Lecture 3: Convolutional Neural Networks

Michael Cochez
Deep Learning 2020

dlvu.github.io

VRIJE
UNIVERSITEIT
AMSTERDAM

part 1: Introduction - why are convolutional architectures needed?
part 2: One-dimensional convolutional neural networks (conv1D)
part 3: Two-dimensions and beyond (conv2D, conv3D, ...)

part 4: Example architecture

. VU

INTRODUCTION

VU

o0 i YO | T

S | G T

asoccer player is kicking a soccer ball

person : 0.992

horse : 0.993 g

INPUT DATA

. We need to get features!
. For tabular data, this is “simple”
. But what with more complex data?

. VU

INPUT DATA - IMAGES

. Example

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING

. Example

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING

. The input dimensions are very big

. Example =]

T . One channel of an image of 1920x1080 = 2M features
- . 1 second of sound at 44kHz = 44k features

. Avideo: frame rate * image features + sound
- — . 10 seconds => 10*(60fps*3*2M+44k)

— CONCATENATE

L —_—

. VU¥ . VU

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING - MLP

. The input dimensions are very big . The input dimensions are very big
. Too big for an MLP . Too big for an MLP

1920x1080 = 2M
. Example — . Example —

dimensional vector

| 1920x1080 = 2M | So,youneed 2M

— . .
% dlmenSIonaI o

VU¥

weights for just 1
neuron!!!

VU

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING - MLP

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING - MLP - LIMITATIONS

. The input dimensions are very big

. Too big for an MLP
1920x1080 = 2M
. Example
dimensional vector
So, you need 2M
—p weights for just 1
And you want more
— than1l VU%

. The input dimensions are very big
. Too big for an MLP
. Too many weights
. Would not converge
. would not fit in GPU memory
. Especially when you also need to
keep gradient information

VU¥

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING

. The features in this kind of data are not independent
. They have locality
. But, an MLP does not remember this ordering

O
0
:;

VU¥

15

GOAL FOR TODAY

. We want to be able to do deep learning on this kind of data
. Steps
. 1D
. Build intuition
.2D
. Do the same for images

. VU

convlD

1D - SOUND - TASK - CLASSIFICATION / REGRESSION

. What is the style of this music?
. Does the user like this music (yes/no)?

. A classifier
. What is the beat of this music?
. How pleasant is this music to listen to (1-100)?
. Regression

; VU

1D - SOUND - TASK - GENERATION

\
' \
. What does a cleaned version of this audio signal look like?
. What audio would fit to these lyrics?
. How would this song continue?

o

1D - SOUND - FEATURES - TRADITIONAL

M |
‘\

. Traditionally, manual feature extraction was used
. (digital) signal processing with filters
. Detecting beat
. Finding manually crafted patterns
. etc.

1D - SOUND - FEATURES - TRADITIONAL - ISSUES

v

. Traditionally, manual feature extraction was used
. Problems:
. Noise
. Variations
. Fragments missing
. etc.

. VU¥

1D - SOUND - FEATURES - DEEP LEARNING

by the model itself

DL model

. Feature Extraction in deep learning is dealt with

Jazz
Rock
Hip hop

Lsduinas

VU¥

1D - SOUND - HOW? - MLP
. Let us try to use an MLP MW

Jazz
Rock

DL model Hip hop

—~ @ e
<&

v’/ 7\

| Jazz

4
o ..

<&

- < e In theory, this might just work, but: I '. . ‘ “

| o Lots of training data would be

needed

] C o The MLP does not explicitly look at
the order of the inputs \

] o We need very large MLPs witha | Fo

< lot of weights

m this will not converge

1D - SOUND - FEATURES - DIGITAL

1D - SOUND - AMPLITUDE

ot o

. In the context of the following, we will only use the amplitude of the
soundwave:

 ndh, Nm,‘WM«W«MMMMM«MW“M.,“,W}Mw“kmuﬂwmW«»

vVU¥

1D - SOUND - FILTERS - AMPLITUDE MLP

1D - SOUND - AMPLITUDE

. In the context of the following, we will only use the amplitude of the

soundwave, which we will normalize
+1

Wﬁwmmemm,,wm TN

1D - SOUND - FILTERS

. The features in the soundwave are not independent
. Nearby features are more important as far away ones
. This idea can be used in filters

1D - SOUND - FILTERS - EXAMPLE

. Detect whether there is a silence

A, MMWW‘MMMMMMMMW‘M.W'M

. VU

. Detect whether there is a silence
A wMMMWMMMMMWMMMM

|

o
o

o
w

I
~

o
©

-
o

-
o

I
~

'
o
o

T
o
w

+
o
IS

VU¥

1D - SOUND - FILTERS - EXAMPLE

|

o
[¢,]

o
w

o
'S

oo <
NN

T
o
w

+
N
~

. Detect whether there is a silence
N\}m “"\.‘5‘ "Ww‘%* MAJ“'M M b “MMWMWWJ

VU¥

. Detect whether there is a silence
A WMMMWMMMWMMWMMMM

o
[$)]

o
w

o
S

Let’s try to create a
silence neuron

o
S

o
N

T
o
w

+
<
'S

VU¥

1D - SOUND - FILTERS - EXAMPLE

. Detect whether there is a silence

JERY RTINS,

RLYLVIYR

VU

. Detect whether there is a silence Mu . Detect whether there is a silence m
OO TR I URTNTRYA L Y1 V7 YN I PO VR ARV TR L Y1 VT \ Y

To get a high value To get a high value
-0.5 W,

We need all parts of
Vu¥

to have a high value

VU¥

. Detect whether there is a silence . Detect whether there is a silence
MWMMWMMWM | M\l..mwmm»\MMJ«MWMMWM

To get a high value To get a high value
0.5 Wy =-1

We need all parts of We need all parts of
to have a high value to have a high value

o

VU¥ VU

1D - SOUND - FILTERS - EXAMPLE

. Detect whether there is a silence
,,NMWMMMM%MMmMMMWMWJMJ

We need all parts of
to have a high value

VU¥

1D - SOUND - FILTERS - EXAMPLE

JUNY TR PETR TRV Y

1
=R

. Detect whether there is a silence

To get a high value

We need all parts of

to have a high value

We represent our filter as a
(which is equivalent to

the weight matrix of an MLP.

VU¥

1D - SOUND - FILTERS - EXAMPLE
. Detect whether there is a silence w l m

At A A M,

1D - SOUND - FILTERS - CONVOLUTIONS
WMWM

Detect whether there is a silence

JRRY TRTETRTRY,

-0.5
-0.3
0.4 o(Zw,*1)
Cleaning up ed all parts of .
M to have a high value 04 Tw*1=29
-0.1
asa +0.3
S Yo) *04 s
\ / L the weight matrix of an MLP. VU k VU k

1D - SOUND - FILTERS - CONVOLUTIONS 1D - SOUND - FILTERS - CONVOLUTIONS

. Detect whether there is a silence

MM«I%WMM‘WKMMMMMWMMMM ;:;:ﬁt;\;h;i; 1;31:.. Aok «MMWMWM

] o(Zw,*1) o(Zw,*1)
) w,*=12) Sw,*=16
Vu¥ f VU

1D - SOUND - FILTERS - CONVOLUTIONS 1D - SOUND - FILTERS - CONVOLUTIONS

. Detect whether there is a silence

-0.5 -0.5
03 0.3
-0.4
. O'(ZWi *Ii) O(ZWi *'i)
1.0]
04 Tw,*1=23 04 w,*1,=29
-0.1 -0.1
+0.3 +0.3
+0.4

T
b
~

VU¥

VU

1D - SOUND - FILTERS - CONVOLUTIONS

. Detect whether there is a silence

Nttt AR,

1D - SOUND - FILTERS - CONVOLUTIONS

. Detect whether there is a silence

NMMIWM\MMM‘%MMMMMMWMMM

-0.5 -0.5

-0.3 -0.3
1-0.4 | * 1-0.4 | *

09 n O'(Zwi |;) 0.9 O'(ZWi 'i)

IEN 1.0 -1]
w =24 Tw *1=15

-0.1

+0.3 +0.3

0.4 VUi 04 VU¥

1D - SOUND - FILTERS - CONVOLUTIONS

. Detect whether there is a silence

Aotdbhnda bk Yo «MMWMWM

1D - SOUND - FILTERS - CONVOLUTIONS
WMMMM
- ! &l

. Detect whether there is a silence

JONY TR TETN TRy

o(Zw,*1) o(Zw,*1)
EN =N
Tw.*1.=0.2 Zw,*I,=-0.6

VU

VU¥

1D - SOUND - FILTERS - CONVOLUTIONS

. Detect whether there is a silence

,,MM»Mwm»\.‘\»WwwmWMMM

05 Observations:

03

|04 . The filter can act as a feature extractor

1-0.9| [. . .

-1.0 . The filter can be used at all locations to detect silence
EIREN -) - .

0.4 . We call sliding a filter over all positions convolving

;%13 . The operation is called a convolution operator

+0.4 VUk

1D - SOUND - FILTERS - CONVOLUTIONS

. Detect whether there is a silence
) Wmmm |
W | g A

M /‘\I%»MMf“wnmﬁkwwm N)MMMW

. The output of the convolution operator is itself
:8—;2 2 again a vector!
-04 16
S5 531 . A time shift in the input causes the same shift in
% 2.9 the output: Convolution is translation equivariant
1.0 [] 2.4
04| 5] . This operation can be understood as a small MLP
;%‘_13 % that wanders across the input signal.
1+0.4] — . In practice, the conv. kernels are learned. VUk

convlD

VU

1D CONVOLUTION - FORMAL DEFINITION

. To understand how the conv. kernels are learned, we require a formal
definition. For a 1D input sequence X € R™ and afilter k € R2mH1
the convolution operation is:

m

h(t) = (x«k)(t) = > x(t—7)-k(r)

T=—m

1D CONVOLUTION - FORMAL DEFINITION

. How do we learn the filterk ?

. Ifkis learned, we will update the filter weights based on some loss
Ly = Z?’:O Ln(1) depending on the conv. response at all places, e.g.,
cross-correlation for classification.

. The gradient utilized to update a kernel weight k() is given by:

m

h(t) = (x *k)(t) = Z x(t —7)-k(7) Always zero,
T=—m except when
tau_0=tau

0L, 0L, Oh <~ OLy(t) & Ok(7)
k() Oh Ok(ry) 2= Oh(t) > x(t-7)

T=—1n

VU¥

1D CONVOLUTION - FORMAL DEFINITION

h(t) = (x+ k() = Z x(t —7) - k(1) Always zero,
—_m except when
Ly _ JdL, Oh | " Ln(t) m ok(7) \tau_0 ==
k(o) ~ 0h ok(r) | < oh(t) ; x(t =) k() \tau

\ The update of the weights takes into consideration ALL
ELEMENTS OF THE INPUT SEQUENCE INTO ACCOUNT!

. The weights are shared across the entire input (MLPs learn independent
weights at every position: h(t) = W (¢,:) - x(¢))

VU¥

1D CONVOLUTION - FORMAL DEFINITION

. Advantages:

. Since weights are shared for every position, Convolutional Networks (CNNs) are
much MUCH! MUCH! smaller than MLPs. -> PARAMETER EFFICIENCY

. Convolutions can learn a powerful pattern recognizers, e.g., for silence, based on
“silences” appearing everywhere in the input (MLPs must learn an independent
“silence recognizer” for every position) -> DATA EFFICIENCY

. Convolutions can recognize a “silence pattern” regardless of where it appears
(MLPs must have seen silence at a given position before in order to recognize it)
-> GENERALIZATION IMPROVEMENTS

IMPORTANT: 2 and 3 are a consequence of convolution being translation equivariant.

VU

1D - CONVOLUTIONS

Up till now:

. We can create filters
. MLP in disguise
. We can convolve them over the input which creates an output vector

Coming next:

. We need multiple filters

. What do we do at the start and end of the data?
. What at the next layer?

. How do we get the dimension down?

1D - CONVOLUTIONS

Up till now:

. We can create filters
. MLP in disguise
. We can convolve them over the input which creates an output vector

Coming next:

. We need multiple filters -II

. What at the next layer?
. What do we do at the start and end of the data?
. How do we get the dimension down?

. VU¥

1D - CONVOLUTIONS - MULTIPLE FILTERS

N, MWMWMMWMM»NJNMWMWM

o5 | — . We need to have all sorts of filters

-0.3 1.2 || 01 for feature extraction

0.4 16 |[-0.6)

-0.9 23 |[-06] . We can have as many filters as

-1.0 10 | - 2.9 ([-01] .

1.0 EN 2406 we want

04 15][0.9

i oo o7 . Now, the output becomes a

+0.3 -0.6 || 0.5 matrix, called the output volume
] —I vuf

1D - CONVOLUTIONS

Up till now:

. We can create filters
. MLP in disguise
. We can convolve them over the input which creates an output vector
Coming next:
. We need multiple filters
. What at the next layer? -||

. What do we do at the start and end of the data?
. How do we get the dimension down?

1D - CONVOLUTIONS - FILTERS AT FURTHER LAYERS

What do we do at the next layer?

. We have the output volume of the previous layer and we will just define
a convolution operator over that!

. This filter needs a second dimension!
. And can be of a different size.

For the sake of the example, we did not apply the bias
and non-linearity!!, which you would do in practice. <

1D - CONVOLUTIONS - FILTERS AT FURTHER LAYERS

What do we do at the next layer?

. We have the output volume of the previous layer and we will just define
a convolution operator over that!

1. This filter needs a second dimension!

[0.1] . And can be of a different size.

For the sake of the example, we did not apply the bias
65 and non-linearity!!, which you would do in practice.

VU¥

1D - CONVOLUTIONS - FILTERS AT FURTHER LAYERS

What do we do at the next layer?

. We have the output volume of the previous layer and we will just define
a convolution operator over that!
(— . This filter needs a second dimension!

. And can be of a different size.

For the sake of the example, we did not apply the bias
66 and non-linearity!!, which you would do in practice.

VU¥

1D - CONVOLUTIONS - FILTERS AT FURTHER LAYERS

What do we do at the next layer?

. We have the output volume of the previous layer and we will just define
a convolution operator over that!
I |{—. This filter needs a second dimension!

1.2 1 . And can be of a different size.

For the sake of the example, we did not apply the bias
67 and non-linearity!!, which you would do in practice.

VU¥

1D - CONVOLUTIONS - FILTERS AT FURTHER LAYERS

What do we do at the next layer?

. We have the output volume of the previous layer and we will just define
a convolution operator over that!

. This filter needs a second dimension!
. And can be of a different size.

For the sake of the example, we did not apply the bias
and non-linearity!!, which you would do in practice.

VU

1D - CONVOLUTIONS - FILTERS AT FURTHER LAYERS

What do we do at the next layer?

. We have the output volume of the previous layer and we will just define
a convolution operator over that!
1. This filter needs a second dimension!

1.2/ 0.1 | . And can be of a different size.

ﬁ ﬁ . The meaning of these filters

% & recursively depends on the meaning
% % of the filters on the layer before. But,
-0.6/| 0.5 | overall becomes more complex.

For the sake of the example, we did not apply the bias
69 and non-linearity!!, which you would do in practice.

VU¥

1D - CONVOLUTIONS

Up till now:

. We can create filters
. MLP in disguise
. We can convolve them over the input which creates an output vector
Coming next:
. We need multiple filters
. What at the next layer?

. What do we do at the start and end of the data? -ll
. How do we get the dimension down?

. VU

1D - CONVOLUTIONS - PADDING

. Near the boundaries of the data, we cannot apply the convolution as we
normally do:

This is still ok.

1D - CONVOLUTIONS - PADDING

. Near the boundaries of the data, we cannot apply the convolution as we
normally do:

(1]

; ' VU

1D - CONVOLUTIONS - PADDING 1D - CONVOLUTIONS - PADDING

. Near the boundaries of the data, we cannot apply the convolution as we . Near the boundaries of the data, we cannot apply the convolution as we
normally do: normally do:

Solutions:

® [gnore the boundaries

the boundaries

o Add (filter length-1)/2
around the data to preserve
the dimension

o Fill this with a fixed value,
often 0

Solutions:
® Ignore the boundaries
o This also leads to a
reduction of dimension!
o information at the
boundaries gets lost

. ' VU¥ . VU

1D - CONVOLUTIONS - PADDING 1D - CONVOLUTIONS - PADDING

. Near the boundaries of the data, we cannot apply the convolution as we . Near the boundaries of the data, we cannot apply the convolution as we
normally do: normally do:

[0 | Solutions: A Solutions:
% ® [gnore the boundaries :1 l:!;l ® |gnore the boundaries
0.4 6] . the boundaries 16| the boundaries
1-0.9| 12.3 | o Add (filter length-1)/2 12.3 | o Add (filter length-1)/2
-1.0 2.9 2.9
ol o4 around the data to preserve 54 around the data to preserve
1-04] 115 the dimension 15| the dimension
;%"; % o Fill this with a fixed value, : % o Fill this with a fixed value,
[+0.4] T often 0) T often 0
S] Vu¥ . B Vu¥

1D - CONVOLUTIONS

Up till now:

. We can create filters
. MLP in disguise

Coming next:

. We need multiple filters

. What at the next layer?

. What do we do at the start and end of the data?

. How do we get the dimension down? -H

77

. We can convolve them over the input which creates an output vector

VU¥

1D - CONVOLUTIONS - STRIDE

J\AMI.MMWWMMWMMMWM

Z3pIs

o We need to reduce dimension for the final
classification

o Solution 1: we take larger steps with our
filter

m the size of the step is called the stride

VU¥

1D - CONVOLUTIONS - STRIDE

NNWWIMWMMWWJWMJWWMﬂMWAJANMW

0.5 classification

filter

o Solution 1: we take larger steps with our

m the size of the step is called the stride

® We need to reduce dimension for the final

VU¥

1D - CONVOLUTIONS - STRIDE

,,,NW\\I%M&WMMMA«‘M*MM‘WM “‘M‘JM'MJ

® We need to reduce dimension for the final
classification

o Solution 1: we take larger steps with our
filter

m the size of the step is called the stride

VU

1D - CONVOLUTIONS - STRIDE

N TR TR TN YRry L V1 VT YN

e We need to reduce dimension for the final
classification

1D - CONVOLUTIONS - STRIDE

/.MMIMM:‘mﬁmm’KMN,MW*«MWMWM

— e We need to reduce dimension for the final
[-0.5]| classification
o Solution 1: we take larger steps with our % o Solution 1: we take larger steps with our
filter 1-0.9] filter
m the size of the step is called the stride -1.0 m the size of the step is called the stride
-1.0 . . .
04 m The dimension reduces with a factor equal
;%-13 to the stride
0. o The input dimension must be a multiple
VU% - L of the stride! VUk

1D - CONVOLUTIONS - POOLING

MMWMJMMMMWMMMM

1D - CONVOLUTIONS - POOLING

Aosalldnt mwk.wMMWWMM

e We need to reduce dimension for the final o We need to reduce dimension for the final
05| classification 05| classification
% o Solution 1: use a larger stride % o Solution 1: use a larger stride
[-0.9] o Solution 2: use a pooling layer 1-0.9] o Solution 2: use a pooling layer
:1 g :1 8 m Goes over the data similar to a
04 04 convolution
;%-13 ;%-; m Applies a deterministic function like max
0.4 104 or average on the input
] VU¥] m Usually has stride ==pool size VU¥

1D - CONVOLUTIONS - POOLING

W‘\I«Mﬁm A MWMWN

1D - CONVOLUTIONS - POOLING

holhas TR LY YT\ YR

e We need to reduce dimension for the final e We need to reduce dimension for the final

0.5 - classification -0.5 classification

% o Solution 1: use a larger stride % o Solution 1: use a larger stride

09 o Solution 2: use a pooling layer 0.9 o Solution 2: use a pooling layer

‘1-8 m Goes over the data similar to a % | m Goes over the data similar to a

04 convolution 04 - convolution

;%-13 m Applies a deterministic function like max ;%-13 m Applies a deterministic function like max

0.4 or average on the input 104 or average on the input

m Usually has stride ==pool size VUk m Usually has stride ==pool size VUk

D - CONVOLUTIONS - POOLING

MAI “W“ MMMWM ‘ww %memm «M

e We need to reduce dimension for the final

E classification Conv2D, Conv3D, ConvND

% o Solution 1: use a larger stride

[-0.9] o Solution 2: use a pooling layer

:1'8 m Goes over the data similar to a

0.4| [convolution

;%-13 m Applies a deterministic function like max

0.4 or average on the input
L m Usually has stride ==pool size VU‘W‘ VUL{

2D - IMAGES - REPRESENTATION

2D - IMAGES - REPRESENTATION - 3D TENSOR

The 2 dimensional color image becomes a 3 dimensional tensor!

3D - VIDEO - REPRESENTATION - 4D TENSOR

A 3 dimensional color video becomes a 4 dimensional tensor!

VU¥

2D - IMAGES - CONVOLUTION

x[z,1,0]

We start with a 5x5 image

N o NN R
NN R e
oNn koo
or NN
[

VU

source: : 1n.github.i

2D - IMAGES - CONVOLUTION - CHANNELS 2D - IMAGES - CONVOLUTION - FILTERS

Filter WO (3x3x3) Filter W1 (3x3x3)
et We start with a 5x5 image et s R We start with a 5x5 image
<l ol Sl i I [0 R -1f-1f1 o i O
RE We have 3 channels B I 2 Bl B3 LR We have 3 channels
wO[:,:,1 wlf:,:,1]
01 A B o 28 2 3 -1fo -1 1)1 .
210002 210002 Bl aEE We want to use 2 filters, these are
xtin1) *Cn1) v e themselves 3 dimensional
i 7 N G 2 (2L @]2 1f1]2 011
2l £1 Bl Bl 2 28 [0 (63 (61 2 = 5] i 10
Olzufa o U2 o2 o Bias b0 (Ix1x1) Bias bl (1x1x1)
i 2 o i 2 O bO[:,:,0] bll:,:,0]
10201 I [0} 21 (O 0
x[2] x[2]
2 0001 &) (DY G & i
00010 oY o8 o7 |1 @
i (N i ey
i i) o9 i 2

2D - IMAGES - CONVOLUTION - PADDING 2D - IMAGES - CONVOLUTION - OUTPUT VOLUME

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)

%750 0000 (o ol We start with a 5x5 image 4500000 B e Bjo'2 We start with a 5x5 image

1ol O G S S -1-11 o ol B B D o0 2 1)-1j(1 i i R 230

2 1% 20 0f1jf-1 11 -1 SN 0Jf1|f-1 11 -1 -4 9 -1

[z 20 2R w0 1 wlls: 11 We have3Channe|s R 20 (2 2 wO[:,:,1 wll:,:,1] ol:, 3,11 We have3ChannE|S

5 i3 23 23 BN 23 [-1 1 1-10 o) [0) 124 22 14 123 o) -1f0 -1 1-10 8 17

0210020 L8 ae We want to use 2 filters, these are 0210020 Ll R e Sl We want to use 2 filters, these are
000O0OTO 0O = - 000O0O0OOO O & -

T R e g themselves 3 dimensional sy e g themselves 3 dimensional

T EETE 0 B o B[S .) o 23 2 £ B9 B ETE) .
0200020 BB 100 We add padding to solve issues 0200020 IR 100 We add padding to solve issues
0020100 " 0020100 .

0120120 if’f’,‘nl,“’ el e with convolving near the border OO E G i‘,’?,'ol]l Ve with convolving near the border
ol 3 21 A O N [1 o 0102010 1 o

Inooomo T We convolve with a stride of 2

0 0O0O0OT OO U'O'DOOOU

O JAIHEN O 0121 (o] (o (o] 0 Try to understand why the output
0000100 0000100

EEEEEE I E1E G E1 B volume has these dimensions.
9011220 AT — VU¥ so11220 A vVU¥

2D - IMAGES - REPRESENTATION

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
9500000 [0 917 B2 We start with a 5x5 image
1ol e Sl Sl B -1f-1jf1 R E R 2-30
@l 23 4 @1 2 (Gl B T[T 1) E =] Eg) =]
JEEOEEE wion on.n We have 3 channels
1 [23 B2 O L 1[0 -2 I E O e
1]-1fo N BN S 4 4 8 .
ACEBAANAR 7 110 297 Wewant to use 2 filters, these
witie Wi, i, 2 wil:,:,2] . .
5000000 o[t 014 are themselves 3 dimensional
o 5 21 2 G 2 [AR 011
BEnaEEm EEE to We add padding to solve issues
ol (01 2 G Ed e Bias b0 (1x1x1) Bias bl (1x1x1) P ing Ve issu
B 0 2] o 2 bO[:,1,0] bll:,:,0] . .
0102010 0 with convolving near the border
0 00O0OTOTO
0000000 We convolve with a stride of 2
0200010
[l 20 (3N ol N
i o) 93 ol 2 M
pEEEEEaE animationimage sorce:htpscs231n gt R VU¥

CONVOLUTION - EQUIVARIANCE ANALYSIS

We saw that convolutions are equivariant to translations. Naturally it
holds for ConvNDs as well:

INPUT FEATURES

; A translation of the input produces an
Conv2b _ | 5‘ Y 8 equivalent translation in the output.

L For a translated input x(¢ — ¢p) :
Trans\a(ionl Translationl m
‘ (xxk)(t—to) = Y x((t —to) — 7) - k(r)
Conv2D
Worral'17 VU k

CONVOLUTION - EQUIVARIANCE ANALYSIS

What about other transformations?, e.g., rotation, scaling, ...
Are ConvNDs rotation and scale equivariant?

The convolution is not a rotation or scale equivariant mapping.

CONVOLUTION - EQUIVARIANCE ANALYSIS

What about other transformations?, e.g., rotation, scaling, ...
Are ConvNDs rotation and scale equivariant?

The convolution is not a rotation or scale equivariant mapping. But a
network can learn rotated / scaled versions of the same filter.

BUT approx. equivariant
for scales / rotations
learned by the network.

VU

CONVOLUTION - EQUIVARIANCE ANALYSIS CONVOLUTION - EQUIVARIANCE ANALYSIS

Approx. equivariant for Approx. equivariant for

scales / rotations scales / rotations

learned by the network. learned by the network.

Solution: Group Convolutions:
Problem: Each of these filters are independent weights:

) . Not just share parameters for translation but also other transformations!
. The network wastes a lot of parameters learning transformed Extreme parameter sharing + equivariance guarantees
versions of the same -> Parameter Inefficient! T . . o
])) . Active field of research. Amsterdam is a big player in this field. Several
. To learn these filters the network must see these transformations in papers written at the VU, the UvA and Qualcomm Al Research. -
the training set -> Data Inefficient + No equivariance guarantees! VU k ’ ’ VU k

« Let us know if you are interested in writing your thesis in this topic ;)

AlexNet (Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep)

convolutional neural networks." Advances in neural information processing systems. 2012

Showed the feasibility of deep learning

. Mainly thanks to the use of GPUs for computing convolutions
. Achieved a top-5 error of 15.3% on a dataset with 1000 categories

Example of a real world CNN By some considered as the real start of adoption of neural networks by

the industry

Is actually just a variant on an older idea

 LeCun, Y. Boser, B; Denker, J.§.; Henderson, D.; Howard, R. E.; Hubbard, W.; Jackel, L. 0. (1989)

VU

VU

105

CONV

1

x11,

stride=4,

96 kernels

(227-11y4 41
=55

CONV

3x3,pad=1
384 kemels

(13+2°13)1
+1=13

%,

Overlapping Overlapping
Max POOL. CONv Max POOL. CONV
256, 3x3,pad=1

33, % 5x5,pad=2 33,
stride=2 256 kemels, stride=2 384 kemels
g — = —
. @27+2:2:51 @732 +1 130241.3)1
59201 et ety A
=2 27 27

13|
13

e Q] [0
CONV Max POOL
3x3,pad=1 256, 3x3, 56,
256 kernels stride=2
(139221301 (13:3)2 +1 FC 1 FC o
+1 =13 =6 - -
2 . ol O
3 9
9216 O O 1000
Softmax

4096 4096

VU¥

part 1: Introduction - why are convolutional architectures needed?

part 2: One-dimensional convolutional neural networks (conv1D)

part 3: Two-dimensions and beyond (conv2D, conv3D, ...)

part 4: Example architecture

106

VU¥

