Lecture 4: Tools of the trade
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part one: Deep Learning in practice
part two: Why does any of this work at all?
part three: Understanding optimizers

part four: The bag of tricks
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DEEP LEARNING IN PRACTICE

VUu¥

Pick a task, get some data
Debugging your model
Develop a model, tune hyperparameters

Publish model, or push to production
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DATA, BEST PRACTICES

Withhold test data to gauge your model performance

Withhold validation data to develop your model and tune the
hyperparameters (learning rate, batch size, etc).

Whatever is left over is your training data.

Benchmarks come with canonical splits. If not, you’re responsible for
splitting.
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HOW MUCH DATA DO YOU NEED?

The size of the test set is more important than the size of the training set.
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CONFIDENCE INTERVALS

test/validation set size accuracy
0.0 1.0
| |
100
1000
10000
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HOW MUCH DATA DO | NEED?

Split off a test set that allows for small confidence intervals

10 000 instances is a good aim

Split off a validation set of similar size

half the size of test is fine

The rest is your training data

If your dataset is just too small:

« Consider not using machine/deep learning

- Find lots of unlabeled data: self/semi-supervised learning

« For evaluation: combined 5x2 cross-validation F-testing (Alpaydin '99)
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DO NOT USE YOUR TEST SET MORE THAN ONCE.

Examples:

« Spam detection: emails shuffled in time dimension.
« Link prediction: graphs with inverse links.
« Preprocessing before splitting.

K
. . o
 normalization, running averages d{\\¢’ Mary

John Qa‘?‘

https://en.wikipedia.org/wiki/Leakage_(machine_learning)
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TEST SET LEAKAGE: GPT-3

Wikipedia 3 billion 3% 34

‘Table 2.2: Datasets used to train GPT-3. “Weight in training mix” refers to the fraction of examples during training
that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a
result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets
are seen less than once.

A major methodological concern with language models pretrained on a broad swath of internet data, particularly large
models with the capacity to memorize vast amounts of content, is potential contamination of downstream tasks by
having their st or development sets inadvertently seen during pre-training. To reduce such contamination, we searched
for and attempted to remove any overlaps with the development and test sets of all benchmarks studied in this paper.
Unfortunately, a bug in the filtering caused us to ignore some overlaps, and due to the cost of training it was not feasible
to retrain the model. In Section 4 we characterize the impact of the remaining overlaps, and in future work we will
more aggressively remove data contamination.

2.3 Training Process

As found in [KMH 20, MKAT18], larger models can typically use a larger batch size, but require a smaller learning
rate. We measure the gradient noise scale during training and use it to guide our choice of batch size [MKATIS]. Table
2.1 shows the parameter settings we used. To train the larger models without running out of memory, we use a mixture
of model parallelism within each matrix multiply and model parallelism across the layers of the network. All models
were trained on V100 GPU's on part of a high-bandwidth cluster provided by Microsoft. Details of the training process
and hyperparameter settings are described in Appendix B.

A | % data

Debugging your model
Develop a model, tune hyperparameters

Publish model, or push to production
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WHY IS DEBUGGING DIFFICULT

Neural networks fail at runtime

e.g. shape errors

Neural networks fail silently

especially due to broadcasting

Neural networks may not fail at all
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assert my_tensor.size() == (b, ¢, h, w)
assert not contains_nan(x), 'tensor x contains a NaN value.'

assert len(x) == n, f'tensor x has dim {len(x)}, expected {n}.'

NB: Expect asserts to be turned off in production code.
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BROADCASTING: THE SILENT KILLER

X = np.ones(shape=(16, ))

y = np.ones(shape=(16, 1)) ®

= xky (16, ) (16, 1)

print(z.shape)
# result: (16, 16) (1, 16)

(16, 1)

(16, 16) (16, 16)

. (16, 16) VUk

BROADCASTING

Applied to any element-wise operation on two or more tensors.
Sum, multiplication, division, even some slicing.

For example: A + B, with

shape(A) = (3, 4, 1)

shape(B) = (1, 3) - donge’
Align the shape tuples to the right: (3, 4,1)
(1, 3)
Add singletons to match # dimensions: (3, 4, 1)
(1, 1, 3)
Expand singletons to match: (g’ 2' g)
. (3,430 vyt




AVOIDING SHAPE ERRORS

Add the singleton dimensions yourself to be sure.
c=al:, :, :1 + blNone, :, :]

Keepdim
normalized = x / x.sum(dim=1, keepdim=True)

Open each method by getting the shapes of the inputs.
b, ¢, h, w = input.size()

Add copious asserts, especially for tensor shapes.
assert rowsums.size() == (b, ¢, h, 1)
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£ . . running_loss O O
or e in range(epochs): 1 1
running_loss = 0.0 lg <‘Ir> ? @
for x, t in dataset: 10 ‘
7N
opt.zero_grad() y ? Ot /<>‘\ l C.)
yO Ot & 1O
y = model(x) <1> 4 y O/ \O i O
1= loss(y, t) O <1> t y O/ '\(
. x &
running_loss += 1 O 4 1
X 0o ?
print(f’epoch {e} total loss: {running_loss}’) X O
X
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running_loss += l.item()

ch() and x.data

o see also x.deta Vuk

Something somewhere has become NaN, Inf or -Inf.
Try an absurdly low learning rate and a 0 learning rate

Localize the problem:

assert not x.isnan().any()
assert not x.isinf().any()
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Check a few learning rates.
Logarithmically: 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, ...

Check your gradients.

x.retain_grad()

loss.backward()

print(x.grad.min(), x.grad.mean(), x.grad.max())

grad == None : backprop didn’t reach it.
grad == 0.0 : backprop visited, but the gradient died.
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Develop a model, tune hyperparameters

Publish model, or push to production

B Vu¥

Start with a setup you know works. Plan a careful route to your own
design.

Baselines, baselines, baselines.
Competing models, linear models, majority class, random class

Scale up slowly: in features added, data size, in model size, in task
hardness.
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FOR EXAMPLE

“I want to build a 6 layer CNN for MNIST classification.”

1. Linear model

2. 1 convolution, linear layer, no activation, no pooling.
3. 1 convolution, linear layer, activation, no pooling.

4. 1 convolution, linear layer, max pooling.

5. 2 convolutions, etc.

; Vu¥




IF YOU DON’T KNOW WHY IT SHOULD WORK,

YOU WON’T KNOW WHY IT DOESN’T WORK

Other tricks

Your model should be able to overfit on a single batch
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TUNING THE LEARNING RATE

Fix a batch size first

As big as fits in memory is usually reasonable. A little smaller may be better but slower.

Standard: try 0.1, 0.01, 0.001, 0.0001, 0.00001 for a few epochs each. Compare
per-batch loss curves.
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CHECK YOUR (PER-BATCH) LOSS CURVES

—— learning rate 0.1
—— learning rate 0.03

1.50 —— learning rate 0.01
—— learning rate 0.003
—— learning rate 0.001

loss per batch
—
)
S

0.50
0.25
0.00 ™ ™ ™ ™ 1
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batches hav\scr\;o&\'




CHECK YOUR GRADIENT NORMS
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— leaming rate 0.01
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INTERPRETING VARIANCE (IN LOSS OR NORM)

learning rate: 0.1 learning rate: 0.05 learning rate: 0.005

high variance at the start high variance at the end low variance throughout

LEARNING RATE SCHEDULING

050 warmup

o 200 00 600 800 1000

warmup, cooldown

o 200 00 600 800 1000

nonlinear

o 200 00 600 800 1000

epochs

@ ; 20/mai e, schedules ! VU

PROTIP: RANGE TESTING

Ramp up learning rate exponentially during a single training run.

ImageNet on AlexNet

o
02
L 015
£ "
5 [mine max_ir

01

005

005 001 0015 002 0035 003 00 001 0045

Learning rate

(a) Typical learning rate range test result
where there is a peak to indicate max_Ir.

32 image source: Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates Smith et al 2018 VU L




PER-EPOCH LOSS CURVES

—— training loss
—— validation loss

202
S generalization gap
01
4 5 10 15 20 25 30 35 40
0999 — training acc
0.98{ — validation acc
£ 097
o096

STABILIZING, SPEEDUPS

Learning rate warmup, cooldown

Gradient clipping: reduce gradient if it exceeds a threshold.

Either by element-wise clamping, or by normalizing the total norm
Momentum: more later

Regularization, batch normalization: more later
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SIMPLICITY CAN BE MORE MEANINGFUL THAN ACCURACY

TUNING STRATEGIES: TRIAL AND ERROR

Usually good enough.

Easy to use model insights.

You know what your hyperparameters mean.

Difficult to do fairly.

Nobody tunes their baselines as much as their own model.
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OMATIC

NING: GRID SEARCH

N

M SE

H

Grid search: define values for each parameters, try all possibilities.

Grid Layout Random Layout

Unimportant parameter

Unimportant parameter

Important parameter Important parameter

NB: linear vs logarithmic scales: 0.1, 0.2, 0.3 or 0.0001, 0.001, 0.01, 0.1

. image source: Random search for hyper-parameter optimization, Bergstra and Bengio JMLR 2012 VU k

JUST_SUPER/ISTOCK.COM

Eye-catching advances in some Al fields are not real

By Matthew Hutson | May. 27, 2020, 12:05 PM

Artifininl intalli (AN iiiet annme $n nat amartar and amartar Canh iDhana laarns unoe fana

TOMATIC TUNING

Useful for fair comparisons: each model gets the same amount of
compute.

Are GANs Created Equal? A Large-Scale Study Lucic et al, NeurlPS 2018

On the State of the Art of Evaluation in Neural Language Models Melis et al, ICLR 2018

You CAN Teach an Old Dog New Tricks! On Training Knowledge Graph Embeddings Ruffinelli et al, ICLR 2020

Random search with Sobol configurations for discrete parameters.

Bayesian search for continuous hyperparameters.
https://ax.dev/

image source: By Jheald - Own work. Created in R.
39 CCBY-SA 3.0, wikimedia.
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Publish model, or push to production
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PUBLISHING: ABLATIO

Which features have the most impact? Hyperparams Dev Set Accuracy
#L  #H #A LM (ppl) MNLI-m MRPC SST-2

3768 12 584 779 798 884

. 6 768 3 524 806 8§22 907

1) Build the best model you can. 6 763 12 468 819 848 913
12768 12 399 844 867 929

121024 16 354 857 869 933

2) Remove features one-by-one. 24 1024 16 323 866 878 937

3) Measure impact step by step. Table 6:  Ablation over BERT model size. #L = the
number of layers; #H = hidden size; #A = number of at-
tention heads. “LM (ppl)” is the masked LM perplexity
of held-out training data.

source: BERT: Pre-training of Deep for Language oineta 20 \fLJ k

IN PRODUCTION

Not to be underestimated

Be wary of:
Distributional drift

Cost of inference
Is it worth paying 106$ for every product recommendation?
Difference between prediction and taking action

Feedback loops!

Vu¥
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WHY DOES ANY OF THIS WORK AT ALL?

VU

NEURAL NETWORKS ARE GETTING BIG

Model Name Tparams d, ! Batch Size  Learning Rate
GPT-3 Small 125M 68 12 64 0.5M 6.0 x 10
GPT-3 Medium 350M 1024 16 64 0.5M 3.0 x 10
GPT 760M 1536 16 9 0.5M 2.5 % 10
GPT-3 1.3B 2048 128 M 2.0 x 10
GPT- 2.7B 2560 80 IM 1.6 % 10
GPT3 6.7B 1096 128 M 1.2 x 10
GPT 13.0B 40 5140 128 2M 1.0 x 10
GPT-3 175B or “GPT-3"  1750B 96 2288 96 128 3.2M 6 x 10

Table Sizes, architectures, and learning hyper-parameters (batch size in tokens and lea
which we trained. All models were trained for a total of 300 billion tokens.

2.1 Model and Architectures

We use the s

e model a

d architecture as GPT-2 [ J. including

e modified initialization, pre-normalization

and reversible tokenization described therein, with the exception that we use alternating dense and locally banded sparse
% ention patterns in the layers of the transformer, similar to the Sparse Transformer ). To study the dependence
V] an modal ciza wo teoin @ Aiffarant sizes of mdal_ronning aver thras nedars of monnituds fram 198

ring rate) of the models

ZHANG ET AL 2016

thousand steps

Understanding deep learning requires rethinking generalization, C Zhang et al, 2016,

25 « True labels: the original dataset without modification.
=—a true labels « Partially corrupted labels: independently with probability p, the label of each image is

2.0 e—e random labels corrupted as a uniform random class.
@ #—= shuffled pixels + Random labels: all the labels are replaced with random ones.
_D‘ 15 — random pixels « Shuffled pixels: a random permutation of the pixels is chosen and then the same permuta-
o y tion is applied to all the images in both training and test set.
o 4—& gaussian - L : - .
[ + Random pixels: a different random permutation is applied to each image independently.
g + Gaussian: A Gaussian distibution (wi N . N
© dataset) is used to generate random pixels for each image.

05

0.0

5 10 15 20 25

Vu¥

MACHINE LEARNING IS NOT JUST OPTIMIZATION

poor local optimum

good local optimum

parameter space

training loss

Vu¥




arg min 10sSgaa(0)
0

VU

DOUBLE DESCENT
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ResNet18 width parameter ResNet18 Width Parameter
Figure 1: Left: Train and test error as a function of model size, for ResNet18s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.
. De sl Cescr: A i s or O, ki 12 vu¥

NGER TRAINING = LARGER MODEL SPACE

starting point

s modelspace - reachable in 3000 steps -+




Test Error
0.8
Model-wise
Double Descent 0.6
Epoch
2 Double D
S 0.4
o .
<% i
w 0.3
0.2
15 30 45
ResNet18 Width Parameter
53 Deep Double Descent: Where bigger Models and More Data Hurt, Nakkiran et al, 2019. VU -~

The best solutions are suboptimal, local minima for the training error.
Finding the global optimum is disastrous

Gradient descent has implicit regularization: some parameters are
preferred over others, a priori.

More on explicit regularization later

Initialization is of crucial importance.

More on this later

THE BLESSING OF HIGH DIMENSIONALITY

nearby
pos >
nearby
1D 2D 3D 175 000 000 000 D
vu¥
OBSERVATION

Network pruning is the practice of removing near-zero connections from a
trained neural network.

Pruning works exceptionally well.
Often, 85 — 95% of weights can be safely removed.

VUu¥




Traditional view:
« Initialization picks a random model.
« GD teaches each weight what to to.

Lottery ticket view:

« Initialization creates combinatorial explosion of subnetworks.
« Some of these, by chance perform well.

+ GD selects these subnetworks and disables others.

» GD finetunes for extra performance.

. vu¥

COMBINATORIAL EXPLOSION OF SUBNETWORKS.

D D
E

Vu¥

EXPONENTIAL

ROWTH

2N: subnetworks in a neural net with N weights.

233: People on Earth

276: Grains of sand in the Sahara
223: Molecules in a glass of water
2272; Atoms in the visible universe

2403; Number of possible games of chess

261000000: Number of subnetworks in AlexNet (2012)
2175000000 000: Number of subnetworks in GPT-3 (2020)

. Vu¥

1. Train a large Neural Network

2. Prune the train neural network to a succesful subnetwork

basically: kill any weights near 0
3. Revert the pruned network to its precise initialization weights

4. Retrain the pruned network

Result:
A small network trained to the performance of a large network.

If we revert to random weights, performance plummets.
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UNDER ITERATION

Percent of Weights Remaining

Fik
i

1.0

0.9 4

0.8 4

0.7 4

§| < ve-init ko bicket

Accuracy at Early-Stop (Train)

| < random re-init

0.6
100 514 26.5 13.7 7.1 37 1.9 1.0
Percent of Weights Remaining
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin 2019. VU k
81 3

1. Initialize a large neural network.
2. Keep the weights fixed.
3. Search for a mask that selects a subnetwork.

use SGD and gradient estimation (see RL lecture)

Result: The lottery ticket by itself achieves

near-SOTA performance. Qe o8 5
A neural network  Randomly initialized A subnetwork
7 which achieves  nenral network N
good performance

62 What's Hidden in a Randomly Weighted Neural Network? Ramanujan et al. 2020 VU k

MORE CONCLUSIONS

Re-initializing, but retaining the sign of the original weight is enough to
retain performances (Zhou et al 2019).

Initializing with constant values with random sign (+/-) also yields lottery
tickets.

. Vu¥

LOTTERY TICKET HYPOTHESIS

The initialization of a large neural network
contains subnetworks (lottery tickets) that, if
isolated, already solve the task to near state-of-
the-art performance, before any gradient
descent is applied.

The power of gradient descent is not in training
the model, but in eliminating the dead weight.

64 The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle et al 2019.




Zhang et al: Neural Networks can memorize, but don’t.

Double descent: Some models perform best when massively
overparametrized.

Lottery ticket hypothesis: The real power of deep learning comes from the
combinatorial explosion of subnetworks, more than the ability of SGD to
train the model.

Open questions: The last word has not been spoken on these issues.

vu¥

65

Lecture 4: Tools of the trade

Peter Bloem

Deep Learning

V k VRUE
. . UNIVERSITEIT
dlvu.github.io U ©  AMSTERDAM

UNDERSTANDING OPTIMIZERS
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JUSTIFYING STOCHASTIC GRADIENT DESCENT

arg min 10ssg,.,(0)
0

arg min IEzfdrcltaNp 10884414 (0)
0

VUu¥




NO MORE OVERFITTING

poor local optimum

expected loss

good local optimum

training loss

overfitting

parameter space

VUt

JUSTIFYING STOCHASTIC GRADIENT DESCENT: ROBBINS-MONRO (1951)

VEpplossp (0) ~ Vloss(0) with d ~p

Under certain conditions, GD with an estimate of the gradient converges
the optimum (almost certainly).

Broadly:
« convex loss surface.

« asymptotically unbiased estimator.

. . o =0
« decaying learning rate a. S -
Yatcoo VU
CNN RNN
, ,\
image model, lr = 0.03 language model, 1r = 0.00001
. VU¥

Second-order optimization, conditioning

aka Newton’s method

Momentum

Adam

RAdam, LookAhead, LAMB




GRADIENT: A LINEAR APPROXIMATION

. vu¥

NON-LINEAR APPROXIMATION

fu(x) =x f'(a) +fu(a) —a f'(a)
=f(a)+f'(a)(x —a)

fo(x) =c1 +calx —a) + cz(x — a)?
x=a + ¢ =f(a)

I (x) = co +2c3(x — ) o
x=a > ¢y =1f'(a)

I/(x) = 2c3

1
X=a > c3= if”(u)

fo(x) =fla)+f'(a)(x—a) + %f”[u)(xf a)?

76




’S METHOD (1D)

fobe) = 1la) + @) —a) + 2 (@)x—)? |-z
£1.(a) = (@) + "(a)(x— a) =0

. f(a) "
T T )

_ fla) /

x—aff//(a) B

(x) ol

x&xfo(f”[x)

NEWTON’S METHOD (ND)

£(x) ~ f(a) + '(a) (x — @) + %f”(a)(x— a)?

o P
X X ‘Xf”(x)

f(x) ~ f(a) + Vf(a)(x —a) + %(x — ) TV(a) (x— )

_ — —_—
scalar vector matrix
(gradient) (Hessian)

X4 X— o [sz[x)]_lvf[x)
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IS IT PRACTICAL FOR US?

Newton’s method requires:

+ NxN matrix

« Accurate estimation (10K batch size)

« Extra backward pass for each element of the gradient (N in total).

« Inversion of that matrix.

Newton’s method helps us understand and analyse our problems.

. Vu¥

WHAT DOES NEWTON’S METHOD SOLVE?

Parameter interactions: partial derivatives assume independent updates

provided by the off-diagonal elements of the Hessian.

Curvature information: are we nearing a local optimum?

provided by the diagonal elements of the Hessian.




PATHOLOGICAL CURVATURE

81 source: https://distill.pub/2017/momentum/ VUk

%(x—;\]YVZQ(n\[x—n)

eigenvectors of the Hessian

Conditioning number: ratio between the largest and
smallest eigenvalues of the Hessian

- Vu¥

SO, HOW CAN WE SOLVE THESE PROBLEMS?

Requirements:

« Require one backward pass, use only the gradient.
+ only kN extra memory use.

< only O(N) extra computation.

. Vu¥

m<—ym—|—wv

W< W — xm

v :0.5,0.9,0.99
. VU




THREE VIEWS ON MOMENTUM

+ Heavy ball
+ Gradient acceleration

- Exponential moving average

. vu¥

HEAVY BALL MOMENTUM

The gradient acts not like a direction, but like a force.
- force adds to the velocity v
- velocity adds to the position m < ym+w

W4 W—om

B Vu¥

HEAVY BALL MOMENTUM

rolls out of local minima

@
dampens oscillations

accelerates repeating directions

P—— [——

Vu¥

GRADIENT ACCELERATION

imagine all gradients point in in the same direction d:
W w4 od

w4+ w+ x(yd+d)
W w+o(y2d+yd+d)

w4+ w+ od "

1 —yd
. VU

% acceleration

=W+




EXPONENTIAL MOVING AVERAGE

Averaging gradients helps to stabilize.

B vu¥

MOMENTUM AS A WEIGHTED SUM

W W+ g

w W+ o(ygr + g2)

w4 w+ o(vg + g +gs)

W w+ oV + vgs + vgs + 84)

wewHo(y"g + .+ V81 +8n)
“ VUl

MOMENTUM VS. EXPONENTIAL MOVING AVERAGE

EMA, = rx, + (1 — «)EMA, ; with EMA, — 0

=X + (1= «) (k%1 + (1 — )EMA,, )

= kx4 (1 — K)xn_1 4 (1 — «)?EMA,,_»

= kxn + (1= K)xn 1+ (1 =), o+ (1 —«)°EMA,, 4
y=1—«

EMA“/(I - V) =Xn +VXno1+ YQXH—’Z + stn—\% +...

. Vu¥

MINIBATCHING IS ALSO AVERAGING

B : minibatch of instances x

1 1
Vo— lossy = — V.. lossy

" Vu¥




+ N extra memory N: number of weights
« N extra operations
« One extra hyperparameter to tune (y)

Potential quadratic speedup in convergence.
« Per-parameter tuning of behavior (each param gets its own momentum)
« Much more to be said: https://distill.pub/2017/momentum/

. vu¥
NESTEROV MOMENTUM
Compute gradient where you will be, not where you are.
W/ — W + om m momentum
A% w
m< ym-+w wY¥
W % W + am m Nesterov momentum
w
94 see also: https://cs231n.github.io/neural-networks-3/#sgd VU k

REMEMBER THE VARIANCE

"

1000 0 1500 750
Iearming rae 001
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:
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NORMALIZATION
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.
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ADAM: EXPONENTIAL MOVING NORMALIZATION

m<« Bm+(1— () wY

Ve Bov 4 (1— Bo) (WY)? ™ lementei,

- m
w W——F—
Vvte

" vu¥

BIAS CORRECTION

m < m + v
7\ 2
« Bavt (%)
m
m < Pa—
1Byt < steps 2o fur
v
Vi ——
1 — [33
. m
Ve
. vu¥

2N extra memory

2N extra operations

Two extra hyperparameters to tune (B, B2)

defaults are usually fine, and the learning rate becomes much easier to tune.

No convergence guarentees.

Per-parameter tuning of behavior

Currently the default optimizer for most DL settings

. Vu¥

PRACTICAL ADVICE

Newton’s method doesn’t work for deep learning, but it’s great in other
settings.

Start with Adam, with learning rates between 0.1 and 0.00001.

defaults are usually fine for B1, B2
Consider trying plain SGD with (Nesterov) momentum.

Warning: Adam converges slowly for simple problems

SGD is much faster for linear problems.

3e-4 s the best learning rate for Adam, hands down.

" 401 AM - Nov 24, 2016 - Twitter Web Cient




NEW KIDS ON THE BLOCK: RECTIFIED ADAM

Learning rate warmup is often an important trick.

Adam must underestimate the early-training variance.

T agmwthotwarmep o p
. I (pr — (o = VPeo
Figure 2: The absolute gradient histogram of the Transform . _ /——2)11: .
during the training (stacked along the y-axis). X-axis is ab (Poo - 4)(1’00

height is the frequency. Without warmup, the gradient distribu e pan

NEW KIDS ON THE BLOCK: LOOKAHEAD (2019)

LookAhead

Two models: w, v. Train w normally (by any optimizer), periodically push w
towards v.

When Nesterov meets gradient accumulation.
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Lecture 4: Tools of the trade

Peter Bloem
Deep Learning
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THE BAG OF TRICKS
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initialization, normalization

« Glorot, He

« Batch Norm, group norm, layer norm
regularization

e L1, L2, weight decay

« Dropout, priors

other tricks

« data augmentation, transfer learning

vu¥

INITIALIZATION

If the gradients are zero at the first batch, training never starts

If they’re near zero, training starts very slowly

If the gradients blow up, we get NaN

Initial weights should be randomly chosen in a way that keeps gradients
consistent throughout the network.

Vu¥
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derivative 0.25 ->
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derivative 1 =>
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GOOD INITIALIZATION

Make sure your input data is normalized: 0 mean, covariance I

uniform over [0, 1] is usually fine too

Initialize your layer weights so that if the input has mean 0, covariance I,
then the output does too. Same for the backward function.

bias is easy: just init to 0 or close to zero.

« Glorot Initialization (aka Xavier init)

+ Heinitialization (aka Kaiming init)

Vu¥

NORMALIZATION

mean  std. dev.

T oo T — —
0o 1
X—p
X
o+€

Vu¥

y = Wx with W € Rx™m  assume Var(xi) =1
v T choose Var(Wy;) = ¢, Exp(Wy5) =0
x' =W y require Var(y;) = 1
Var(y;) = Varz Wikxk = ZVar(\\/ikxk]
k k

=3 (Var W - Var xic + (Exp W) Var .+ (Exp x ) Var W)

=m-c \viiNN<07 2 )

Var(x{) =n-c n+m
lziH L Wiy ~U | — 6 6

nom Im+m) Y Van+m Vnsm

12 Understanding the difficulty of training deep feedforward neural networks, Glorot and Bengio PLMR 2010 VU k
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HE INITIALIZATION (GAIN FAC

If we use a ReLU activation, we expect to lose half our outputs, so we need
to change c to double the output variance.

2
W“NN(O’W)
12 12
Wi ~ U | =y —2— 2
Y n+m Vn+m

NB: Glorot averages n and m by default, He takes n by default.

113 Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, He et al ICCV 2015 VU k

from torch import nn

model = nn.Sequential
nn.Linear(784, 1024),
nn.ReLU(),
nn.Linear (1024, 10),
nn.Softmax(dim=1)

\e module of shape

(=, VE),where k =

« -Linearweight (torch.Tensor) - the learnable weights of th
) (out_features, in_ features). The values are intialized from ul
s is T the
e . If bias is True,
::-.:r bias - the learnable bias of the module of shape (out. _features). If bias i

Fa P S
©alues are ntaized from U (—VE, VE) where b = i fatures
114

X1,...,Xm : output batch of previous layer
Y1,--.,¥m : batch result
. B : learnable parameter vectors

1

w=— Z Xi mean over batch
1 .

o= Z(X‘ —u)? variance over batch
Xi — .

R = —= Lt standardize
Vo +e

Y=y +B rescale

Vu¥

EAKAGE

HN

During inference, we should only look at one instance at a time.

Using batch information is looking forward in the test data.

Solution:
« Take the training set mean and standard deviation.
« Compute using EMA

This means your network needs to know whether it’s training or predicting.
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MALIZATION

Same as batch norm, but over different subsets of the batch tensor.

Batch Norm Layer Norm Instance Norm

H W

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with V' as the batch axis, C as the channel axis, and (H, W)
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels

Batch norm tends to work best if
« you have a large enough batches

« your instances are i.i.d.

17 image source: Group Normalization, Wu and He, 2018 VU k

RESID ONNECTIONS

layers X

Vu¥

initialization, normalization

« Glorot, He

« Batch Norm, group norm, layer norm
regularization

« L1, L2, weight decay

» Dropout, priors

other tricks

 data augmentation, transfer learning

Vu¥

ULARIZATION

Encoding a preference for certain parameters over others, independent of
the data (a priori).

Implicit regularization: initialization, choice of optimizer, etc.

Explicit regularization:
« penalty terms
* priors

« dropout

Vu¥




PENALTY TERM: LP REGULARIZER

loss;eg = loss + AJ|0]|

/

parameter space

vu¥

VECTOR NORM

Joll = Vw2 + b2
' [6llp = ¥/wP + b

Vu¥

Vu¥
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0>p>1
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L1 REGULARIZER

loss + loss + A||O||*

Vu¥

Vu¥
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NREGULARIZED

L2 regularization: often uses squared norm wTw as penalty term

For computational simplicity, and ease of analysis.

L1 regularization: promotes sparsity

Vu¥




W+ w — oV, (loss(w) + A[|w]||?)

= w — aVloss(w) — oAV ) w?

W w—ow" i
=w — oVloss(w) — cA2w
W YW
w + w — o«Vloss(w)
W4 w— oA2w = (1 — aA2)w
VU¥

Equivalent to (squared norm) L2 regularization, but only with vanilla SGD.
Cheap to compute: no extra nodes in the computation graph required.

With different optimizers, weight decay must be implemented differently.
cf Adam and Adamw

Vu¥

PRIORS AND REGULARIZERS

arg max py (x)p(w)
= argmin — log py(x)p(w)

= argmin — log py(x) —logp(w)

base loss penalty

K
7T)

Vu¥

| = N
—logN(w |0,I) = —log [)jl‘v\p( 5w 0)T1 H(w 0\)j| — wlw
V2 2 )

arg max Py, (x) p*(w)  with p*(w) = %

= argmin —log p,, (x) — logp(w)* + log [ p(v)®

arg min — log p, (x) — oclog p(w)

Vu¥




DROPOUT

(a) Standard Neural Net (b) After applying dropout.
Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right!

An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

137 source: Dropout: A Simple Way to Prevent Neural Networks from Overfitting Srivastava et al, JMLR 2014 VU k

DROPOUT

w pw
Present with Always
probability 7 present

(a) At training time (b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output
at training time.

Vu¥

entered wide scale use in machine learning. Dropout, sim-
ply described, is the concept that if you can learn how to do
a task repeatedly whilst drunk, you should be able to do the
task even better when sober. This insight has resulted in nu-

initialization, normalization

» Glorot, He

» Batch Norm, group norm, layer norm
regularization

« L1, L2, weight decay

» Dropout, priors

other tricks

- data augmentation, transfer learning
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DATA AUGMENTATION

Simple random manipulations of your input

most common in image tasks

Rotation, flipping, adding noise, masking portions.

« Forces your network to learn the invariance that it doesn’t possess
naturally.

« Reduces overfitting: never the same input twice.

But: some invariances can harm your performance.

label: 9 label: 9
abel: label:d )b

TRANSFER LEARNING

Some models extract features that work well for other domains.

1. Train a large model to classify ImageNet or predict tokens in NL
Inception, ResNet, VGG, MobileNet, GPT-2, BERT

2. Remove the last layer

3. Add a new classification layer, train only this layer.

Only the last layer requires gradients

state of the art performance, at the cost of a linear model

Vu¥

LECTURE RECAP

The basic process of training a model. Designing implementing, debugging,
tuning, publishing.

Why does deep learning work at all? Randomization, double descent,
lottery tickets.

Optimizers. Newton’s, momentum, Adam.

The toolbox: initialization, normalization, regularization.

Vu¥

THANK YOU FOR YOUR ATTENTION

divu@peterbloem.nl




