Deep generative modeling: Latent Variable Models

Jakub M. Tomczak Deep Learning

INTRODUCTION

We learn a neural network to classify images:

We learn a neural network to classify images:

We learn a neural network to classify images:

p(**panda**|x)=0.99

We learn a neural network to classify images:

We learn a neural network to classify images:

We learn a neural network to classify images:

There is no semantic understanding of images.

This simple example shows that:

- A discriminative model is (probably) not enough.
- We need a notion of **uncertainty**.
- We need to **understand** the reality.

This simple example shows that:

- A discriminative model is (probably) not enough.
- We need a notion of **uncertainty**.
- We need to **understand** the reality.

A possible solution is generative modeling.

 $p_{\theta}(y|x)$

 $p_{\theta}(y|x)$

High probability of a **horse**.

=

Highly probable decision!

High probability of a **horse**.

=

Highly probable decision!

High probability of a horse. x Low probability of the object = Uncertain decision!

High probability of a **horse**.

=

Highly probable decision!

 $p_{\theta}(x, y) = p_{\theta}(y|x) p_{\theta}(x)$ High probability of a horse. Low probability of the object =

Uncertain decision!

WHERE DO WE USE DEEP GENERATIVE MODELING?

" i want to talk to you . " "i want to be with you . " "i do n't want to be with you . " i do n't want to be with you . she did n't want to be with him .

he was silent for a long moment . he was silent for a moment . it was quiet for a moment . it was dark and cold . there was a pause . it was my turn .

Text analysis

Image analysis

Graph

analysis

Audio analysis

Medical data

and more...

Active Learning

Reinforcement Learning

HOW TO FORMULATE DEEP GENERATIVE MODELS?

HOW TO FORMULATE DEEP GENERATIVE MODELS?

	Training	Likelihood	Sampling	Compression
Autoregressive models (e.g., PixelCNN)	Stable	Exact	Slow	Νο
Flow-based models (e.g., RealNVP)	Stable	Exact	Fast/Slow	Νο
Implicit models (e.g., GANs)	Unstable	Νο	Fast	Νο
Prescribed models (e.g., VAEs)	Stable	Approximate	Fast	Yes

DEEP LATENT VARIABLE MODELS

Modeling in high-dimensional spaces is difficult.

Modeling in high-dimensional spaces is difficult.

Modeling in high-dimensional spaces is difficult.

Modeling **all dependencies** among pixels:

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c=1}^{C} \psi_c(\mathbf{x}_c)$$

Modeling in high-dimensional spaces is difficult.

Modeling **all dependencies** among pixels:

Modeling in high-dimensional spaces is difficult.

Modeling **all dependencies** among pixels:

A possible solution: Latent Variable Models!

1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$

1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$

1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$

1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$

1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$

1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$

Generative process:

1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$

The log-likelihood function:

$$\log p_{\vartheta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$$

Generative process:

1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$

The log-likelihood function:

$$\log p_{\vartheta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$$

How to train such model efficiently?

LINEAR LATENT VARIABLE MODELS

Let us assume: $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})$.

Let us assume: $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})$.

And a linear transformation ($\mathbf{W} \in \mathbb{R}^{D \times M}$):

$$\mathbf{x} = \mathbf{W}\mathbf{z} + \mu + \varepsilon$$
, where $\varepsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$

Let us assume: $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})$.

And a linear transformation ($\mathbf{W} \in \mathbb{R}^{D \times M}$):

$$\mathbf{x} = \mathbf{W}\mathbf{z} + \mu + \varepsilon$$
, where $\varepsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$

that results in the following conditional distribution:

$$p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^{2}\mathbf{I})$$

Let us assume: $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})$.

And the following conditional distribution: $p(\mathbf{x} | \mathbf{z}) = \mathcal{N}(\mathbf{W}\mathbf{z} + \mu, \sigma^2 \mathbf{I})$

Now, the question is how to calculate the log-likelihood: $p(\mathbf{x}) = \int p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) d\mathbf{z}$

Now, the question is how to calculate the log-likelihood:

$$p(\mathbf{x}) = \int p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}$$

Gaussian Gaussian

LINEAR LATENT VARIABLE MODELS

Now, the question is how to calculate the log-likelihood:

$$p(\mathbf{x}) = \int p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}$$

Gaussian Gaussian

$$= \mathcal{N}(\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^{\mathsf{T}} + \sigma^{2}\mathbf{I})$$

Marginal and Conditional Gaussians

Given a marginal Gaussian distribution for \mathbf{x} and a conditional Gaussian distribution for \mathbf{y} given \mathbf{x} in the form

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$$
(2.113)

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1})$$
 (2.114)

the marginal distribution of y and the conditional distribution of x given y are given by

$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{L}^{-1} + \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{\mathrm{T}})$$
(2.115)

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\mathbf{x}|\mathbf{\Sigma}\{\mathbf{A}^{\mathrm{T}}\mathbf{L}(\mathbf{y}-\mathbf{b})+\mathbf{\Lambda}\boldsymbol{\mu}\},\mathbf{\Sigma})$$
 (2.116)

VU🐓

where

41

$$\Sigma = (\Lambda + A^{T}LA)^{-1}$$
. (2.117) Bishop, "Pattern Recognition and Machine Learning"

Now, the question is how to calculate the log-likelihood:

$$p(\mathbf{x}) = \int p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}$$

Gaussian Gaussian

$$= \mathcal{N}(\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^{\mathsf{T}} + \sigma^{2}\mathbf{I})$$

The integral is tractable, and it is again Gaussian!

Now, the question is how to calculate the log-likelihood: $p(\mathbf{x}) = \int p(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) d\mathbf{z}$ $= \mathcal{N}(\mu, \mathbf{W}\mathbf{W}^{\mathsf{T}} + \sigma^{2}\mathbf{I})$

Since the model is linear, and all distributions are Gaussians, we can also calculate the posterior over z:

$$p(\mathbf{z} \mid \mathbf{x}) = \mathcal{N}\left(\mathbf{M}^{-1}\mathbf{W}^{\mathsf{T}}(\mathbf{x} - \mu), \sigma^{-2}\mathbf{M}\right)$$

where:

$$\mathbf{M} = \mathbf{W}^{\mathsf{T}}\mathbf{W} + \sigma^2 \mathbf{I}$$

Since the model is linear, and all distributions are Gaussians, we can also calculate the posterior over z:

$$p(\mathbf{z} | \mathbf{x}) = \mathcal{N} \Big(\mathbf{M}^{-1} \mathbf{W}^{\mathsf{T}} (\mathbf{x} - \mu), \sigma^{-2} \mathbf{M} \Big)$$

where:

$$\mathbf{M} = \mathbf{W}^{\mathsf{T}}\mathbf{W} + \sigma^{2}\mathbf{I}$$

Marginal and Conditional Gaussians

Given a marginal Gaussian distribution for \mathbf{x} and a conditional Gaussian distribution for \mathbf{y} given \mathbf{x} in the form

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$$
(2.113)

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1})$$
(2.114)

the marginal distribution of y and the conditional distribution of x given y are given by

$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{L}^{-1} + \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{\mathrm{T}})$$
 (2.11)

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\mathbf{x}|\mathbf{\Sigma}\{\mathbf{A}^{\mathrm{T}}\mathbf{L}(\mathbf{y}-\mathbf{b})+\mathbf{\Lambda}\boldsymbol{\mu}\},\mathbf{\Sigma})$$
 (2.116)

45 where

 $\boldsymbol{\Sigma} = (\boldsymbol{\Lambda} + \mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{A})^{-1}.$ (2.117)

PPCA: PROBABILISTIC PRINCIPAL COMPONENT ANALYSIS

The final model is the following ($\mathbf{W} \in \mathbb{R}^{D \times M}$):

$$\begin{split} p(\mathbf{z}) &= \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ p(\mathbf{x} \mid \mathbf{z}) &= \mathcal{N}(\mathbf{W}\mathbf{z} + \mu, \sigma^{2}\mathbf{I}) \\ p(\mathbf{z} \mid \mathbf{x}) &= \mathcal{N}\Big(\mathbf{M}^{-1}\mathbf{W}^{\mathsf{T}}(\mathbf{x} - \mu), \sigma^{-2}\mathbf{M}\Big) \\ \end{split}$$
 where $\mathbf{M} = \mathbf{W}^{\mathsf{T}}\mathbf{W} + \sigma^{2}\mathbf{I}.$

and the marginal distribution:

$$p(\mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^\top + \sigma^2 \mathbf{I})$$

The logarithm of the likelihood function:

$$\ln p\left(\mathbf{X} \mid \boldsymbol{\mu}, \mathbf{W}, \sigma^{2}\right) = \sum_{n=1}^{N} \ln p\left(\mathbf{x}_{n} \mid \mathbf{W}, \boldsymbol{\mu}, \sigma^{2}\right)$$

The logarithm of the likelihood function:

$$\ln p\left(\mathbf{X} \mid \boldsymbol{\mu}, \mathbf{W}, \sigma^{2}\right) = \sum_{n=1}^{N} \ln p\left(\mathbf{x}_{n} \mid \mathbf{W}, \boldsymbol{\mu}, \sigma^{2}\right)$$

REMEMBER: Everything is Gaussian!

The logarithm of the likelihood function:

λT

$$\ln p\left(\mathbf{X} \mid \boldsymbol{\mu}, \mathbf{W}, \sigma^{2}\right) = \sum_{n=1}^{N} \ln p\left(\mathbf{x}_{n} \mid \mathbf{W}, \boldsymbol{\mu}, \sigma^{2}\right)$$

$$= -\frac{ND}{2}\ln(2\pi) - \frac{N}{2}\ln|\mathbf{C}| - \frac{1}{2}\sum_{n=1}^{N} \left(\mathbf{x}_{n} - \mu\right)^{\mathsf{T}}\mathbf{C}^{-1}\left(\mathbf{x}_{n} - \mu\right)$$

where

$$\mathbf{C} = \mathbf{W}\mathbf{W}^{\mathsf{T}} + \sigma^{2}\mathbf{I}$$
$$\mathbf{C}^{-1} = \sigma^{-1}\mathbf{I} - \sigma^{-2}\mathbf{W}\mathbf{M}^{-1}\mathbf{W}^{\mathsf{T}}$$

The logarithm of the likelihood function:

λT

$$\ln p\left(\mathbf{X} \mid \boldsymbol{\mu}, \mathbf{W}, \sigma^{2}\right) = \sum_{n=1}^{N} \ln p\left(\mathbf{x}_{n} \mid \mathbf{W}, \boldsymbol{\mu}, \sigma^{2}\right)$$

$$= -\frac{ND}{2}\ln(2\pi) - \frac{N}{2}\ln|\mathbf{C}| - \frac{1}{2}\sum_{n=1}^{N} \left(\mathbf{x}_{n} - \mu\right)^{\mathsf{T}}\mathbf{C}^{-1}\left(\mathbf{x}_{n} - \mu\right)$$

where

$$\mathbf{C} = \mathbf{W}\mathbf{W}^{\mathsf{T}} + \sigma^{2}\mathbf{I}$$
$$\mathbf{C}^{-1} = \sigma^{-1}\mathbf{I} - \sigma^{-2}\mathbf{W}\mathbf{M}^{-1}\mathbf{W}^{\mathsf{T}}$$

Inverting C (*D*x*D*) reduces to inverting M (*M*x*M*).

It is possible to calculate the solution analytically:

$$\mathbf{W}_{\mathrm{ML}} = \mathbf{U}_{M} \left(\mathbf{L}_{M} - \sigma^{2} \mathbf{I} \right)^{1/2} \mathbf{R}$$

$$\sigma_{\rm ML}^2 = \frac{1}{D-M} \sum_{i=M+1}^D \lambda_i$$

where:

 \mathbf{U}_M - is a $D \times M$ matrix whose columns are eigenvectors of \mathbf{S}

 $\mathbf{L}_{M} \text{-} \text{ is a } M \times M \text{ diagonal matrix whose elements are eigenvalues of } \mathbf{S}$ $\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} \left(\mathbf{x}_{n} - \overline{\mathbf{x}} \right) \left(\mathbf{x}_{n} - \overline{\mathbf{x}} \right)^{\mathrm{T}} \text{-} \text{ is the sample covariance matrix}$

It is possible to calculate the solution analytically:

$$\mathbf{W}_{\text{ML}} = \mathbf{U}_{M} \left(\mathbf{L}_{M} - \sigma^{2} \mathbf{I} \right)^{1/2} \mathbf{R}$$

any orthogonal matrix
$$\sigma_{\text{ML}}^{2} = \frac{1}{D - M} \sum_{i=M+1}^{D} \lambda_{i}$$

where:

The average variance of discarded dimensions.

 \mathbf{U}_M - is a $D \times M$ matrix whose columns are eigenvectors of \mathbf{S}

 $\mathbf{L}_{M} \text{- is a } M \times M \text{ diagonal matrix whose elements are eigenvalues of } \mathbf{S}$ $\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} \left(\mathbf{x}_{n} - \overline{\mathbf{x}} \right) \left(\mathbf{x}_{n} - \overline{\mathbf{x}} \right)^{\mathrm{T}} \text{- is the sample covariance matrix}$

• If we use the **eigendecomposition** of the sample covariance matrix, then we can simply take ${f R}={f I}.$

- If we use the **eigendecomposition** of the sample covariance matrix, then we can simply take ${f R}={f I}.$
- In practice, the complexity of the eigendecomposition is $O(D^3)$, and the complexity of calculating the covariance matrix is $O(ND^2)$.

- If we use the **eigendecomposition** of the sample covariance matrix, then we can simply take ${f R}={f I}.$
- In practice, the complexity of the eigendecomposition is $O(D^3)$, and the complexity of calculating the covariance matrix is $O(ND^2)$.
- If we have large problems (i.e., D > 1000, N > 1000), then we can use:
 - Expectation-Maximization (EM)
 - Gradient-based optimization (e.g., SGD).
- For numerical algorithms, **R** could be arbitrary, so **no unique solution**.

PROBABILISTIC PCA

Reconstruction:

Projection of 2D data onto 1D space:

Advantages

- ✓ Exact likelihood.
- ✓ Analytical solution.
- ✓ Posterior over **z** is analytical.
- ✓ Allows compression.
- ✓ Allows to generate.

Disadvantages

- Linear transformation drastically limits the applicability.
- For more complex data, pPCA requires *M* close to *D* to work well.
- No analytical solution for binary data.

VARIATIONAL AUTO-ENCODERS

	Training	Likelihood	Sampling	Compression
Autoregressive models (e.g., PixelCNN)	Stable	Exact	Slow	Νο
Flow-based models (e.g., RealNVP)	Stable	Exact	Fast/Slow	Νο
Implicit models (e.g., GANs)	Unstable	Νο	Fast	Νο
Prescribed models (e.g., VAEs)	Stable	Approximate	Fast	Yes

Generative process:

1.
$$\mathbf{z} \sim p_{\lambda}(\mathbf{z})$$

2. $\mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$

The log-likelihood function:

$$\log p_{\vartheta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$$

How to train such model efficiently? Now we consider non-linear transformations.

Let us assume: $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})$.

For the pPCA: $p(\mathbf{x} | \mathbf{z}) = \mathcal{N}(\mathbf{W}\mathbf{z} + \mu, \sigma^2 \mathbf{I})$

Let us assume: $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})$.

For the pPCA:
$$p(\mathbf{x} | \mathbf{z}) = \mathcal{N}(\mathbf{W}\mathbf{z} + \mu, \sigma^2 \mathbf{I})$$

Now, we consider: $p(\mathbf{x} | \mathbf{z}) = \mathcal{N}(f(\mathbf{z}; \mathbf{W}), \sigma^2 \mathbf{I}).$

Let us assume: $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})$.

For the pPCA: $p(\mathbf{x} | \mathbf{z}) = \mathcal{N}(\mathbf{W}\mathbf{z} + \mu, \sigma^2 \mathbf{I})$

Now, we consider: $p(\mathbf{x} | \mathbf{z}) = \mathcal{N}(f(\mathbf{z}; \mathbf{W}), \sigma^2 \mathbf{I}).$

Since *f* could be any non-linear transformation, Prof. Bishop cannot provide us any tricks to solve the integral:

$$p(\mathbf{x}) = \int p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \mathrm{d}\mathbf{z}$$

This is an infinite mixture of Gaussians.

Let us assume: $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})$.

For the pPCA: $p(\mathbf{x} | \mathbf{z}) = \mathcal{N}(\mathbf{W}\mathbf{z} + \mu, \sigma^2 \mathbf{I})$

Now, we consider: $p(\mathbf{x} | \mathbf{z}) = \mathcal{N}(f(\mathbf{z}; \mathbf{W}), \sigma^2 \mathbf{I}).$

Since *f* could be any non-linear transformation, Prof. Bishop cannot provide us any tricks to solve the integral:

$$p(\mathbf{x}) = \int p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) \mathrm{d}\mathbf{z}$$

This is an infinite mixture of Gaussians. BUT we can use variational inference! (Chapter 10 in Bishop's book 😔)

$$\log p_{\vartheta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$$

$$= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$$

$$\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} d\mathbf{z}$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \mathrm{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\lambda}(\mathbf{z}) \right)$$

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

$$\begin{split} \log p_{\vartheta}(\mathbf{x}) &= \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z} & \text{Variational posterior} \\ &= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z} \\ &\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} d\mathbf{z} \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \text{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\lambda}(\mathbf{z}) \right) \end{split}$$

$$\log p_{\vartheta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$$

$$= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$$

$$\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} d\mathbf{z}$$

$$= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \mathrm{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\lambda}(\mathbf{z}) \right)$$

$$\begin{split} \log p_{\vartheta}(\mathbf{x}) &= \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \mathrm{d}\mathbf{z} \\ &= \underbrace{\log} \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \mathrm{d}\mathbf{z} \\ &\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \underbrace{\log p_{\theta}(\mathbf{x}|\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \mathrm{d}\mathbf{z} \quad \begin{array}{l} \text{Jensen's inequality} \\ &\log \mathbb{E}_{q}[\dots] \geq \mathbb{E}_{q}[\log \dots] \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \mathrm{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\lambda}(\mathbf{z}) \right) \end{split}$$

$$\log p_{\vartheta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$$

= $\log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z}$
$$\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} d\mathbf{z}$$

= $\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \mathrm{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\lambda}(\mathbf{z}) \right)_{J}$

Evidence Lower BOund (ELBO)

VII

$$\begin{split} \log p_{\vartheta}(\mathbf{x}) &= \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z} \\ &= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) d\mathbf{z} \\ &\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} d\mathbf{z} \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \mathbb{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\lambda}(\mathbf{z}) \right) \\ \end{split}$$
Reconstruction error (RE) Regularization (KL)

$$\begin{split} \log p_{\vartheta}(\mathbf{x}) &= \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \mathrm{d}\mathbf{z} & \text{decoder} \\ &= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \mathrm{d}\mathbf{z} & \text{encoder} \\ &\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \mathrm{d}\mathbf{z} & \text{marginal} \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \mathrm{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p_{\lambda}(\mathbf{z}) \right) \end{split}$$

$$\begin{split} \log p_{\vartheta}(\mathbf{x}) &= \log \int p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \mathrm{d}\mathbf{z} & \text{decoder} \\ &= \log \int \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z}) \mathrm{d}\mathbf{z} & \text{encoder} \\ &\geq \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \mathrm{d}\mathbf{z} & \text{marginal} \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \mathrm{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p_{\lambda}(\mathbf{z}) \right) \end{split}$$

= Variational Auto-Encoder VU
$$\begin{aligned} \ln p(\mathbf{x}) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x}) \right] \\ &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln \frac{p(\mathbf{z} \mid \mathbf{x})p(\mathbf{x})}{p(\mathbf{z} \mid \mathbf{x})} \right] \\ &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln \frac{p(\mathbf{x} \mid \mathbf{z})p(\mathbf{z})}{p(\mathbf{z} \mid \mathbf{x})} \right] \\ &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln \frac{p(\mathbf{x} \mid \mathbf{z})p(\mathbf{z})}{p(\mathbf{z} \mid \mathbf{x})} \frac{q(\mathbf{z} \mid \mathbf{x})}{q(\mathbf{z} \mid \mathbf{x})} \right] \\ &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x} \mid \mathbf{z}) \frac{p(\mathbf{z})}{q(\mathbf{z} \mid \mathbf{x})} \frac{q(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z} \mid \mathbf{x})} \right] \\ &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x} \mid \mathbf{z}) - \ln \frac{q(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z})} + \ln \frac{q(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z} \mid \mathbf{x})} \right] \\ &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x} \mid \mathbf{z}) - \ln \frac{q(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z})} + \ln \frac{q(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z} \mid \mathbf{x})} \right] \end{aligned}$$

$$\ln p(\mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x}) \right]$$

$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln \frac{p(\mathbf{z} \mid \mathbf{x})p(\mathbf{x})}{p(\mathbf{z} \mid \mathbf{x})} \right]$$

$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln \frac{p(\mathbf{x} \mid \mathbf{z})p(\mathbf{z})}{p(\mathbf{z} \mid \mathbf{x})} \right]$$

$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln \frac{p(\mathbf{x} \mid \mathbf{z})p(\mathbf{z})}{p(\mathbf{z} \mid \mathbf{x})} \frac{q(\mathbf{z} \mid \mathbf{x})}{q(\mathbf{z} \mid \mathbf{x})} \right]$$

$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x} \mid \mathbf{z}) \frac{p(\mathbf{z})}{q(\mathbf{z} \mid \mathbf{x})} \frac{q(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z} \mid \mathbf{x})} \right]$$

$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x} \mid \mathbf{z}) - \ln \frac{q(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z})} + \ln \frac{q(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z} \mid \mathbf{x})} \right]$$

$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x} \mid \mathbf{z}) - \ln \frac{q(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z})} + KL \left[q(\mathbf{z} \mid \mathbf{x}) \| p(\mathbf{z} \mid \mathbf{x}) \right] \right]$$

$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x} \mid \mathbf{z}) - KL \left[q(\mathbf{z} \mid \mathbf{x}) \| p(\mathbf{z} \mid \mathbf{x}) \right] \right]$$

$$\ln p(\mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x}) \right]$$

$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln \frac{p(\mathbf{z} \mid \mathbf{x})p(\mathbf{x})}{p(\mathbf{z} \mid \mathbf{x})} \right]$$

$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln \frac{p(\mathbf{x} \mid \mathbf{z})p(\mathbf{z})}{p(\mathbf{z} \mid \mathbf{x})} \right]$$
If variational posterior is poorly chosen, then the lower bound is very loose.
$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x} \mid \mathbf{z}) \frac{p(\mathbf{z})}{q(\mathbf{z} \mid \mathbf{x})} \frac{q(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z} \mid \mathbf{x})} \right]$$

$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x} \mid \mathbf{z}) - \ln \frac{q(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z})} + \ln \frac{q(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z} \mid \mathbf{x})} \right]$$

$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x} \mid \mathbf{z}) - \ln \frac{q(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z})} + \ln \frac{q(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z} \mid \mathbf{x})} \right]$$

Variational posterior (encoder) and the likelihood function (decoder) are parameterized by neural networks.

Variational posterior (encoder) and the likelihood function (decoder) are parameterized by neural networks.

Reparameterization trick:

move the stochasticity to independent random variables

$$z = f(\theta, \varepsilon), \quad \varepsilon \sim p(\varepsilon)$$

e.g.
$$z = \mu + \sigma \cdot \varepsilon, \quad \varepsilon \sim \mathcal{N}(0,1)$$

VAE copies input to output through a **bottleneck**.

VAE learns a **code** of the data.

VAE copies input to output through a **bottleneck**.

VAE learns a **code** of the data.

VAE has a **marginal** on the latent code.

VAE can **generate** new data.

VAE has a **marginal** on the latent code.

VAE can **generate** new data.

VAE has a **marginal** on the latent code.

VAE can **generate** new data.

X

Example architecture for the encoder:

x -> Linear(D, 300) -> ReLU -> Linear(300, 2*M*) -> split to 2 vectors

Example architecture for the encoder:

x -> Linear(D, 300) -> ReLU -> Linear(300, 2*M*) -> split to 2 vectors

Example architecture for the encoder:

x -> Linear(D, 300) -> ReLU -> Linear(300, 2*M*) -> split to 2 vectors

No non-linearity here! We model means and log-std for Gaussian.

Example architecture for the encoder:

x -> Linear(D, 300) -> ReLU -> Linear(300, 2*M*) -> split to 2 vectors

Example architecture for the decoder:

z -> Linear(*M*, 300) -> ReLU -> Linear(300, *D*) -> means

No non-linearity here! We model means only.

We approximate expected values using a single sample:

$$ELBO = \ln \underbrace{\mathcal{N}(\mathbf{x} \mid \theta(\mathbf{z}), 1)}_{p_{\theta}(\mathbf{x} \mid \mathbf{z})} - \left[\ln \underbrace{\mathcal{N}(\mathbf{z} \mid \mu(\mathbf{x}), \sigma^{2}(\mathbf{x}))}_{q_{\phi}(\mathbf{z} \mid \mathbf{x})} - \ln \underbrace{\mathcal{N}(\mathbf{z} \mid 0, 1)}_{p_{\lambda}(\mathbf{z})} \right]$$

We approximate expected values using a single sample:

$$ELBO = \underbrace{\ln \mathcal{N}(\mathbf{x} \mid \theta(\mathbf{z}), 1)}_{\mathsf{RE}} - \underbrace{\left[\ln \mathcal{N}(\mathbf{z} \mid \mu(\mathbf{x}), \sigma^2(\mathbf{x})) - \ln \mathcal{N}(\mathbf{z} \mid 0, 1)\right]}_{\mathsf{KL}}$$

We approximate expected values using a single sample:

We assume a Gaussian variational posterior.

$$ELBO = \underbrace{\ln \mathcal{N}(\mathbf{x} \mid \theta(\mathbf{z}), 1)}_{\mathsf{RE}} - \underbrace{\left[\ln \mathcal{N}(\mathbf{z} \mid \mu(\mathbf{x}), \sigma^2(\mathbf{x})) - \ln \mathcal{N}(\mathbf{z} \mid 0, 1)\right]}_{\mathsf{KL}}$$

We assume a standard Gaussian prior.

91

We approximate expected values using a single sample:


```
import torch.nn as nn
```

```
class VAE(nn.Module):
    def __init__(self, D, M):
        super(VAE, self).__init__()
        self.D = D
        self.M = M
```

self.enc1 = nn.Linear(in_features=self.D, out_features=300)
self.enc2 = nn.Linear(in_features=300, out_features=self.M*2)

```
self.dec1 = nn.Linear(in_features=self.M, out_features=300)
self.dec2 = nn.Linear(in_features=300, out_features=self.D)
```

```
def reparameterize(self, mu, log_std):
    std = torch.exp(log_std)
    eps = torch.randn_like(std)
    z = mu + (eps * std)
    return z
```



```
def forward(self, x):
    # encoder
    x = nn.functional.relu(self.enc1(x))
    x = self.enc2(x).view(-1, 2, self.M)
    # get mean and log-std
    mu = x[:, 0, :]
    log std = x[:, 1, :]
    # reparameterization
    z = self.reparameterize(mu, log std)
    # decoder
    x hat = nn.functional.relu(self.dec1(z))
    x hat = self.dec2(x)
    return x hat, mu, log std
```



```
def elbo(self, x, x_hat, z, mu, log_std):
    # reconstruction error
    RE = nn.loss.mse(x, x_hat)
    # kl-regularization
    # We assume here that log_normal is implemented
    KL = log_normal(z, mu, log_std) - log_normal(z, 0, 1)
    # REMEMBER! We maximize ELBO, but optimizers minimize.
    # Therefore, we need to take the negative sign!
```

return - (RE - KL)

 $q_{\phi}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z}) \, p_{\lambda}(\mathbf{z})$

Weak **decoders** \rightarrow bad generations/reconstructions

Weak **encoders** \rightarrow bad latent representation, *posterior collapse*

```
(variational posterior = prior).
```

Weak **marginals** \rightarrow bad generations

Variational **posteriors** \rightarrow what family of distributions?

 $q_{\phi}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})$ ResNets, DenseNets DRAW Autoregressive models Normalizing flows

 $q_{\phi}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})$

ResNets, DenseNets **Normalizing flows** Hyperspherical dist. Hyperbolic-normal dist. Group theory

ResNets, DenseNets DRAW Autoregressive models Normalizing flows

 $q_{\phi}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})$

ResNets, DenseNets **Normalizing flows** Hyperspherical dist. Hyperbolic-normal dist. Group theory

ResNets, DenseNets DRAW Autoregressive models Normalizing flows Autoregressive models Normalizing flows VampPrior Implicit prior

 $q_{\phi}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z}) \ p_{\lambda}(\mathbf{z})$

ResNets, DenseNets **Normalizing flows** Hyperspherical dist. Hyperbolic-normal dist. Group theory

 $ELBO(\mathbf{x}; \theta, \phi, \lambda)$ ----

ResNets, DenseNets DRAW Autoregressive models Normalizing flows Autoregressive models Normalizing flows VampPrior Implicit prior

Adversarial learning MMD Wasserstein AE

99

COMPONENTS OF VAES

ELBO($\mathbf{x}; \theta, \phi, \lambda$) ----

Adversarial learning MMD Wasserstein AE

HIERARCHICAL VAES

Figure 4: Hierarchical selfVAE.

Gatopoulos, I., & Tomczak, J.M. (2020). Self-supervised Variational Auto-Encoders

(a) Bidirectional Encoder (b) Generative Model

Figure 2: The neural networks implementing an encoder $q(\boldsymbol{z}|\boldsymbol{x})$ and generative model $p(\boldsymbol{x}, \boldsymbol{z})$ for a 3-group hierarchical VAE. $\langle \boldsymbol{r} \rangle$ denotes residual neural networks, $\langle \boldsymbol{+} \rangle$ denotes feature combination (e.g., concatena-

Vahdat, A., & Kautz, J. (2020). notes feature combination (e.g., concatena-Nvae: A deep hierarchical variational autoencoder. *NeurIPS 2020* tion), and h is a trainable parameter.

101

HIERARCHICAL VAES

ii) selfVAE - sketch

iii) VAE - RealNVP

¹⁰² Gatopoulos, I., & Tomczak, J.M. (2020). Self-supervised Variational Auto-Encoders

HIERARCHICAL VAES

Figure 1: 256×256-pixel samples generated by NVAE, trained on CelebA HQ [28].

¹⁰³ Vahdat, A., & Kautz, J. (2020). Nvae: A deep hierarchical variational autoencoder. *NeurIPS 2020*

Advantages

- ✓ Non-linear transformations.
- ✓ Stable training.
- ✓ Allows compression.
- ✓ Allows to generation.
- ✓ The likelihood could be approximated.

Disadvantages

- No analytical solutions.
- No exact likelihood.
- Potential mismatch between true posterior and variational posterior
- Blurry images

Advantages

- ✓ Non-linear transformations.
- ✓ Stable training.
- ✓ Allows compression.
- ✓ Allows to generation.
- ✓ The likelihood could be approximated.

Disadvantages

- No analytical solutions.
- No exact likelihood.
- Potential mismatch between true posterior and variational posterior
- Blurry images

