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We learn a neural network to classify images: 

IS GENERATIVE MODELING IMPORTANT?
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We learn a neural network to classify images: 

There is no semantic understanding of images.

IS GENERATIVE MODELING IMPORTANT?
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p(panda|x)=0.99

...

p(panda|x)=0.01

…
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=+

noise



This simple example shows that: 

• A discriminative model is (probably) not enough. 

• We need a notion of uncertainty. 

• We need to understand the reality. 

IS GENERATIVE MODELING IMPORTANT?
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This simple example shows that: 

• A discriminative model is (probably) not enough. 

• We need a notion of uncertainty. 

• We need to understand the reality. 

A possible solution is generative modeling.
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Low probability of 
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Uncertain 
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WHERE DO WE USE DEEP GENERATIVE MODELING?

18

Image analysis

Reinforcement Learning

Audio analysis

Text analysis
Graph 
analysis

and more...
Active Learning

Medical data



HOW TO FORMULATE DEEP GENERATIVE MODELS?
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Generative 
model

Autoregressive 
(e.g., PixelCNN)

Implicit models 
(e.g., GANs)

Prescribed models 
(e.g., VAE)

Latent variable 
models

Flow-based  
(e.g., RealNVP, GLOW)



HOW TO FORMULATE DEEP GENERATIVE MODELS?

20

Training Likelihood Sampling Compression

Autoregressive models 
(e.g., PixelCNN) Stable Exact Slow No

Flow-based models 
(e.g., RealNVP) Stable Exact Fast/Slow No

Implicit models 
(e.g., GANs) Unstable No Fast No

Prescribed models 
(e.g., VAEs) Stable Approximate Fast Yes



DEEP LATENT VARIABLE MODELS
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Modeling in high-dimensional spaces is difficult.

GENERATIVE MODELING IN HIGH-DIM
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Modeling in high-dimensional spaces is difficult. 

Modeling all dependencies among pixels: 
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Modeling in high-dimensional spaces is difficult. 

Modeling all dependencies among pixels: 

A possible solution: Latent Variable Models!

GENERATIVE MODELING IN HIGH-DIM
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problematic



Generative process: 

Log of marginal distribution: 

 
How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES
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Generative process: 

Log of marginal distribution: 

 
How to train such model efficiently?
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Generative process: 

The log-likelihood function: 
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Generative process: 

The log-likelihood function: 

 
How to train such model efficiently?
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Let us assume: . p(z) = 𝒩(0,I)

LINEAR LATENT VARIABLE MODELS
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Let us assume: . 

And a linear transformation ( ):  

, where  

that results in the following conditional distribution: 

 

p(z) = 𝒩(0,I)

W ∈ ℝD×M

x = Wz + μ + ε ε ∼ 𝒩(0,σ2I)

p(x |z) = 𝒩(Wz + μ, σ2I)

LINEAR LATENT VARIABLE MODELS
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Let us assume: . 

And the following conditional distribution:  

p(z) = 𝒩(0,I)
p(x |z) = 𝒩(Wz + μ, σ2I)

LINEAR LATENT VARIABLE MODELS

38 Generative process
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Now, the question is how to calculate the log-likelihood: 

p(x) = ∫ p(x |z)p(z)dz

LINEAR LATENT VARIABLE MODELS

39



Now, the question is how to calculate the log-likelihood: 

p(x) = ∫ p(x |z)p(z)dz

LINEAR LATENT VARIABLE MODELS

40

Gaussian Gaussian



Now, the question is how to calculate the log-likelihood: 

p(x) = ∫ p(x |z)p(z)dz

LINEAR LATENT VARIABLE MODELS
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Gaussian Gaussian

= 𝒩(μ, WW⊤ + σ2I)

Bishop, “Pattern Recognition and Machine Learning”



Now, the question is how to calculate the log-likelihood: 

p(x) = ∫ p(x |z)p(z)dz

LINEAR LATENT VARIABLE MODELS
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Gaussian Gaussian

= 𝒩(μ, WW⊤ + σ2I)

The integral is tractable, and
it is again Gaussian!



Now, the question is how to calculate the log-likelihood: 

p(x) = ∫ p(x |z)p(z)dz

LINEAR LATENT VARIABLE MODELS
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= 𝒩(μ, WW⊤ + σ2I)

σ2I WW⊤ + I



Since the model is linear, and all distributions are Gaussians, we can also 
calculate the posterior over : 

 

where: 

z
p(z |x) = 𝒩(M−1W⊤(x − μ), σ−2M)

M = W⊤W + σ2I

LINEAR LATENT VARIABLE MODELS
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Since the model is linear, and all distributions are Gaussians, we can also 
calculate the posterior over : 

 

where: 

z
p(z |x) = 𝒩(M−1W⊤(x − μ), σ−2M)

M = W⊤W + σ2I
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The final model is the following ( ): 

 

 

 

where . 

and the marginal distribution: 

W ∈ ℝD×M

p(z) = 𝒩(0,I)

p(x |z) = 𝒩(Wz + μ, σ2I)

p(z |x) = 𝒩(M−1W⊤(x − μ), σ−2M)
M = W⊤W + σ2I

p(x) = 𝒩(μ, WW⊤ + σ2I)

PPCA: PROBABILISTIC PRINCIPAL COMPONENT ANALYSIS
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The logarithm of the likelihood function: 

 

 

where 

 

ln p (X |μ, W, σ2) =
N

∑
n=1

ln p (xn |W, μ, σ2)

= −
ND
2

ln(2π) −
N
2

ln |C | −
1
2

N

∑
n=1

(xn − μ)⊤ C−1 (xn − μ)

C = WW⊤ + σ2I
C−1 = σ−1I − σ−2WM−1W⊤

LEARNING PPCA: THE LIKELIHOOD FUNCTION (IID DATA)
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REMEMBER: Everything is Gaussian!
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Inverting C (DxD) reduces to inverting M (MxM).



It is possible to calculate the solution analytically: 

 

where: 

 - is a  matrix whose columns are eigenvectors of  

 - is a  diagonal matrix whose elements are eigenvalues of  

 - is the sample covariance matrix

WML = UM (LM − σ2I)1/2 R

UM D × M S

LM M × M S

S =
1
N

N

∑
n=1

(xn − x) (xn − x)T

LEARNING PPCA: THE LIKELIHOOD FUNCTION (IID DATA)
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σ2
ML =

1
D − M

D

∑
i=M+1

λi



It is possible to calculate the solution analytically: 

 

where: 

 - is a  matrix whose columns are eigenvectors of  

 - is a  diagonal matrix whose elements are eigenvalues of  

 - is the sample covariance matrix

WML = UM (LM − σ2I)1/2 R

UM D × M S

LM M × M S

S =
1
N

N

∑
n=1

(xn − x) (xn − x)T
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52

σ2
ML =

1
D − M

D

∑
i=M+1

λi

any orthogonal matrix

The average variance of discarded dimensions.



• If we use the eigendecomposition of the sample covariance matrix, then 
we can simply take . 

• In practice, the complexity of the eigendecomposition is  , and the 
complexity of the covariance matrix is . 

• If we have large problems (i.e., , ), then we can use: 

‣ Expectation-Maximization (EM) 

‣ Gradient-based optimization (e.g., SGD). 

• For numerical algorithms,  could be arbitrary so no unique solution.

R = I
O(D3)

O(ND2)

D > 1000 N > 1000

R

LEARNING PPCA: THE LIKELIHOOD FUNCTION (IID DATA)
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• If we use the eigendecomposition of the sample covariance matrix, then 
we can simply take . 

• In practice, the complexity of the eigendecomposition is  , and the 
complexity of calculating the covariance matrix is . 

• If we have large problems (i.e., , ), then we can use: 

‣ Expectation-Maximization (EM) 

‣ Gradient-based optimization (e.g., SGD). 

• For numerical algorithms,  could be arbitrary so, no unique solution.

R = I
O(D3)

O(ND2)

D > 1000 N > 1000

R

LEARNING PPCA: THE LIKELIHOOD FUNCTION (IID DATA)
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PROBABILISTIC PCA
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Reconstruction:

Projection of 2D data 
onto 1D space:



Advantages 

✓Exact likelihood. 

✓Analytical solution. 

✓Posterior over z is analytical. 

✓Allows compression. 

✓Allows to generate.

PROBABILISTIC PCA
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Disadvantages 

- Linear transformation drastically 
limits the applicability. 

- For more complex data, pPCA 
requires M close to D to work 
well. 

- No analytical solution for binary 
data.



VARIATIONAL AUTO-ENCODERS
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GENERATIVE MODELS
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Training Likelihood Sampling Compression

Autoregressive models 
(e.g., PixelCNN) Stable Exact Slow No

Flow-based models 
(e.g., RealNVP) Stable Exact Fast/Slow No

Implicit models 
(e.g., GANs) Unstable No Fast No

Prescribed models 
(e.g., VAEs) Stable Approximate Fast Yes



Generative process: 

The log-likelihood function: 

 
How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES
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Now we consider non-linear transformations.



Let us assume: . 

For the pPCA:   

p(z) = 𝒩(0,I)

p(x |z) = 𝒩(Wz + μ, σ2I)
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Let us assume: . 

For the pPCA:   

Now, we consider: . 

p(z) = 𝒩(0,I)

p(x |z) = 𝒩(Wz + μ, σ2I)

p(x |z) = 𝒩( f(z; W), σ2I)

LATENT-VARIABLE MODELS WITH NON-LINEAR TRANSFORMATIONS
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Let us assume: . 

For the pPCA:   

Now, we consider: . 

Since f could be any non-linear transformation, Prof. Bishop cannot 
provide us any tricks to solve the integral: 

 

p(z) = 𝒩(0,I)

p(x |z) = 𝒩(Wz + μ, σ2I)

p(x |z) = 𝒩( f(z; W), σ2I)

p(x) = ∫ p(x |z)p(z)dz

LATENT-VARIABLE MODELS WITH NON-LINEAR TRANSFORMATIONS
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This is an infinite mixture of Gaussians.
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This is an infinite mixture of Gaussians.
BUT we can use variational inference!
(Chapter 10 in Bishop’s book 😉 )
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Variational posterior



VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS
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Variational posterior
We can learn a 
separate q for each 
x, but it would be too 
complicated. 
Therefore, we use 
amortization.



VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS
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Jensen’s inequality
log 𝔼q[…] ≥ 𝔼q[log…]



VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS
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Evidence Lower BOund (ELBO)



VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS
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Reconstruction error (RE) Regularization (KL)
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decoder

encoder

marginal 
(prior)



VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS
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= Variational Auto-Encoder

decoder

encoder

marginal 
(prior)



 

 

 

 

 

 

ln p(x) = 𝔼q(z|x) [ln p(x)]
= 𝔼q(z|x) [ln

p(z |x)p(x)
p(z |x) ]

= 𝔼q(z|x) [ln
p(x |z)p(z)

p(z |x) ]
= 𝔼q(z|x) [ln

p(x |z)p(z)
p(z |x)

q(z |x)
q(z |x) ]

= 𝔼q(z|x) [ln p(x |z)
p(z)

q(z |x)
q(z |x)
p(z |x) ]

= 𝔼q(z|x) [ln p(x |z) − ln
q(z |x)

p(z)
+ ln

q(z |x)
p(z |x) ]

= 𝔼q(z|x) [ln p(x |z)] − KL [q(z |x)∥p(z)] + KL [q(z |x)∥p(z |x)]

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS (A DIFFERENT DERIVATION)
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VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS (A DIFFERENT DERIVATION)

75 ≥ 0ELBO

If variational posterior is
poorly chosen, then the 
lower bound is very loose. 



Variational posterior (encoder) and the likelihood function (decoder) are 
parameterized by neural networks. 

Reparameterization trick: 
move the stochasticity to independent random variables 
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76

μ

σ

encoder net decoder netcode



Variational posterior (encoder) and the likelihood function (decoder) are 
parameterized by neural networks. 

Reparameterization trick: 
move the stochasticity to independent random variables 

 
e.g.

VARIATIONAL AUTO-ENCODERS
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μ

σ

encoder net decoder netcode

0μ

σ

z = μ + σ ⋅ ε, ε ∼ 𝒩(0,1)

z = f(θ, ε), ε ∼ p(ε)



VAE copies input to output through a bottleneck. 

VAE learns a code of the data.

VARIATIONAL AUTO-ENCODERS
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0μ

σ

μ

σ

encoder net decoder netcode



VAE copies input to output through a bottleneck. 

VAE learns a code of the data.
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0μ

σ

μ

σ

encoder net decoder netcode



VAE has a marginal on the latent code. 

VAE can generate new data.

VARIATIONAL AUTO-ENCODERS
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0

p(z)

decoder netcode



VAE has a marginal on the latent code. 

VAE can generate new data.

VARIATIONAL AUTO-ENCODERS
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0

decoder netcode

p(z)



VAE has a marginal on the latent code. 

VAE can generate new data.

VARIATIONAL AUTO-ENCODERS
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0

decoder netcode

p(z)



VANILLA VAE
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x



VANILLA VAE
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x

μ

σ

Example architecture for the encoder:
x -> Linear(D, 300) -> ReLU -> Linear(300, 2M) -> split to 2 vectors



VANILLA VAE
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x

μ

σ
z

ε ∼ 𝒩(0,1)

⊙
⊕

Example architecture for the encoder:
x -> Linear(D, 300) -> ReLU -> Linear(300, 2M) -> split to 2 vectors

z = μ(x) + σ(x) ⋅ ε

Reparameterization trick!



VANILLA VAE
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x

μ

σ
z

ε ∼ 𝒩(0,1)

⊙
⊕

Example architecture for the encoder:
x -> Linear(D, 300) -> ReLU -> Linear(300, 2M) -> split to 2 vectors

z = μ(x) + σ(x) ⋅ ε

No non-linearity here!
We model means and log-std
for Gaussian. 



VANILLA VAE
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x x̂

μ

σ
z

ε ∼ 𝒩(0,1)

⊙
⊕

Example architecture for the encoder:
x -> Linear(D, 300) -> ReLU -> Linear(300, 2M) -> split to 2 vectors

Example architecture for the decoder:
z -> Linear(M, 300) -> ReLU -> Linear(300, D) -> means

No non-linearity here!
We model means only.



VANILLA VAE

88

x

μ

σ
z

ε ∼ 𝒩(0,1)

⊙
⊕

z = μ(x) + σ(x) ⋅ ε

x̂ = θ(z)

ELBO = ln 𝒩(x |θ(z),1)

pθ(x|z)

− [ln 𝒩(z |μ(x), σ2(x))

qϕ(z|x)

− ln 𝒩(z |0,1)

pλ(z)

]

We approximate expected values using a single sample:



VANILLA VAE
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x

μ

σ
z

ε ∼ 𝒩(0,1)

⊙
⊕

z = μ(x) + σ(x) ⋅ ε

x̂ = θ(z)

ELBO = ln 𝒩(x |θ(z),1)

RE

− [ln 𝒩(z |μ(x), σ2(x)) − ln 𝒩(z |0,1)]
KL

We approximate expected values using a single sample:
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x

μ

σ
z

ε ∼ 𝒩(0,1)

⊙
⊕

z = μ(x) + σ(x) ⋅ ε

x̂ = θ(z)

We approximate expected values using a single sample:

We assume a standard Gaussian prior.

ELBO = ln 𝒩(x |θ(z),1)

RE

− [ln 𝒩(z |μ(x), σ2(x)) − ln 𝒩(z |0,1)]
KL

We assume a Gaussian variational posterior.



VANILLA VAE
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x

μ

σ
z

ε ∼ 𝒩(0,1)

⊙
⊕

z = μ(x) + σ(x) ⋅ ε

x̂ = θ(z)

We approximate expected values using a single sample:

REMEMBER! We cannot pick an arbitrary distribution. We must choose a distribution 
that is appropriate for our data.
Real-valued -> e.g., Gaussian
Binary -> Bernoulli 

ELBO = ln 𝒩(x |θ(z),1)

RE

− [ln 𝒩(z |μ(x), σ2(x)) − ln 𝒩(z |0,1)]
KL



VANILLA VAE
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import torch.nn as nn 
  
class VAE(nn.Module): 
    def __init__(self, D, M): 
        super(VAE, self).__init__() 
        self.D = D 
        self.M = M 
  
        self.enc1 = nn.Linear(in_features=self.D, out_features=300) 
        self.enc2 = nn.Linear(in_features=300, out_features=self.M*2) 

        self.dec1 = nn.Linear(in_features=self.M, out_features=300) 
        self.dec2 = nn.Linear(in_features=300, out_features=self.D) 

    def reparameterize(self, mu, log_std): 
        std = torch.exp(log_std)  
        eps = torch.randn_like(std) 
        z = mu + (eps * std) 
        return z
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    def forward(self, x): 
        # encoder 
        x = nn.functional.relu(self.enc1(x)) 
        x = self.enc2(x).view(-1, 2, self.M) 

        # get mean and log-std 
        mu = x[:, 0, :] 
        log_std = x[:, 1, :] 

        # reparameterization 
        z = self.reparameterize(mu, log_std) 
  
        # decoder 
        x_hat = nn.functional.relu(self.dec1(z)) 
        x_hat = self.dec2(x) 
        return x_hat, mu, log_std
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    def elbo(self, x, x_hat, z, mu, log_std): 
        # reconstruction error 
        RE = nn.loss.mse(x, x_hat) 

        # kl-regularization 
        # We assume here that log_normal is implemented 
        KL = log_normal(z, mu, log_std) - log_normal(z, 0, 1) 

        # REMEMBER! We maximize ELBO, but optimizers minimize. 
        # Therefore, we need to take the negative sign! 
        return -(RE - KL)
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Weak decoders  bad generations/reconstructions


Weak encoders  bad latent representation, posterior collapse 

(variational posterior = prior).


Weak marginals  bad generations


Variational posteriors  what family of distributions?


→

→

→

→
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ResNets, DenseNets

Normalizing flows 
Hyperspherical dist. 
Hyperbolic-normal dist.

Group theory

ResNets, DenseNets

DRAW

Autoregressive models

Normalizing flows


Autoregressive models

Normalizing flows

VampPrior 
Implicit prior

Adversarial learning

MMD

Wasserstein AE

Hierarchical VAEs!



HIERARCHICAL VAES

101

Gatopoulos, I., & Tomczak, J.M. (2020).  
Self-supervised Variational Auto-Encoders 

Vahdat, A., & Kautz, J. (2020).  
Nvae: A deep hierarchical variational autoencoder. NeurIPS 2020
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Advantages 

✓Non-linear transformations. 

✓Stable training. 

✓Allows compression. 

✓Allows to generation. 

✓The likelihood could be 
approximated.
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Disadvantages 

- No analytical solutions. 

- No exact likelihood. 

- Potential mismatch between true 
posterior and variational 
posterior 

- Blurry images
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Disadvantages 

- No analytical solutions. 

- No exact likelihood. 
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posterior and variational 
posterior 
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Thank you!


