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Deep generative modeling:  
Implicit models
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Generative 
model

Autoregressive 
(e.g., PixelCNN)

Implicit models 
(e.g., GANs)

Prescribed models 
(e.g., VAE)

Latent variable 
models

Flow-based  
(e.g., RealNVP, GLOW)
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Training Likelihood Sampling Compression

Autoregressive models 
(e.g., PixelCNN) Stable Exact Slow No

Flow-based models 
(e.g., RealNVP) Stable Exact Fast/Slow No

Implicit models 
(e.g., GANs) Unstable No Fast No

Prescribed models 
(e.g., VAEs) Stable Approximate Fast Yes
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Generative process: 

1.  

2.  

The log-likelihood function: 

 

z ∼ pλ(z)

x ∼ pθ(x ∣ z)

log p(x) = log∫ pθ(x ∣ z)pλ(z)dz
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Generative process: 
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2.  

The log-likelihood function: 
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It could be estimated 
by MC samples.
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The log-likelihood function: 
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It could be estimated 
by MC samples. If we take standard Gaussian prior,

we need to model p(x|z) only!



DENSITY NETWORK
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MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface. Oxford

Let’s consider a 
function f that 
transforms z to x.
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It must be a powerful (=flexible) transformation!

MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface. Oxford

Let’s consider a 
function f that 
transforms z to x.



DENSITY NETWORK
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It must be a powerful (=flexible) transformation! 
NEURAL NETWORK 💪

MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface. Oxford

Let’s consider a 
function f that 
transforms z to x.



DENSITY NETWORK
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Neural network outputs parameters of a distribution, 
e.g., a mixture of Gaussians.

MacKay, D. J., & Gibbs, M. N. (1999). Density networks. Statistics and neural networks: advances at the interface. Oxford

Let’s consider a 
function f that 
transforms z to x.



The log-likelihood function: 

 

 

Training procedure: 

1. Sample multiple z’s from the prior (e.g., standard Gaussian). 

2. Apply log-sum-exp-trick, and apply backpropagation.

log p(x) = log∫ pθ(x ∣ z)pλ(z)dz

≈ log
1
S

S

∑
s=1

exp (log pθ (x ∣ zs))
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The log-likelihood function: 

 

 

Training procedure: 

1. Sample multiple z’s from the prior (e.g., standard Gaussian). 

2. Apply log-sum-exp-trick, and apply backpropagation.

log p(x) = log∫ pθ(x ∣ z)pλ(z)dz

≈ log
1
S

S

∑
s=1

exp (log pθ (x ∣ zs))

DENSITY NETWORKS
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Drawback: It scales badly in high-dimensional cases…



Advantages 

✓Non-linear transformations. 

✓Allows to generate.

DENSITY NETWORKS

15

Disadvantages 

- No analytical solutions. 

- No exact likelihood. 

- It requires a lot of samples from 
the prior. 

- Fails in high-dim. 

- It requires an explicit distribution 
(e.g., Gaussian).



Advantages 

✓Non-linear transformations. 

✓Allows to generate.

DENSITY NETWORKS
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Disadvantages 

- No analytical solutions. 

- No exact likelihood. 

- It requires a lot of samples from 
the prior. 

- Fails in high-dim. 

- It requires an explicit distribution 
(e.g., Gaussian).

Can we do better?



IMPLICIT DISTRIBUTIONS
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Let us look again at the Density Network model. 
The idea is to inject noise to a neural network that serves as a generator:

THE IDEA BEHIND IMPLICIT DISTRIBUTIONS
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Let us look again at the Density Network model. 
The idea is to inject noise to a neural network that serves as a generator:
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0

p(z)

z

But now, we don’t specify the distribution (e.g., MoG), but use a flexible  

transformation directly to return an image. This is now implicit.



We have a neural network (generator) that transforms noise into an 
image. 

THE IDEA BEHIND IMPLICIT DISTRIBUTIONS

20



We have a neural network (generator) that transforms noise into an 
image. 

It defines an implicit distribution (i.e., we do not assume any form of it), 
and it could be seen as Dirac’s delta: 

 p(x |z) = δ (x − f(z))
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We have a neural network (generator) that transforms noise into an 
image. 

It defines an implicit distribution (i.e., we do not assume any form of it), 
and it could be seen as Dirac’s delta: 

 

However, now we cannot use the likelihood-based approach, because  
 is ill-defined. 

p(x |z) = δ (x − f(z))

ln δ (x − f(z))
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We have a neural network (generator) that transforms noise into an 
image. 

It defines an implicit distribution (i.e., we do not assume any form of it), 
and it could be seen as Dirac’s delta: 

 

However, now we cannot use the likelihood-based approach, because  
 is ill-defined. 

We need to use a different approach.

p(x |z) = δ (x − f(z))

ln δ (x − f(z))

THE IDEA BEHIND IMPLICIT DISTRIBUTIONS
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GENERATIVE ADVERSARIAL NETWORKS
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BEFORE WE GO INTO MATH…
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Let’s imagine two actors:
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A fraud

Let’s imagine two actors:
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A fraud

An art expert

Let’s imagine two actors:
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A fraud

An art expert

… and a real artist

Let’s imagine two actors:
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A fraud

An art expert

… and a real artist

The fraud aims to copy 
the real artist and cheat  
the art expert.

Let’s imagine two actors:



BEFORE WE GO INTO MATH…

30

A fraud

An art expert

… and a real artist

The fraud aims to copy 
the real artist and cheat  
the art expert.

The expert assesses 
a painting and 
gives her opinion.

Let’s imagine two actors:
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A fraud

An art expert

… and a real artist

The fraud aims to copy 
the real artist and cheat  
the art expert.

The expert assesses 
a painting and 
gives her opinion.

The fraud learns 
and tries to fool 
the expert.

Let’s imagine two actors:



BEFORE WE GO INTO MATH…
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A fraud

An art expert

… and a real artist

Hmmm…
A FAKE!

Let’s imagine two actors:
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A fraud

An art expert

… and a real artist

Hmmm…
PABLO!

Let’s imagine two actors:
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A fraud

An art expert

… and a real artist

Let’s imagine two actors:

Hmmm…
PABLO!



HOW WE CAN FORMULATE IT?
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HOW WE CAN FORMULATE IT?

36

Generator /fraud/



HOW WE CAN FORMULATE IT?
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Discriminator /expert/



HOW WE CAN FORMULATE IT?
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1. Sample z. 

2. Generate G(z). 

3. Discriminate 
whether given 
image is real or 
fake.



HOW WE CAN FORMULATE IT?
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1. Sample z. 

2. Generate G(z). 

3. Discriminate 
whether given 
image is real or 
fake.

What about the learning objective?



We can consider the following learning objective: 

 minG maxD 𝔼x∼preal
[log D(x)] + 𝔼z∼p(z)[log(1 − D(G(z)))]

ADVERSARIAL LOSS

40 Goodfellow, I., et al. (2014). Generative adversarial nets. In NIPS
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We can consider the following learning objective: 

 minG maxD 𝔼x∼preal
[log D(x)] + 𝔼z∼p(z)[log(1 − D(G(z)))]

ADVERSARIAL LOSS

43 Goodfellow, I., et al. (2014). Generative adversarial nets. In NIPS

It resemblances the logarithm of the Bernoulli distribution: 

 

Therefore, the discriminator network should end  
with a sigmoid function to mimic probability.

y log p(y = 1) + (1 − y)log(1 − p(y = 1))



We can consider the following learning objective: 

 minG maxD 𝔼x∼preal
[log D(x)] + 𝔼z∼p(z)[log(1 − D(G(z)))]

ADVERSARIAL LOSS

44 Goodfellow, I., et al. (2014). Generative adversarial nets. In NIPS

We want to minimize wrt. generator.



We can consider the following learning objective: 

 minG maxD 𝔼x∼preal
[log D(x)] + 𝔼z∼p(z)[log(1 − D(G(z)))]

ADVERSARIAL LOSS

45 Goodfellow, I., et al. (2014). Generative adversarial nets. In NIPS

We want to maximize wrt. discriminator.
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Generative process: 

1. Sample z. 

2. Generate G(z).
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Generative process: 

1. Sample z. 

2. Generate G(z). 

The learning objective (adversarial loss): 

 minG maxD 𝔼x∼preal
[log D(x)] + 𝔼z∼p(z)[log(1 − D(G(z)))]
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Generative process: 

1. Sample z. 

2. Generate G(z). 

The learning objective (adversarial loss): 

 

Learning: 

1. Generate fake images, and minimize wrt. G. 

2. Take real & fake images, and maximize wrt. D.

minG maxD 𝔼x∼preal
[log D(x)] + 𝔼z∼p(z)[log(1 − D(G(z)))]



GANS
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import torch.nn as nn 
  
class GAN(nn.Module): 
    def __init__(self, D, M): 
        super(GAN, self).__init__() 
        self.D = D 
        self.M = M 
  
        self.gen1 = nn.Linear(in_features= self.M, out_features=300) 
        self.gen2 = nn.Linear(in_features=300, out_features= self.D) 

        self.dis1 = nn.Linear(in_features= self.D, out_features=300) 
        self.dis2 = nn.Linear(in_features=300, out_features=1)



GANS
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    def generate(self, N): 
        z = torch.randn(size=(N, self.D)) 
        x_gen = self.gen1(z) 
        x_gen = nn.functional.relu(x_gen) 
        x_gen = self.gen2(x_gen) 
        return x_gen 

    def discriminate(self, x): 
        y = self.dis1(x) 
        y = nn.functional.relu(y) 
        y = self.dis2(y) 
        y = torch.sigmoid(y) 
        return y
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    def gen_loss(self, d_gen): 
       return torch.log(1. - d_gen) 

    def dis_loss(self, d_real, d_gen): 
       # We maximize wrt. the discriminator, but optimizers minimize! 
       # We need to include the negative sign! 
       return -(torch.log(d_real) + torch.log(1. - d_gen)) 

    def forward(self, x_real): 
       x_gen = self.generate(N=x_real.shape[0]) 
       d_real = self.discriminate(x_real) 
       d_gen = self.discriminate(x_gen) 
       return d_real, d_gen
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    def gen_loss(self, d_gen): 
       return torch.log(1. - d_gem) 

    def dis_loss(self, d_real, d_gen): 
       # We maximize wrt. the discriminator, but optimizers minimize! 
       # We need to include the negative sign! 
       return -(torch.log(d_real) + torch.log(1. - d_gen)) 

    def forward(self, x_real): 
       x_gen = self.generate(N=x_real.shape[0]) 
       d_real = self.discriminate(x_real) 
       d_gen = self.discriminate(x_gen) 
       return d_real, d_gen

We can use two optimizers, one for d_real & d_gen, and one for d_gen.
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Salimans, T., et al. (2016). Improved techniques for training GANs. NeurIPS



Advantages 

✓Non-linear transformations. 

✓Allows to generate. 

✓Learnable loss. 

✓Allows implicit models. 

✓Works in high-dim.

GANS
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Disadvantages 

- No exact likelihood. 

- Unstable training. 

- Missing mode problem (i.e., it 
doesn’t cover the whole space). 

- No clear way for quantitative 
assessment.



Before, the motivation for the adversarial loss was the Bernoulli 
distribution. But we can use other ideas. 

WASSERSTEIN GAN
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Before, the motivation for the adversarial loss was the Bernoulli 
distribution. But we can use other ideas. 

For instance, we can use the earth-mover distance: 

 

where the discriminator is a 1-Lipschitz function. 

minG maxD∈𝒲 𝔼x∼preal
[D(x)] − 𝔼z∼p(z)[D(G(z))]
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Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. arXiv preprint arXiv:1701.07875.



Before, the motivation for the adversarial loss was the Bernoulli 
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where the discriminator is a 1-Lipschitz function. 

We need to clip weights of the discriminator: clip(weights, -c, c) 

minG maxD∈𝒲 𝔼x∼preal
[D(x)] − 𝔼z∼p(z)[D(G(z))]

WASSERSTEIN GAN

57
Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. arXiv preprint arXiv:1701.07875.



Before, the motivation for the adversarial loss was the Bernoulli 
distribution. But we can use other ideas. 

For instance, we can use the earth-mover distance: 

 

where the discriminator is a 1-Lipschitz function. 

We need to clip weights of the discriminator: clip(weights, -c, c) 

It stabilizes training, but other problems remain.

minG maxD∈𝒲 𝔼x∼preal
[D(x)] − 𝔼z∼p(z)[D(G(z))]
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Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. arXiv preprint arXiv:1701.07875.



Thank you!


