features= self.M, out features=300)
.Linear (in_ features=300, out features= self.D)

.Linear (in_ features= self.D, out features=300)
.Linear (in_ features=300, out features=1)

VU¥

50

def generate(self, N):

def

Z

torch.randn (size=(N, self.D))

x gen = self.genl(z)
X gen = nn.functional.relu(x_gen)
x gen = self.gen2(x _gen)

return x gen

discriminate (self, x):

y = self.disl (x)

y = nn.functional.relu(y)
y = self.dis2 (y)

y = torch.sigmoid (y)
return y

VU¥

def gen loss(self, d gen):
return torch.log(l. - d gen)

def dis loss(self, d real, d gen):

We maximize wrt. the discriminator, but optimizers minimize!

We need to include the negative sign!
return - (torch.log(d real) + torch.log(l. - d gen))

def forward(self, x real):

x gen = self.generate (N=x real.shape[0])
d real = self.discriminate(x real)
d gen = self.discriminate (x_gen)

return d real, d gen

51

VU¥

def gen loss(self, d gen):
return torch.log(l. - d gem)

def dis loss(self, d real, d gen):
We maximize wrt. the discriminator, but optimizers minimize!
We need to include the negative sign!
return - (torch.log(d real) + torch.log(l. - d gen))

def forward(self, x real):

x gen = self.generate (N=x real.shape[0])
d real = self.discriminate(x real)
d gen = self.discriminate (x_gen)

return d real, d gen

We can use two optimizers, one for d_real & d_gen, and one for d_gen.

; VU

GENERATIONS

sh

v

Advantages Disadvantages

v Non-linear transformations. No exact likelihood.

v Allows to generate.

Unstable training.

v Learnable loss. Missing mode problem (i.e., it

/ Allows implicit models doesn’t cover the whole space).

v Works in high-dim No clear way for quantitative

assessment.

y VUf¥

WASSERSTEIN GAN

Before, the motivation for the adversarial loss was the Bernoulli
distribution. But we can use other ideas.

, VU

WASSERSTEIN GAN

Before, the motivation for the adversarial loss was the Bernoulli
distribution. But we can use other ideas.

For instance, we can use the earth-mover distance:

ming maxpeq, Ey) [DX)] = E,) [D(G(2))]

where the discriminator is a 1-Lipschitz function.

. VUf¥

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. arXiv preprint arXiv:1701.07875.

WASSERSTEIN GAN

Before, the motivation for the adversarial loss was the Bernoulli
distribution. But we can use other ideas.

For instance, we can use the earth-mover distance:
ming maxpeqy Ex o, [DX)] — E,) [D(G(2))]
where the discriminator is a 1-Lipschitz function.

We need to clip weights of the discriminator: clip(weights, -c, ¢)

. VUf¥

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. arXiv preprint arXiv:1701.07875.

WASSERSTEIN GAN

Before, the motivation for the adversarial loss was the Bernoulli
distribution. But we can use other ideas.

For instance, we can use the earth-mover distance:

ming maxpeq, Ey) [DX)] = E,) [D(G(2))]
where the discriminator is a 1-Lipschitz function.
We need to clip weights of the discriminator: clip(weights, -c, ¢)

It stabilizes training, but other problems remain.

, VUf¥

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. arXiv preprint arXiv:1701.07875.

Thank you!

