
Jakub M. Tomczak
Deep Learning

Deep generative modeling:
Latent Variable Models

INTRODUCTION

2

We learn a neural network to classify images:

IS GENERATIVE MODELING IMPORTANT?

3

We learn a neural network to classify images:

IS GENERATIVE MODELING IMPORTANT?

4

We learn a neural network to classify images:

IS GENERATIVE MODELING IMPORTANT?

5

p(panda|x)=0.99

...

We learn a neural network to classify images:

IS GENERATIVE MODELING IMPORTANT?

6

p(panda|x)=0.99

... noise

=+

We learn a neural network to classify images:

IS GENERATIVE MODELING IMPORTANT?

7

p(panda|x)=0.99

...

p(panda|x)=0.01

…

p(dog|x)=0.9

=+

noise

We learn a neural network to classify images:

There is no semantic understanding of images.

IS GENERATIVE MODELING IMPORTANT?

8

p(panda|x)=0.99

...

p(panda|x)=0.01

…

p(dog|x)=0.9

=+

noise

This simple example shows that:

• A discriminative model is (probably) not enough.

• We need a notion of uncertainty.

• We need to understand the reality.

IS GENERATIVE MODELING IMPORTANT?

9

This simple example shows that:

• A discriminative model is (probably) not enough.

• We need a notion of uncertainty.

• We need to understand the reality.

A possible solution is generative modeling.

IS GENERATIVE MODELING IMPORTANT?

10

IS GENERATIVE MODELING IMPORTANT?

11

IS GENERATIVE MODELING IMPORTANT?

12

IS GENERATIVE MODELING IMPORTANT?

13

IS GENERATIVE MODELING IMPORTANT?

14

new data

IS GENERATIVE MODELING IMPORTANT?

15

High probability
of a horse.
=

Highly probable
decision!

new data

IS GENERATIVE MODELING IMPORTANT?

16

High probability
of a horse.
=

Highly probable
decision!

High probability of
a horse.
x

Low probability of
the object
=

Uncertain
decision!

new data

IS GENERATIVE MODELING IMPORTANT?

17

High probability
of a horse.
=

Highly probable
decision!

High probability of
a horse.
x

Low probability of
the object
=

Uncertain
decision!

new data

WHERE DO WE USE DEEP GENERATIVE MODELING?

18

Image analysis

Reinforcement Learning

Audio analysis

Text analysis
Graph
analysis

and more...
Active Learning

Medical data

HOW TO FORMULATE DEEP GENERATIVE MODELS?

19

Generative
model

Autoregressive
(e.g., PixelCNN)

Implicit models
(e.g., GANs)

Prescribed models
(e.g., VAE)

Latent variable
models

Flow-based  
(e.g., RealNVP, GLOW)

HOW TO FORMULATE DEEP GENERATIVE MODELS?

20

Training Likelihood Sampling Compression

Autoregressive models
(e.g., PixelCNN) Stable Exact Slow No

Flow-based models 
(e.g., RealNVP) Stable Exact Fast/Slow No

Implicit models 
(e.g., GANs) Unstable No Fast No

Prescribed models 
(e.g., VAEs) Stable Approximate Fast Yes

DEEP LATENT VARIABLE MODELS

21

Modeling in high-dimensional spaces is difficult.

GENERATIVE MODELING IN HIGH-DIM

22

Modeling in high-dimensional spaces is difficult.

GENERATIVE MODELING IN HIGH-DIM

23

Modeling in high-dimensional spaces is difficult.

Modeling all dependencies among pixels:

GENERATIVE MODELING IN HIGH-DIM

24

Modeling in high-dimensional spaces is difficult.

Modeling all dependencies among pixels:

GENERATIVE MODELING IN HIGH-DIM

25

problematic

Modeling in high-dimensional spaces is difficult.

Modeling all dependencies among pixels:

A possible solution: Latent Variable Models!

GENERATIVE MODELING IN HIGH-DIM

26

problematic

Generative process:

Log of marginal distribution:

 
How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES

27

Z: 2D
X: 3D

Generative process:

Log of marginal distribution:

 
How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES

28

Z: 2D
X: 3D

Generative process:

Log of marginal distribution:

 
How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES

29

Generative process:

Log of marginal distribution:

 
How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES

30

Generative process:

Log of marginal distribution:

 
How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES

31

Generative process:

Log of marginal distribution:

 
How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES

32

Generative process:

The log-likelihood function:

 

GENERATIVE MODELING WITH LATENT VARIABLES

33

Generative process:

The log-likelihood function:

 
How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES

34

Let us assume: . p(z) = 𝒩(0,I)

LINEAR LATENT VARIABLE MODELS

35

Let us assume: .

And a linear transformation ():

, where

that results in the following conditional distribution:

p(z) = 𝒩(0,I)

W ∈ ℝD×M

x = Wz + μ + ε ε ∼ 𝒩(0,σ2I)

p(x |z) = 𝒩(Wz + μ, σ2I)

LINEAR LATENT VARIABLE MODELS

36

Let us assume: .

And a linear transformation ():

, where

that results in the following conditional distribution:

p(z) = 𝒩(0,I)

W ∈ ℝD×M

x = Wz + μ + ε ε ∼ 𝒩(0,σ2I)

p(x |z) = 𝒩(Wz + μ, σ2I)

LINEAR LATENT VARIABLE MODELS

37

Let us assume: .

And the following conditional distribution:

p(z) = 𝒩(0,I)
p(x |z) = 𝒩(Wz + μ, σ2I)

LINEAR LATENT VARIABLE MODELS

38 Generative process

σ2I

Now, the question is how to calculate the log-likelihood:

p(x) = ∫ p(x |z)p(z)dz

LINEAR LATENT VARIABLE MODELS

39

Now, the question is how to calculate the log-likelihood:

p(x) = ∫ p(x |z)p(z)dz

LINEAR LATENT VARIABLE MODELS

40

Gaussian Gaussian

Now, the question is how to calculate the log-likelihood:

p(x) = ∫ p(x |z)p(z)dz

LINEAR LATENT VARIABLE MODELS

41

Gaussian Gaussian

= 𝒩(μ, WW⊤ + σ2I)

Bishop, “Pattern Recognition and Machine Learning”

Now, the question is how to calculate the log-likelihood:

p(x) = ∫ p(x |z)p(z)dz

LINEAR LATENT VARIABLE MODELS

42

Gaussian Gaussian

= 𝒩(μ, WW⊤ + σ2I)

The integral is tractable, and
it is again Gaussian!

Now, the question is how to calculate the log-likelihood:

p(x) = ∫ p(x |z)p(z)dz

LINEAR LATENT VARIABLE MODELS

43

= 𝒩(μ, WW⊤ + σ2I)

σ2I WW⊤ + I

Since the model is linear, and all distributions are Gaussians, we can also
calculate the posterior over :

where:

z
p(z |x) = 𝒩(M−1W⊤(x − μ), σ−2M)

M = W⊤W + σ2I

LINEAR LATENT VARIABLE MODELS

44

Since the model is linear, and all distributions are Gaussians, we can also
calculate the posterior over :

where:

z
p(z |x) = 𝒩(M−1W⊤(x − μ), σ−2M)

M = W⊤W + σ2I

LINEAR LATENT VARIABLE MODELS

45

The final model is the following ():

where .

and the marginal distribution:

W ∈ ℝD×M

p(z) = 𝒩(0,I)

p(x |z) = 𝒩(Wz + μ, σ2I)

p(z |x) = 𝒩(M−1W⊤(x − μ), σ−2M)
M = W⊤W + σ2I

p(x) = 𝒩(μ, WW⊤ + σ2I)

PPCA: PROBABILISTIC PRINCIPAL COMPONENT ANALYSIS

46

The logarithm of the likelihood function:

where

ln p (X |μ, W, σ2) =
N

∑
n=1

ln p (xn |W, μ, σ2)

= −
ND
2

ln(2π) −
N
2

ln |C | −
1
2

N

∑
n=1

(xn − μ)⊤ C−1 (xn − μ)

C = WW⊤ + σ2I
C−1 = σ−1I − σ−2WM−1W⊤

LEARNING PPCA: THE LIKELIHOOD FUNCTION (IID DATA)

47

The logarithm of the likelihood function:

where

ln p (X |μ, W, σ2) =
N

∑
n=1

ln p (xn |W, μ, σ2)

= −
ND
2

ln(2π) −
N
2

ln |C | −
1
2

N

∑
n=1

(xn − μ)⊤ C−1 (xn − μ)

C = WW⊤ + σ2I
C−1 = σ−1I − σ−2WM−1W⊤

LEARNING PPCA: THE LIKELIHOOD FUNCTION (IID DATA)

48

REMEMBER: Everything is Gaussian!

The logarithm of the likelihood function:

where

ln p (X |μ, W, σ2) =
N

∑
n=1

ln p (xn |W, μ, σ2)

= −
ND
2

ln(2π) −
N
2

ln |C | −
1
2

N

∑
n=1

(xn − μ)⊤ C−1 (xn − μ)

C = WW⊤ + σ2I
C−1 = σ−1I − σ−2WM−1W⊤

LEARNING PPCA: THE LIKELIHOOD FUNCTION (IID DATA)

49

The logarithm of the likelihood function:

where

ln p (X |μ, W, σ2) =
N

∑
n=1

ln p (xn |W, μ, σ2)

= −
ND
2

ln(2π) −
N
2

ln |C | −
1
2

N

∑
n=1

(xn − μ)⊤ C−1 (xn − μ)

C = WW⊤ + σ2I
C−1 = σ−1I − σ−2WM−1W⊤

LEARNING PPCA: THE LIKELIHOOD FUNCTION (IID DATA)

50

Inverting C (DxD) reduces to inverting M (MxM).

It is possible to calculate the solution analytically:

where:

 - is a matrix whose columns are eigenvectors of

 - is a diagonal matrix whose elements are eigenvalues of

 - is the sample covariance matrix

WML = UM (LM − σ2I)1/2 R

UM D × M S

LM M × M S

S =
1
N

N

∑
n=1

(xn − x) (xn − x)T

LEARNING PPCA: THE LIKELIHOOD FUNCTION (IID DATA)

51

σ2
ML =

1
D − M

D

∑
i=M+1

λi

It is possible to calculate the solution analytically:

where:

 - is a matrix whose columns are eigenvectors of

 - is a diagonal matrix whose elements are eigenvalues of

 - is the sample covariance matrix

WML = UM (LM − σ2I)1/2 R

UM D × M S

LM M × M S

S =
1
N

N

∑
n=1

(xn − x) (xn − x)T

LEARNING PPCA: THE LIKELIHOOD FUNCTION (IID DATA)

52

σ2
ML =

1
D − M

D

∑
i=M+1

λi

any orthogonal matrix

The average variance of discarded dimensions.

• If we use the eigendecomposition of the sample covariance matrix, then
we can simply take .

• In practice, the complexity of the eigendecomposition is , and the
complexity of the covariance matrix is .

• If we have large problems (i.e., ,), then we can use:

‣ Expectation-Maximization (EM)

‣ Gradient-based optimization (e.g., SGD).

• For numerical algorithms, could be arbitrary so no unique solution.

R = I
O(D3)

O(ND2)

D > 1000 N > 1000

R

LEARNING PPCA: THE LIKELIHOOD FUNCTION (IID DATA)

53

• If we use the eigendecomposition of the sample covariance matrix, then
we can simply take .

• In practice, the complexity of the eigendecomposition is , and the
complexity of calculating the covariance matrix is .

• If we have large problems (i.e., ,), then we can use:

‣ Expectation-Maximization (EM)

‣ Gradient-based optimization (e.g., SGD).

• For numerical algorithms, could be arbitrary so, no unique solution.

R = I
O(D3)

O(ND2)

D > 1000 N > 1000

R

LEARNING PPCA: THE LIKELIHOOD FUNCTION (IID DATA)

54

• If we use the eigendecomposition of the sample covariance matrix, then
we can simply take .

• In practice, the complexity of the eigendecomposition is , and the
complexity of calculating the covariance matrix is .

• If we have large problems (i.e., ,), then we can use:

‣ Expectation-Maximization (EM)

‣ Gradient-based optimization (e.g., SGD).

• For numerical algorithms, could be arbitrary, so no unique solution.

R = I
O(D3)

O(ND2)

D > 1000 N > 1000

R

LEARNING PPCA: THE LIKELIHOOD FUNCTION (IID DATA)

55

PROBABILISTIC PCA

56

Reconstruction:

Projection of 2D data
onto 1D space:

Advantages

✓Exact likelihood.

✓Analytical solution.

✓Posterior over z is analytical.

✓Allows compression.

✓Allows to generate.

PROBABILISTIC PCA

57

Disadvantages

- Linear transformation drastically
limits the applicability.

- For more complex data, pPCA
requires M close to D to work
well.

- No analytical solution for binary
data.

VARIATIONAL AUTO-ENCODERS

58

GENERATIVE MODELS

59

Training Likelihood Sampling Compression

Autoregressive models
(e.g., PixelCNN) Stable Exact Slow No

Flow-based models 
(e.g., RealNVP) Stable Exact Fast/Slow No

Implicit models 
(e.g., GANs) Unstable No Fast No

Prescribed models 
(e.g., VAEs) Stable Approximate Fast Yes

Generative process:

The log-likelihood function:

 
How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES

60

Now we consider non-linear transformations.

Let us assume: .

For the pPCA:

p(z) = 𝒩(0,I)

p(x |z) = 𝒩(Wz + μ, σ2I)

LATENT-VARIABLE MODELS WITH NON-LINEAR TRANSFORMATIONS

61

Let us assume: .

For the pPCA:

Now, we consider: .

p(z) = 𝒩(0,I)

p(x |z) = 𝒩(Wz + μ, σ2I)

p(x |z) = 𝒩(f(z; W), σ2I)

LATENT-VARIABLE MODELS WITH NON-LINEAR TRANSFORMATIONS

62

Let us assume: .

For the pPCA:

Now, we consider: .

Since f could be any non-linear transformation, Prof. Bishop cannot
provide us any tricks to solve the integral:

p(z) = 𝒩(0,I)

p(x |z) = 𝒩(Wz + μ, σ2I)

p(x |z) = 𝒩(f(z; W), σ2I)

p(x) = ∫ p(x |z)p(z)dz

LATENT-VARIABLE MODELS WITH NON-LINEAR TRANSFORMATIONS

63

This is an infinite mixture of Gaussians.

Let us assume: .

For the pPCA:

Now, we consider: .

Since f could be any non-linear transformation, Prof. Bishop cannot
provide us any tricks to solve the integral:

p(z) = 𝒩(0,I)

p(x |z) = 𝒩(Wz + μ, σ2I)

p(x |z) = 𝒩(f(z; W), σ2I)

p(x) = ∫ p(x |z)p(z)dz

LATENT-VARIABLE MODELS WITH NON-LINEAR TRANSFORMATIONS

64

This is an infinite mixture of Gaussians.
BUT we can use variational inference!
(Chapter 10 in Bishop’s book 😉)

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

65

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

66

Variational posterior

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

67

Variational posterior
We can learn a
separate q for each
x, but it would be too
complicated.
Therefore, we use
amortization.

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

68

Jensen’s inequality
log 𝔼q[…] ≥ 𝔼q[log…]

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

69
Evidence Lower BOund (ELBO)

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

70
Reconstruction error (RE) Regularization (KL)

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

71

decoder

encoder

marginal
(prior)

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

72
= Variational Auto-Encoder

decoder

encoder

marginal
(prior)

ln p(x) = 𝔼q(z|x) [ln p(x)]
= 𝔼q(z|x) [ln

p(z |x)p(x)
p(z |x)]

= 𝔼q(z|x) [ln
p(x |z)p(z)

p(z |x)]
= 𝔼q(z|x) [ln

p(x |z)p(z)
p(z |x)

q(z |x)
q(z |x)]

= 𝔼q(z|x) [ln p(x |z)
p(z)

q(z |x)
q(z |x)
p(z |x)]

= 𝔼q(z|x) [ln p(x |z) − ln
q(z |x)

p(z)
+ ln

q(z |x)
p(z |x)]

= 𝔼q(z|x) [ln p(x |z)] − KL [q(z |x)∥p(z)] + KL [q(z |x)∥p(z |x)]

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS (A DIFFERENT DERIVATION)

73

ln p(x) = 𝔼q(z|x) [ln p(x)]
= 𝔼q(z|x) [ln

p(z |x)p(x)
p(z |x)]

= 𝔼q(z|x) [ln
p(x |z)p(z)

p(z |x)]
= 𝔼q(z|x) [ln

p(x |z)p(z)
p(z |x)

q(z |x)
q(z |x)]

= 𝔼q(z|x) [ln p(x |z)
p(z)

q(z |x)
q(z |x)
p(z |x)]

= 𝔼q(z|x) [ln p(x |z) − ln
q(z |x)

p(z)
+ ln

q(z |x)
p(z |x)]

= 𝔼q(z|x) [ln p(x |z)] − KL [q(z |x)∥p(z)] + KL [q(z |x)∥p(z |x)]

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS (A DIFFERENT DERIVATION)

74 ≥ 0ELBO

ln p(x) = 𝔼q(z|x) [ln p(x)]
= 𝔼q(z|x) [ln

p(z |x)p(x)
p(z |x)]

= 𝔼q(z|x) [ln
p(x |z)p(z)

p(z |x)]
= 𝔼q(z|x) [ln

p(x |z)p(z)
p(z |x)

q(z |x)
q(z |x)]

= 𝔼q(z|x) [ln p(x |z)
p(z)

q(z |x)
q(z |x)
p(z |x)]

= 𝔼q(z|x) [ln p(x |z) − ln
q(z |x)

p(z)
+ ln

q(z |x)
p(z |x)]

= 𝔼q(z|x) [ln p(x |z)] − KL [q(z |x)∥p(z)] + KL [q(z |x)∥p(z |x)]

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS (A DIFFERENT DERIVATION)

75 ≥ 0ELBO

If variational posterior is
poorly chosen, then the
lower bound is very loose.

Variational posterior (encoder) and the likelihood function (decoder) are
parameterized by neural networks.

Reparameterization trick:
move the stochasticity to independent random variables

VARIATIONAL AUTO-ENCODERS

76

μ

σ

encoder net decoder netcode

Variational posterior (encoder) and the likelihood function (decoder) are
parameterized by neural networks.

Reparameterization trick:
move the stochasticity to independent random variables

e.g.

VARIATIONAL AUTO-ENCODERS

77

μ

σ

encoder net decoder netcode

0μ

σ

z = μ + σ ⋅ ε, ε ∼ 𝒩(0,1)

z = f(θ, ε), ε ∼ p(ε)

VAE copies input to output through a bottleneck.

VAE learns a code of the data.

VARIATIONAL AUTO-ENCODERS

78

0μ

σ

μ

σ

encoder net decoder netcode

VAE copies input to output through a bottleneck.

VAE learns a code of the data.

VARIATIONAL AUTO-ENCODERS

79

0μ

σ

μ

σ

encoder net decoder netcode

VAE has a marginal on the latent code.

VAE can generate new data.

VARIATIONAL AUTO-ENCODERS

80

0

p(z)

decoder netcode

VAE has a marginal on the latent code.

VAE can generate new data.

VARIATIONAL AUTO-ENCODERS

81

0

decoder netcode

p(z)

VAE has a marginal on the latent code.

VAE can generate new data.

VARIATIONAL AUTO-ENCODERS

82

0

decoder netcode

p(z)

VANILLA VAE

83

x

VANILLA VAE

84

x

μ

σ

Example architecture for the encoder:
x -> Linear(D, 300) -> ReLU -> Linear(300, 2M) -> split to 2 vectors

VANILLA VAE

85

x

μ

σ
z

ε ∼ 𝒩(0,1)

⊙
⊕

Example architecture for the encoder:
x -> Linear(D, 300) -> ReLU -> Linear(300, 2M) -> split to 2 vectors

z = μ(x) + σ(x) ⋅ ε

Reparameterization trick!

VANILLA VAE

86

x

μ

σ
z

ε ∼ 𝒩(0,1)

⊙
⊕

Example architecture for the encoder:
x -> Linear(D, 300) -> ReLU -> Linear(300, 2M) -> split to 2 vectors

z = μ(x) + σ(x) ⋅ ε

No non-linearity here!
We model means and log-std
for Gaussian.

VANILLA VAE

87

x x̂

μ

σ
z

ε ∼ 𝒩(0,1)

⊙
⊕

Example architecture for the encoder:
x -> Linear(D, 300) -> ReLU -> Linear(300, 2M) -> split to 2 vectors

Example architecture for the decoder:
z -> Linear(M, 300) -> ReLU -> Linear(300, D) -> means

No non-linearity here!
We model means only.

VANILLA VAE

88

x

μ

σ
z

ε ∼ 𝒩(0,1)

⊙
⊕

z = μ(x) + σ(x) ⋅ ε

x̂ = θ(z)

ELBO = ln 𝒩(x |θ(z),1)

pθ(x|z)

− [ln 𝒩(z |μ(x), σ2(x))

qϕ(z|x)

− ln 𝒩(z |0,1)

pλ(z)

]

We approximate expected values using a single sample:

VANILLA VAE

89

x

μ

σ
z

ε ∼ 𝒩(0,1)

⊙
⊕

z = μ(x) + σ(x) ⋅ ε

x̂ = θ(z)

ELBO = ln 𝒩(x |θ(z),1)

RE

− [ln 𝒩(z |μ(x), σ2(x)) − ln 𝒩(z |0,1)]
KL

We approximate expected values using a single sample:

VANILLA VAE

90

x

μ

σ
z

ε ∼ 𝒩(0,1)

⊙
⊕

z = μ(x) + σ(x) ⋅ ε

x̂ = θ(z)

We approximate expected values using a single sample:

We assume a standard Gaussian prior.

ELBO = ln 𝒩(x |θ(z),1)

RE

− [ln 𝒩(z |μ(x), σ2(x)) − ln 𝒩(z |0,1)]
KL

We assume a Gaussian variational posterior.

VANILLA VAE

91

x

μ

σ
z

ε ∼ 𝒩(0,1)

⊙
⊕

z = μ(x) + σ(x) ⋅ ε

x̂ = θ(z)

We approximate expected values using a single sample:

REMEMBER! We cannot pick an arbitrary distribution. We must choose a distribution
that is appropriate for our data.
Real-valued -> e.g., Gaussian
Binary -> Bernoulli

ELBO = ln 𝒩(x |θ(z),1)

RE

− [ln 𝒩(z |μ(x), σ2(x)) − ln 𝒩(z |0,1)]
KL

VANILLA VAE

92

import torch.nn as nn

class VAE(nn.Module):
 def __init__(self, D, M):
 super(VAE, self).__init__()
 self.D = D
 self.M = M

 self.enc1 = nn.Linear(in_features=self.D, out_features=300)
 self.enc2 = nn.Linear(in_features=300, out_features=self.M*2)

 self.dec1 = nn.Linear(in_features=self.M, out_features=300)
 self.dec2 = nn.Linear(in_features=300, out_features=self.D)

 def reparameterize(self, mu, log_std):
 std = torch.exp(log_std)
 eps = torch.randn_like(std)
 z = mu + (eps * std)
 return z

VANILLA VAE

93

 def forward(self, x):
 # encoder
 x = nn.functional.relu(self.enc1(x))
 x = self.enc2(x).view(-1, 2, self.M)

 # get mean and log-std
 mu = x[:, 0, :]
 log_std = x[:, 1, :]

 # reparameterization
 z = self.reparameterize(mu, log_std)

 # decoder
 x_hat = nn.functional.relu(self.dec1(z))
 x_hat = self.dec2(x)
 return x_hat, mu, log_std

VANILLA VAE

94

 def elbo(self, x, x_hat, z, mu, log_std):
 # reconstruction error
 RE = nn.loss.mse(x, x_hat)

 # kl-regularization
 # We assume here that log_normal is implemented
 KL = log_normal(z, mu, log_std) - log_normal(z, 0, 1)

 # REMEMBER! We maximize ELBO, but optimizers minimize.
 # Therefore, we need to take the negative sign!
 return -(RE - KL)

COMMON ISSUES WITH VAES

95

Weak decoders bad generations/reconstructions

Weak encoders bad latent representation, posterior collapse

(variational posterior = prior).

Weak marginals bad generations

Variational posteriors what family of distributions?

→

→

→

→

COMPONENTS OF VAES

96

ResNets, DenseNets

DRAW

Autoregressive models

Normalizing flows

COMPONENTS OF VAES

97

ResNets, DenseNets

Normalizing flows
Hyperspherical dist.
Hyperbolic-normal dist.

Group theory

ResNets, DenseNets

DRAW

Autoregressive models

Normalizing flows

COMPONENTS OF VAES

98

ResNets, DenseNets

Normalizing flows
Hyperspherical dist.
Hyperbolic-normal dist.

Group theory

ResNets, DenseNets

DRAW

Autoregressive models

Normalizing flows

Autoregressive models

Normalizing flows

VampPrior
Implicit prior

COMPONENTS OF VAES

99

ResNets, DenseNets

Normalizing flows
Hyperspherical dist.
Hyperbolic-normal dist.

Group theory

ResNets, DenseNets

DRAW

Autoregressive models

Normalizing flows

Autoregressive models

Normalizing flows

VampPrior
Implicit prior

Adversarial learning

MMD

Wasserstein AE

COMPONENTS OF VAES

100

ResNets, DenseNets

Normalizing flows
Hyperspherical dist.
Hyperbolic-normal dist.

Group theory

ResNets, DenseNets

DRAW

Autoregressive models

Normalizing flows

Autoregressive models

Normalizing flows

VampPrior
Implicit prior

Adversarial learning

MMD

Wasserstein AE

Hierarchical VAEs!

HIERARCHICAL VAES

101

Gatopoulos, I., & Tomczak, J.M. (2020).
Self-supervised Variational Auto-Encoders

Vahdat, A., & Kautz, J. (2020).
Nvae: A deep hierarchical variational autoencoder. NeurIPS 2020

HIERARCHICAL VAES

102 Gatopoulos, I., & Tomczak, J.M. (2020). Self-supervised Variational Auto-Encoders

HIERARCHICAL VAES

103 Vahdat, A., & Kautz, J. (2020). Nvae: A deep hierarchical variational autoencoder. NeurIPS 2020

Advantages

✓Non-linear transformations.

✓Stable training.

✓Allows compression.

✓Allows to generation.

✓The likelihood could be
approximated.

VARIATIONAL AUTO-ENCODERS

104

Disadvantages

- No analytical solutions.

- No exact likelihood.

- Potential mismatch between true
posterior and variational
posterior

- Blurry images

Advantages

✓Non-linear transformations.

✓Stable training.

✓Allows compression.

✓Allows to generation.

✓The likelihood could be
approximated.

VARIATIONAL AUTO-ENCODERS

105

Disadvantages

- No analytical solutions.

- No exact likelihood.

- Potential mismatch between true
posterior and variational
posterior

- Blurry images

Thank you!

