
Michael Cochez
Deep Learning 2020

Lecture 3: Convolutional Neural Networks

dlvu.github.io

part 1: Introduction - why are convolutional architectures needed?

part 2: One-dimensional convolutional neural networks (conv1D)

part 3: Two-dimensions and beyond (conv2D, conv3D, ...)

part 4: Example architecture

THE PLAN

2

PART ONE: INTRODUCTION

4 source: https://cs.stanford.edu/people/karpathy/neuraltalk2/demo.html

5 source: https://arxiv.org/pdf/1506.01497v3.pdf

● We need to get features!

● For tabular data, this is “simple”

● But what with more complex data?

INPUT DATA

6

● Example

INPUT DATA - IMAGES

https://pixabay.com/nl/illustrations/vector-afbeelding-landschap-vector-3833815/

● Example

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING

● Example

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING

CONCATENATE

● The input dimensions are very big

● One channel of an image of 1920x1080 ≃ 2M features

● 1 second of sound at 44kHz = 44k features

● A video: frame rate * image features + sound

○ 10 seconds => 10*(60fps*3*2M+44k)

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING

10

● The input dimensions are very big

● Too big for an MLP

● Example

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING

1920x1080 ≃ 2M

dimensional vector

● The input dimensions are very big

● Too big for an MLP

● Example

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING - MLP

1920x1080 ≃ 2M

dimensional vector

So, you need 2M

weights for just 1

neuron!!!

● The input dimensions are very big

● Too big for an MLP

● Example

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING - MLP

1920x1080 ≃ 2M

dimensional vector

So, you need 2M

weights for just 1

neuron!!!

And you want more

than 1

● The input dimensions are very big

● Too big for an MLP

○ Too many weights

○ Would not converge

○ would not fit in GPU memory

■ Especially when you also need to

keep gradient information

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING - MLP - LIMITATIONS

● The features in this kind of data are not independent

○ They have locality

● But, an MLP does not remember this ordering

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING

15

● We want to be able to do deep learning on this kind of data

● Steps

○ 1D

■ Build intuition

○ 2D

■ Do the same for images

GOAL FOR TODAY

16

PART TWO-a: conv1D ● What is the style of this music?

● Does the user like this music (yes/no)?

○ A classifier

● What is the beat of this music?

● How pleasant is this music to listen to (1-100)?

○ Regression

1D - SOUND - TASK - CLASSIFICATION / REGRESSION

18

● What does a cleaned version of this audio signal look like?

● What audio would fit to these lyrics?

● How would this song continue?

1D - SOUND - TASK - GENERATION

19

● Traditionally, manual feature extraction was used

○ (digital) signal processing with filters

○ Detecting beat

○ Finding manually crafted patterns

○ etc.

1D - SOUND - FEATURES - TRADITIONAL

20

● Traditionally, manual feature extraction was used

○ Problems:

■ Noise

■ Variations

■ Fragments missing

■ etc.

1D - SOUND - FEATURES - TRADITIONAL - ISSUES

21

● Feature Extraction in deep learning is dealt with

by the model itself

1D - SOUND - FEATURES - DEEP LEARNING

22

DL model

Jazz
Rock
Hip hop
...

● Let us try to use an MLP

1D - SOUND - HOW? - MLP

23

DL model

Jazz
Rock
Hip hop
...

I1

I2

I3

1D - SOUND - HOW? - MLP

24

Jazz

Rock

Hip hop

...

w1,1
w1,2

σ(Σwi,1 *Ii)

σ(Σwi,2 *Ii)
w3,2

w3,1

w2,1

w2,2 ...

I1

I2

I3

1D - SOUND - HOW? - MLP

25

Jazz

Rock

Hip hop

...

w1,1
w1,2

σ(Σwi,1 *Ii)

σ(Σwi,2 *Ii)
w3,2

w3,1

w2,1

w2,2 ...W

1D - SOUND - HOW? - MLP

26

Jazz

Rock

Hip hop

...

w1,1

w1,2 σ(Σwi,1 *Ii)

σ(Σwi,2 *Ii)

w3,2

w3,1

w2,1

w2,2

I1

I2

I3

W

● In theory, this might just work, but:
○ Lots of training data would be

needed
○ The MLP does not explicitly look at

the order of the inputs
○ We need very large MLPs with a

lot of weights
■ this will not converge

1D - SOUND - FEATURES - DIGITAL

27

● In the context of the following, we will only use the amplitude of the

soundwave:

1D - SOUND - AMPLITUDE

28

RELU

1D - SOUND - FILTERS - AMPLITUDE MLP

2929

1

-1

-10

-2

1

1

0

1

-1
1

1

1

-1

0

1

1

-1
1

1

1

-10

10

0

1

-1
10

1

1

● In the context of the following, we will only use the amplitude of the

soundwave, which we will normalize

1D - SOUND - AMPLITUDE

30

-1

+1

● The features in the soundwave are not independent

● Nearby features are more important as far away ones

● This idea can be used in filters

1D - SOUND - FILTERS

31

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

32

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

Let’s try to create a

silence neuron

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

I1

I2

I3

w1,1

σ(Σwi,1 *Ii)w2,1

w3,1

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

I1

I2

I3

w1,1

σ(Σwi,1 *Ii)w2,1

w3,1

To get a high value here

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

I1

I2

I3

w1,1

σ(Σwi,1 *Ii)w2,1

w3,1

To get a high value here

We need all parts of
the sum to have a high value

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

w1,1

σ(Σwi,1 *Ii)w2,1

w3,1

To get a high value here

We need all parts of
the sum to have a high value

-0.9

-1.0

-1.0

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

w1,1= -1

σ(Σwi,1 *Ii)w2,1 = -1

w3,1 = -1

To get a high value here

We need all parts of
the sum to have a high value

-0.9

-1.0

-1.0

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

w1,1= -1

σ(Σwi,1 *Ii)w2,1 = -1

w3,1 = -1

To get a high value here

We need all parts of
the sum to have a high value

-0.9

-1.0

-1.0

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

w1,1= -1

σ(Σwi,1 *Ii)w2,1 = -1

w3,1 = -1

To get a high value here

We need all parts of
the sum to have a high value

-0.9

-1.0

-1.0

-1
-1
-1

We represent our filter as a
vector (which is equivalent to
the weight matrix of an MLP.

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

w1,1= -1

σ(Σwi,1 *Ii)w2,1 = -1

w3,1 = -1

To get a high value here

We need all parts of
the sum to have a high value

-0.9

-1.0

-1.0

-1
-1
-1

We represent our filter as a
vector (which is equivalent to
the weight matrix of an MLP.

Cleaning up

● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

σ(Σwi *Ii)

Σwi *Ii = 2.9
-1.0

-1.0

-1
-1
-1

● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

σ(Σwi *Ii)

Σwi *Ii = 1.2
-1.0

-1.0

-1
-1
-1

● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

σ(Σwi *Ii)

Σwi *Ii = 1.6
-1.0

-1.0

-1
-1
-1

● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

σ(Σwi *Ii)

Σwi *Ii = 2.3
-1.0

-1.0

-1
-1
-1

● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

σ(Σwi *Ii)

Σwi *Ii = 2.9
-1.0

-1.0

-1
-1
-1

● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

σ(Σwi *Ii)

Σwi *Ii = 2.4
-1.0

-1.0

-1
-1
-1

● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

σ(Σwi *Ii)

Σwi *Ii = 1.5
-1.0

-1.0

-1
-1
-1

● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

σ(Σwi *Ii)

Σwi *Ii = 0.2
-1.0

-1.0

-1
-1
-1

● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

σ(Σwi *Ii)

Σwi *Ii = -0.6
-1.0

-1.0

-1
-1
-1

● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

-1.0

-1.0

-1
-1
-1

Observations:

● The filter can act as a feature extractor

● The filter can be used at all locations to detect silence

○ We call sliding a filter over all positions convolving

■ The operation is called a convolution operator

● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

-1.0

-1.0

-1
-1
-1

○ The output of the convolution operator is itself

again a vector!

○ A time shift in the input causes the same shift in

the output: Convolution is translation equivariant

○ This operation can be understood as a small MLP

that wanders across the input signal.

○ In practice, the conv. kernels are learned.

1.2
1.6
2.3
2.9
2.4
1.5
0.2
-0.6

PART TWO-b: conv1D

● To understand how the conv. kernels are learned, we require a formal

definition. For a 1D input sequence and a filter

the convolution operation is:

1D CONVOLUTION - FORMAL DEFINITION

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

-1
-1
-1

1.2
1.6
2.3
2.9
2.4
1.5
0.2
-0.6

● How do we learn the filter ?

● If is learned, we will update the filter weights based on some loss

asdfasdfasdfasdfa depending on the conv. response at all places, e.g.,

cross-correlation for classification.

● The gradient utilized to update a kernel weight is given by:

1D CONVOLUTION - FORMAL DEFINITION

Always zero,
except when
tau_0 = tau

1D CONVOLUTION - FORMAL DEFINITION

The update of the weights takes into consideration ALL
ELEMENTS OF THE INPUT SEQUENCE INTO ACCOUNT!

● The weights are shared across the entire input (MLPs learn independent

weights at every position:)

Always zero,
except when
\tau_0 ==
\tau

1D CONVOLUTION - FORMAL DEFINITION

● Advantages:

● Since weights are shared for every position, Convolutional Networks (CNNs) are

much MUCH! MUCH! smaller than MLPs. -> PARAMETER EFFICIENCY

● Convolutions can learn a powerful pattern recognizers, e.g., for silence, based on

“silences” appearing everywhere in the input (MLPs must learn an independent

“silence recognizer” for every position) -> DATA EFFICIENCY

● Convolutions can recognize a “silence pattern” regardless of where it appears

(MLPs must have seen silence at a given position before in order to recognize it)

-> GENERALIZATION IMPROVEMENTS

IMPORTANT: 2 and 3 are a consequence of convolution being translation equivariant.

Up till now:

● We can create filters

○ MLP in disguise

○ We can convolve them over the input which creates an output vector

Coming next:

● We need multiple filters

● What do we do at the start and end of the data?

● What at the next layer?

● How do we get the dimension down?

1D - CONVOLUTIONS

60

Up till now:

● We can create filters

○ MLP in disguise

○ We can convolve them over the input which creates an output vector

Coming next:

● We need multiple filters

● What at the next layer?

● What do we do at the start and end of the data?

● How do we get the dimension down?

1D - CONVOLUTIONS

61

1D - CONVOLUTIONS - MULTIPLE FILTERS

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

-1.0

-1.0

-1
-1
-1

● We need to have all sorts of filters

for feature extraction

■ We can have as many filters as

we want

■ Now, the output becomes a

matrix, called the output volume

1.2
1.6
2.3
2.9
2.4
1.5
0.2
-0.6

-1
0
1

0.1
-0.6
-0.6
-0.1
0.6
0.9
0.7
0.5

... ...

Up till now:

● We can create filters

○ MLP in disguise

○ We can convolve them over the input which creates an output vector

Coming next:

● We need multiple filters

● What at the next layer?

● What do we do at the start and end of the data?

● How do we get the dimension down?

1D - CONVOLUTIONS

63

What do we do at the next layer?

● We have the output volume of the previous layer and we will just define

a convolution operator over that!

■ This filter needs a second dimension!

■ And can be of a different size.

1D - CONVOLUTIONS - FILTERS AT FURTHER LAYERS

64

1.2
1.6
2.3
2.9
2.4
1.5
0.2
-0.6

0.1
-0.6
-0.6
-0.1
0.6
0.9
0.7
0.5

1 -1
-1 -1
-1 -1
1 1

1.2
0.7
-0.5
-1.5
-1.6

For the sake of the example, we did not apply the bias
and non-linearity!!, which you would do in practice.

What do we do at the next layer?

● We have the output volume of the previous layer and we will just define

a convolution operator over that!

■ This filter needs a second dimension!

■ And can be of a different size.

1D - CONVOLUTIONS - FILTERS AT FURTHER LAYERS

65

1.2
1.6
2.3
2.9
2.4
1.5
0.2
-0.6

0.1
-0.6
-0.6
-0.1
0.6
0.9
0.7
0.5

...
1 -1
-1 -1
-1 -1
1 1

1.2
0.7
-0.5
-1.5
-1.6

For the sake of the example, we did not apply the bias
and non-linearity!!, which you would do in practice.

What do we do at the next layer?

● We have the output volume of the previous layer and we will just define

a convolution operator over that!

■ This filter needs a second dimension!

■ And can be of a different size.

1D - CONVOLUTIONS - FILTERS AT FURTHER LAYERS

66

1.2
1.6
2.3
2.9
2.4
1.5
0.2
-0.6

0.1
-0.6
-0.6
-0.1
0.6
0.9
0.7
0.5

...
1 -1
-1 -1
-1 -1
1 1

1.2
0.7
-0.5
-1.5
-1.6

For the sake of the example, we did not apply the bias
and non-linearity!!, which you would do in practice.

What do we do at the next layer?

● We have the output volume of the previous layer and we will just define

a convolution operator over that!

■ This filter needs a second dimension!

■ And can be of a different size.

1D - CONVOLUTIONS - FILTERS AT FURTHER LAYERS

67

1.2
1.6
2.3
2.9
2.4
1.5
0.2
-0.6

0.1
-0.6
-0.6
-0.1
0.6
0.9
0.7
0.5

...
1 -1
-1 -1
-1 -1
1 1

1.2
0.7
-0.5
-1.5
-1.6

For the sake of the example, we did not apply the bias
and non-linearity!!, which you would do in practice.

What do we do at the next layer?

● We have the output volume of the previous layer and we will just define

a convolution operator over that!

■ This filter needs a second dimension!

■ And can be of a different size.

1D - CONVOLUTIONS - FILTERS AT FURTHER LAYERS

68

1.2
1.6
2.3
2.9
2.4
1.5
0.2
-0.6

0.1
-0.6
-0.6
-0.1
0.6
0.9
0.7
0.5

...
1 -1
-1 -1
-1 -1
1 1

1.2
0.7
-0.5
-1.5
-1.6

For the sake of the example, we did not apply the bias
and non-linearity!!, which you would do in practice.

What do we do at the next layer?

● We have the output volume of the previous layer and we will just define

a convolution operator over that!

■ This filter needs a second dimension!

■ And can be of a different size.

■ The meaning of these filters

recursively depends on the meaning

of the filters on the layer before. But,

overall becomes more complex.

1D - CONVOLUTIONS - FILTERS AT FURTHER LAYERS

69

1.2
1.6
2.3
2.9
2.4
1.5
0.2
-0.6

0.1
-0.6
-0.6
-0.1
0.6
0.9
0.7
0.5

...
1 -1
-1 -1
-1 -1
1 1

1.2
0.7
-0.5
-1.5
-1.6

For the sake of the example, we did not apply the bias
and non-linearity!!, which you would do in practice.

Up till now:

● We can create filters

○ MLP in disguise

○ We can convolve them over the input which creates an output vector

Coming next:

● We need multiple filters

● What at the next layer?

● What do we do at the start and end of the data?

● How do we get the dimension down?

1D - CONVOLUTIONS

70

● Near the boundaries of the data, we cannot apply the convolution as we

normally do:

1D - CONVOLUTIONS - PADDING

71

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

-1.0

-1
-1
-1

This is still ok.

● Near the boundaries of the data, we cannot apply the convolution as we

normally do:

1D - CONVOLUTIONS - PADDING

72

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

-1.0

-1
-1
-1 This is not ok

● Near the boundaries of the data, we cannot apply the convolution as we

normally do:

1D - CONVOLUTIONS - PADDING

73

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

-1.0

-1
-1
-1

Solutions:
● Ignore the boundaries

○ This also leads to a
reduction of dimension!

○ information at the
boundaries gets lost

1.2
1.6
2.3
2.9
2.4
1.5
0.2
-0.6

● Near the boundaries of the data, we cannot apply the convolution as we

normally do:

1D - CONVOLUTIONS - PADDING

74

0
-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

-1.0

-1
-1
-1

Solutions:
● Ignore the boundaries
● Pad the boundaries

○ Add (filter length-1)/2
around the data to preserve
the dimension

○ Fill this with a fixed value,
often 0

1.2
1.6
2.3
2.9
2.4
1.5
0.2
-0.6

● Near the boundaries of the data, we cannot apply the convolution as we

normally do:

1D - CONVOLUTIONS - PADDING

75

0
-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

-1.0

-1
-1
-1

Solutions:
● Ignore the boundaries
● Pad the boundaries

○ Add (filter length-1)/2
around the data to preserve
the dimension

○ Fill this with a fixed value,
often 0

1.2
1.6
2.3
2.9
2.4
1.5
0.2
-0.6

● Near the boundaries of the data, we cannot apply the convolution as we

normally do:

1D - CONVOLUTIONS - PADDING

76

0
-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

-1.0

-1
-1
-1

Solutions:
● Ignore the boundaries
● Pad the boundaries

○ Add (filter length-1)/2
around the data to preserve
the dimension

○ Fill this with a fixed value,
often 0

0.8
1.2
1.6
2.3
2.9
2.4
1.5
0.2
-0.6

Up till now:

● We can create filters

○ MLP in disguise

○ We can convolve them over the input which creates an output vector

Coming next:

● We need multiple filters

● What at the next layer?

● What do we do at the start and end of the data?

● How do we get the dimension down?

1D - CONVOLUTIONS

77

1D - CONVOLUTIONS - STRIDE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

-1.0

-1.0

-1
-1
-1

1.2
2.3
2.4
0.2

● We need to reduce dimension for the final
classification

○ Solution 1: we take larger steps with our
filter

■ the size of the step is called the stride

Strid
e 2

1D - CONVOLUTIONS - STRIDE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

-1.0

-1.0

-1
-1
-1

1.2
2.3
2.4
0.2

● We need to reduce dimension for the final
classification

○ Solution 1: we take larger steps with our
filter

■ the size of the step is called the stride

1D - CONVOLUTIONS - STRIDE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

-1.0

-1.0

-1
-1
-1

1.2
2.3
2.4
0.2

● We need to reduce dimension for the final
classification

○ Solution 1: we take larger steps with our
filter

■ the size of the step is called the stride

1D - CONVOLUTIONS - STRIDE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

-1.0

-1.0

-1
-1
-1

1.2
2.3
2.4
0.2

● We need to reduce dimension for the final
classification

○ Solution 1: we take larger steps with our
filter

■ the size of the step is called the stride

1D - CONVOLUTIONS - STRIDE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

-1.0

-1.0

-1
-1
-1

1.2
2.3
2.4
0.2

● We need to reduce dimension for the final
classification

○ Solution 1: we take larger steps with our
filter

■ the size of the step is called the stride
■ The dimension reduces with a factor equal

to the stride
● The input dimension must be a multiple

of the stride!

1D - CONVOLUTIONS - POOLING

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

● We need to reduce dimension for the final
classification

○ Solution 1: use a larger stride
○ Solution 2: use a pooling layer

1D - CONVOLUTIONS - POOLING

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

● We need to reduce dimension for the final
classification

○ Solution 1: use a larger stride
○ Solution 2: use a pooling layer

■ Goes over the data similar to a
convolution

■ Applies a deterministic function like max
or average on the input

■ Usually has stride ==pool size

1D - CONVOLUTIONS - POOLING

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

● We need to reduce dimension for the final
classification

○ Solution 1: use a larger stride
○ Solution 2: use a pooling layer

■ Goes over the data similar to a
convolution

■ Applies a deterministic function like max
or average on the input

■ Usually has stride ==pool size

-0.3

MAX

1D - CONVOLUTIONS - POOLING

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

● We need to reduce dimension for the final
classification

○ Solution 1: use a larger stride
○ Solution 2: use a pooling layer

■ Goes over the data similar to a
convolution

■ Applies a deterministic function like max
or average on the input

■ Usually has stride ==pool size

-0.3
-0.9

MAX

1D - CONVOLUTIONS - POOLING

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

● We need to reduce dimension for the final
classification

○ Solution 1: use a larger stride
○ Solution 2: use a pooling layer

■ Goes over the data similar to a
convolution

■ Applies a deterministic function like max
or average on the input

■ Usually has stride ==pool size

-0.3
-0.9
+0.3

MAX

PART THREE: Conv2D, Conv3D, ConvND

2D - IMAGES - REPRESENTATION

The 2 dimensional color image becomes a 3 dimensional tensor!

2D - IMAGES - REPRESENTATION - 3D TENSOR

A 3 dimensional color video becomes a 4 dimensional tensor!

3D - VIDEO - REPRESENTATION - 4D TENSOR

We start with a 5x5 image

2D - IMAGES - CONVOLUTION

92 animation/image source: https://cs231n.github.io/convolutional-networks/#fc

We start with a 5x5 image

We have 3 channels

2D - IMAGES - CONVOLUTION - CHANNELS

93 animation/image source: https://cs231n.github.io/convolutional-networks/#fc

We start with a 5x5 image

We have 3 channels

We want to use 2 filters, these are

themselves 3 dimensional

2D - IMAGES - CONVOLUTION - FILTERS

94 animation/image source: https://cs231n.github.io/convolutional-networks/#fc

We start with a 5x5 image

We have 3 channels

We want to use 2 filters, these are

themselves 3 dimensional

We add padding to solve issues

with convolving near the border

2D - IMAGES - CONVOLUTION - PADDING

95 animation/image source: https://cs231n.github.io/convolutional-networks/#fc

We start with a 5x5 image

We have 3 channels

We want to use 2 filters, these are

themselves 3 dimensional

We add padding to solve issues

with convolving near the border

We convolve with a stride of 2

Try to understand why the output

volume has these dimensions.

2D - IMAGES - CONVOLUTION - OUTPUT VOLUME

96 animation/image source: https://cs231n.github.io/convolutional-networks/#fc

We start with a 5x5 image

We have 3 channels

We want to use 2 filters, these

are themselves 3 dimensional

We add padding to solve issues

with convolving near the border

We convolve with a stride of 2

● See the animation on the site

below

2D - IMAGES - REPRESENTATION

97 animation/image source: https://cs231n.github.io/convolutional-networks/#fc

We saw that convolutions are equivariant to translations. Naturally it

holds for ConvNDs as well:

CONVOLUTION - EQUIVARIANCE ANALYSIS

Conv2D

Conv2D

Translation Translation

INPUT FEATURES

Worral’17

A translation of the input produces an

equivalent translation in the output.

For a translated input :

What about other transformations?, e.g., rotation, scaling, …

Are ConvNDs rotation and scale equivariant?

CONVOLUTION - EQUIVARIANCE ANALYSIS

The convolution is not a rotation or scale equivariant mapping.

What about other transformations?, e.g., rotation, scaling, …

Are ConvNDs rotation and scale equivariant?

CONVOLUTION - EQUIVARIANCE ANALYSIS

The convolution is not a rotation or scale equivariant mapping. But a

network can learn rotated / scaled versions of the same filter.

BUT approx. equivariant

for scales / rotations

learned by the network.

CONVOLUTION - EQUIVARIANCE ANALYSIS

Approx. equivariant for

scales / rotations

learned by the network.

Problem: Each of these filters are independent weights:

● The network wastes a lot of parameters learning transformed

versions of the same -> Parameter Inefficient!

● To learn these filters the network must see these transformations in

the training set -> Data Inefficient + No equivariance guarantees!

CONVOLUTION - EQUIVARIANCE ANALYSIS

Approx. equivariant for

scales / rotations

learned by the network.

Solution: Group Convolutions:

● Not just share parameters for translation but also other transformations!

● Extreme parameter sharing + equivariance guarantees.

● Active field of research. Amsterdam is a big player in this field. Several

papers written at the VU, the UvA and Qualcomm AI Research.*

* Let us know if you are interested in writing your thesis in this topic ;)

PART FOUR: Example of a real world CNN

Showed the feasibility of deep learning

○ Mainly thanks to the use of GPUs for computing convolutions

○ Achieved a top-5 error of 15.3% on a dataset with 1000 categories

By some considered as the real start of adoption of neural networks by

the industry

Is actually just a variant on an older idea

● LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard, R. E.; Hubbard, W.; Jackel, L. D. (1989). "Backpropagation Applied to Handwritten Zip Code Recognition”

AlexNet ()

104

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep

convolutional neural networks." Advances in neural information processing systems. 2012

AlexNet

105
image source: https://www.learnopencv.com/number-of-parameters-and-tensor-sizes-in-convolutional-neural-network/

part 1: Introduction - why are convolutional architectures needed?

part 2: One-dimensional convolutional neural networks (conv1D)

part 3: Two-dimensions and beyond (conv2D, conv3D, ...)

part 4: Example architecture

Summary

106

