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part 1: Introduction - why are convolutional architectures needed?

part 2: One-dimensional convolutional neural networks (conv1D)

part 3: Two-dimensions and beyond (conv2D, conv3D, ...)

part 4: Example architecture

THE PLAN
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PART ONE: INTRODUCTION

4 source: https://cs.stanford.edu/people/karpathy/neuraltalk2/demo.html



5 source: https://arxiv.org/pdf/1506.01497v3.pdf

● We need to get features!

● For tabular data, this is “simple”

● But what with more complex data?

INPUT DATA 
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● Example 

INPUT DATA -  IMAGES

https://pixabay.com/nl/illustrations/vector-afbeelding-landschap-vector-3833815/

● Example 

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING



● Example 

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING

CONCATENATE

● The input dimensions are very big

● One channel of an image of 1920x1080 ≃ 2M features

● 1 second of sound at 44kHz = 44k features

● A video: frame rate * image features + sound

○ 10 seconds => 10*(60fps*3*2M+44k)

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING
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● The input dimensions are very big

● Too big for an MLP

● Example 

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING

1920x1080 ≃ 2M 

dimensional vector

● The input dimensions are very big

● Too big for an MLP

● Example 

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING - MLP

1920x1080 ≃ 2M 

dimensional vector

So, you need 2M 

weights for just 1 

neuron!!!



● The input dimensions are very big

● Too big for an MLP

● Example 

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING - MLP

1920x1080 ≃ 2M 

dimensional vector

So, you need 2M 

weights for just 1 

neuron!!!

And you want more 

than 1

● The input dimensions are very big

● Too big for an MLP

○ Too many weights

○ Would not converge

○ would not fit in GPU memory

■ Especially when you also need to 

keep gradient information

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING - MLP - LIMITATIONS

● The features in this kind of data are not independent

○ They have locality

● But, an MLP does not remember this ordering

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING
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● We want to be able to do deep learning on this kind of data

● Steps

○ 1D

■ Build intuition

○ 2D

■ Do the same for images

GOAL FOR TODAY
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PART TWO-a: conv1D ● What is the style of this music?

● Does the user like this music (yes/no)?

○ A classifier

● What is the beat of this music?

● How pleasant is this music to listen to (1-100)?

○ Regression

1D - SOUND - TASK - CLASSIFICATION / REGRESSION
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● What does a cleaned version of this audio signal look like?

● What audio would fit to these lyrics?

● How would this song continue?

1D - SOUND - TASK - GENERATION
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● Traditionally, manual feature extraction was used

○ (digital) signal processing with filters

○ Detecting beat

○ Finding manually crafted patterns

○ etc.

1D - SOUND - FEATURES - TRADITIONAL
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● Traditionally, manual feature extraction was used

○ Problems:

■ Noise

■ Variations

■ Fragments missing

■ etc.

1D - SOUND - FEATURES - TRADITIONAL - ISSUES
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● Feature Extraction in deep learning is dealt with 

by the model itself

1D - SOUND - FEATURES - DEEP LEARNING
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DL model

Jazz
Rock
Hip hop
...

● Let us try to use an MLP 

1D - SOUND - HOW? - MLP
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DL model

Jazz
Rock
Hip hop
...

I1

I2

I3

1D - SOUND - HOW? - MLP
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Jazz

Rock

Hip hop

...

w1,1
w1,2

σ(Σwi,1 *Ii)

σ(Σwi,2 *Ii)
w3,2

w3,1

w2,1

w2,2 ...



I1

I2

I3

1D - SOUND - HOW? - MLP
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Jazz

Rock

Hip hop

...

w1,1
w1,2

σ(Σwi,1 *Ii)

σ(Σwi,2 *Ii)
w3,2

w3,1

w2,1

w2,2 ...W

1D - SOUND - HOW? - MLP
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Jazz

Rock

Hip hop

...

w1,1

w1,2 σ(Σwi,1 *Ii)

σ(Σwi,2 *Ii)

w3,2

w3,1

w2,1

w2,2

I1

I2

I3

W

● In theory, this might just work, but:
○ Lots of training data would be 

needed
○ The MLP does not explicitly look at 

the order of the inputs
○ We need very large MLPs with a 

lot of weights
■ this will not converge

1D - SOUND - FEATURES - DIGITAL 
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● In the context of the following, we will only use the amplitude of the 

soundwave:

1D - SOUND - AMPLITUDE

28



RELU

1D - SOUND - FILTERS - AMPLITUDE MLP
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● In the context of the following, we will only use the amplitude of the 

soundwave, which we will normalize

1D - SOUND - AMPLITUDE
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-1

+1

● The features in the soundwave are not independent

● Nearby features are more important as far away ones

● This idea can be used in filters

1D - SOUND - FILTERS
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● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

32



● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

Let’s try to create a 

silence neuron

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

I1

I2

I3

w1,1

σ(Σwi,1 *Ii)w2,1

w3,1



● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

I1

I2

I3

w1,1

σ(Σwi,1 *Ii)w2,1

w3,1

To get a high value here

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

I1

I2

I3

w1,1

σ(Σwi,1 *Ii)w2,1

w3,1

To get a high value here

We need all parts of 
the sum to have a high value

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

w1,1

σ(Σwi,1 *Ii)w2,1

w3,1

To get a high value here

We need all parts of 
the sum to have a high value
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● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
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-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

w1,1= -1

σ(Σwi,1 *Ii)w2,1 = -1

w3,1 = -1

To get a high value here

We need all parts of 
the sum to have a high value

-0.9

-1.0

-1.0



● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

w1,1= -1

σ(Σwi,1 *Ii)w2,1 = -1

w3,1 = -1

To get a high value here

We need all parts of 
the sum to have a high value

-0.9

-1.0

-1.0

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

w1,1= -1

σ(Σwi,1 *Ii)w2,1 = -1

w3,1 = -1

To get a high value here

We need all parts of 
the sum to have a high value

-0.9

-1.0

-1.0

-1
-1
-1

We represent our filter as a 
vector (which is equivalent to 
the weight matrix of an MLP.

● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

w1,1= -1

σ(Σwi,1 *Ii)w2,1 = -1

w3,1 = -1

To get a high value here

We need all parts of 
the sum to have a high value

-0.9

-1.0

-1.0

-1
-1
-1

We represent our filter as a 
vector (which is equivalent to 
the weight matrix of an MLP.

Cleaning up

● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

σ(Σwi *Ii)

Σwi *Ii = 2.9
-1.0

-1.0

-1
-1
-1



● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS
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Σwi *Ii = 1.2
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● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS
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Σwi *Ii = 1.6
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● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS
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● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS
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● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS

-0.5
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Σwi *Ii = 2.4
-1.0

-1.0

-1
-1
-1

● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS
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● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS
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● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS
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● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS 
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Observations:

● The filter can act as a feature extractor

● The filter can be used at all locations to detect silence

○ We call sliding a filter over all positions convolving

■ The operation is called a convolution operator 

● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS 
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○ The output of the convolution operator is itself 

again a vector! 

○ A time shift in the input causes the same shift in 

the output: Convolution is translation equivariant

○ This operation can be understood as a small MLP 

that wanders across the input signal. 

○ In practice, the conv. kernels are learned.

1.2
1.6
2.3
2.9
2.4
1.5
0.2
-0.6

PART TWO-b: conv1D

● To understand how the conv. kernels are learned, we require a formal 

definition. For a 1D input sequence                    and a filter                      

the convolution operation is:

1D CONVOLUTION - FORMAL DEFINITION 

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

-1
-1
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1.2
1.6
2.3
2.9
2.4
1.5
0.2
-0.6



● How do we learn the filter    ?

● If    is learned, we will update the filter weights based on some loss    

asdfasdfasdfasdfa depending on the conv. response at all places, e.g., 

cross-correlation for classification.

● The gradient utilized to update a kernel weight            is given by:

1D CONVOLUTION - FORMAL DEFINITION 

Always zero, 
except when 
tau_0 = tau

1D CONVOLUTION - FORMAL DEFINITION 

The update of the weights takes into consideration ALL 
ELEMENTS OF THE INPUT SEQUENCE INTO ACCOUNT!

● The weights are shared across the entire input ( MLPs learn independent 

weights at every position:                                           )

Always zero, 
except when 
\tau_0 == 
\tau

1D CONVOLUTION - FORMAL DEFINITION 

● Advantages:

● Since weights are shared for every position, Convolutional Networks (CNNs) are 

much MUCH! MUCH! smaller than MLPs. -> PARAMETER EFFICIENCY

● Convolutions can learn a powerful pattern recognizers, e.g., for silence, based on 

“silences” appearing everywhere in the input (MLPs must learn an independent 

“silence recognizer” for every position) -> DATA EFFICIENCY

● Convolutions can recognize a “silence pattern” regardless of where it appears 

(MLPs must have seen silence at a given position before in order to recognize it)  

-> GENERALIZATION IMPROVEMENTS 

IMPORTANT: 2 and 3 are a consequence of convolution being translation equivariant.   

Up till now:

● We can create filters

○ MLP in disguise

○ We can convolve them over the input which creates an output vector

Coming next:

● We need multiple filters

● What do we do at the start and end of the data?

● What at the next layer?

● How do we get the dimension down?

1D - CONVOLUTIONS 

60



Up till now:

● We can create filters

○ MLP in disguise

○ We can convolve them over the input which creates an output vector

Coming next:

● We need multiple filters

● What at the next layer?

● What do we do at the start and end of the data?

● How do we get the dimension down?

1D - CONVOLUTIONS 
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1D - CONVOLUTIONS - MULTIPLE FILTERS
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● We need to have all sorts of filters 

for feature extraction

■ We can have as many filters as 

we want

■ Now, the output becomes a 

matrix, called the output volume
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2.9
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0
1

0.1
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-0.1
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0.9
0.7
0.5

... ...

Up till now:

● We can create filters

○ MLP in disguise

○ We can convolve them over the input which creates an output vector

Coming next:

● We need multiple filters

● What at the next layer?

● What do we do at the start and end of the data?

● How do we get the dimension down?

1D - CONVOLUTIONS 

63

What do we do at the next layer?

● We have the output volume of the previous layer and we will just define 

a convolution operator over that!

■ This filter needs a second dimension! 

■ And can be of a different size.

1D - CONVOLUTIONS - FILTERS AT FURTHER LAYERS

64
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1 1

1.2
0.7
-0.5
-1.5
-1.6

For the sake of the example, we did not apply the bias 
and non-linearity!!, which you would do in practice.



What do we do at the next layer?

● We have the output volume of the previous layer and we will just define 

a convolution operator over that!

■ This filter needs a second dimension! 

■ And can be of a different size.
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What do we do at the next layer?

● We have the output volume of the previous layer and we will just define 

a convolution operator over that!

■ This filter needs a second dimension! 

■ And can be of a different size.

1D - CONVOLUTIONS - FILTERS AT FURTHER LAYERS
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What do we do at the next layer?

● We have the output volume of the previous layer and we will just define 

a convolution operator over that!

■ This filter needs a second dimension! 

■ And can be of a different size.
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What do we do at the next layer?

● We have the output volume of the previous layer and we will just define 

a convolution operator over that!

■ This filter needs a second dimension! 

■ And can be of a different size.
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What do we do at the next layer?

● We have the output volume of the previous layer and we will just define 

a convolution operator over that!

■ This filter needs a second dimension! 

■ And can be of a different size.

■ The meaning of these filters 

recursively depends on the meaning 

of the filters on the layer before. But, 

overall becomes more complex.

1D - CONVOLUTIONS - FILTERS AT FURTHER LAYERS
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For the sake of the example, we did not apply the bias 
and non-linearity!!, which you would do in practice.

Up till now:

● We can create filters

○ MLP in disguise

○ We can convolve them over the input which creates an output vector

Coming next:

● We need multiple filters

● What at the next layer?

● What do we do at the start and end of the data?

● How do we get the dimension down?

1D - CONVOLUTIONS 

70

● Near the boundaries of the data, we cannot apply the convolution as we 

normally do:

1D - CONVOLUTIONS - PADDING
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This is still ok.

● Near the boundaries of the data, we cannot apply the convolution as we 

normally do:

1D - CONVOLUTIONS - PADDING
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● Near the boundaries of the data, we cannot apply the convolution as we 

normally do:

1D - CONVOLUTIONS - PADDING
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Solutions:
● Ignore the boundaries

○ This also leads to a 
reduction of dimension!

○ information at the 
boundaries gets lost
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● Near the boundaries of the data, we cannot apply the convolution as we 

normally do:

1D - CONVOLUTIONS - PADDING
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Solutions:
● Ignore the boundaries
● Pad the boundaries

○ Add (filter length-1)/2 
around the data to preserve 
the dimension

○ Fill this with a fixed value, 
often 0
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● Near the boundaries of the data, we cannot apply the convolution as we 

normally do:
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● Near the boundaries of the data, we cannot apply the convolution as we 

normally do:

1D - CONVOLUTIONS - PADDING
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-1
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Solutions:
● Ignore the boundaries
● Pad the boundaries

○ Add (filter length-1)/2 
around the data to preserve 
the dimension

○ Fill this with a fixed value, 
often 0

0.8
1.2
1.6
2.3
2.9
2.4
1.5
0.2
-0.6



Up till now:

● We can create filters

○ MLP in disguise

○ We can convolve them over the input which creates an output vector

Coming next:

● We need multiple filters

● What at the next layer?

● What do we do at the start and end of the data?

● How do we get the dimension down?

1D - CONVOLUTIONS 

77

1D - CONVOLUTIONS - STRIDE
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● We need to reduce dimension for the final 
classification

○ Solution 1: we take larger steps with our 
filter

■ the size of the step is called the stride

Strid
e 2

1D - CONVOLUTIONS - STRIDE
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● We need to reduce dimension for the final 
classification

○ Solution 1: we take larger steps with our 
filter

■ the size of the step is called the stride

1D - CONVOLUTIONS - STRIDE
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● We need to reduce dimension for the final 
classification

○ Solution 1: we take larger steps with our 
filter

■ the size of the step is called the stride



1D - CONVOLUTIONS - STRIDE
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● We need to reduce dimension for the final 
classification

○ Solution 1: we take larger steps with our 
filter

■ the size of the step is called the stride

1D - CONVOLUTIONS - STRIDE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
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-1
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1.2
2.3
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● We need to reduce dimension for the final 
classification

○ Solution 1: we take larger steps with our 
filter

■ the size of the step is called the stride
■ The dimension reduces with a factor equal 

to the stride
● The input dimension must be a multiple 

of the stride!

1D - CONVOLUTIONS - POOLING
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● We need to reduce dimension for the final 
classification

○ Solution 1: use a larger stride
○ Solution 2: use a pooling layer

1D - CONVOLUTIONS - POOLING
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-0.1
+0.3
+0.4

● We need to reduce dimension for the final 
classification

○ Solution 1: use a larger stride
○ Solution 2: use a pooling layer

■ Goes over the data similar to a 
convolution

■ Applies a deterministic function like max 
or average on the input

■ Usually has stride ==pool size



1D - CONVOLUTIONS - POOLING
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+0.4

● We need to reduce dimension for the final 
classification

○ Solution 1: use a larger stride
○ Solution 2: use a pooling layer

■ Goes over the data similar to a 
convolution

■ Applies a deterministic function like max 
or average on the input

■ Usually has stride ==pool size

-0.3

MAX
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● We need to reduce dimension for the final 
classification

○ Solution 1: use a larger stride
○ Solution 2: use a pooling layer

■ Goes over the data similar to a 
convolution

■ Applies a deterministic function like max 
or average on the input

■ Usually has stride ==pool size
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1D - CONVOLUTIONS - POOLING
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● We need to reduce dimension for the final 
classification

○ Solution 1: use a larger stride
○ Solution 2: use a pooling layer

■ Goes over the data similar to a 
convolution

■ Applies a deterministic function like max 
or average on the input

■ Usually has stride ==pool size
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PART THREE: Conv2D, Conv3D, ConvND



2D - IMAGES - REPRESENTATION 

The 2 dimensional color image becomes a 3 dimensional tensor!

2D - IMAGES - REPRESENTATION - 3D TENSOR 

A 3 dimensional color video becomes a 4 dimensional tensor!

3D - VIDEO - REPRESENTATION - 4D TENSOR 

We start with a 5x5 image

2D - IMAGES - CONVOLUTION 

92 animation/image source: https://cs231n.github.io/convolutional-networks/#fc



We start with a 5x5 image

We have 3 channels

2D - IMAGES - CONVOLUTION - CHANNELS 

93 animation/image source: https://cs231n.github.io/convolutional-networks/#fc

We start with a 5x5 image

We have 3 channels

We want to use 2 filters, these are 

themselves 3 dimensional

2D - IMAGES - CONVOLUTION - FILTERS 

94 animation/image source: https://cs231n.github.io/convolutional-networks/#fc

We start with a 5x5 image

We have 3 channels

We want to use 2 filters, these are 

themselves 3 dimensional

We add padding to solve issues 

with convolving near the border

2D - IMAGES - CONVOLUTION - PADDING 

95 animation/image source: https://cs231n.github.io/convolutional-networks/#fc

We start with a 5x5 image

We have 3 channels

We want to use 2 filters, these are 

themselves 3 dimensional

We add padding to solve issues 

with convolving near the border

We convolve with a stride of 2

Try to understand why the output 

volume has these dimensions.

2D - IMAGES - CONVOLUTION - OUTPUT VOLUME 

96 animation/image source: https://cs231n.github.io/convolutional-networks/#fc



We start with a 5x5 image

We have 3 channels

We want to use 2 filters, these 

are themselves 3 dimensional

We add padding to solve issues 

with convolving near the border

We convolve with a stride of 2

● See the animation on the site 

below

2D - IMAGES - REPRESENTATION 

97 animation/image source: https://cs231n.github.io/convolutional-networks/#fc

We saw that convolutions are equivariant to translations. Naturally it 

holds for ConvNDs as well:

CONVOLUTION - EQUIVARIANCE ANALYSIS

Conv2D

Conv2D

Translation Translation

INPUT FEATURES

Worral’17

A translation of the input produces an 

equivalent translation in the output.

For a translated input                   : 

What about other transformations?, e.g., rotation, scaling, … 

Are ConvNDs rotation and scale equivariant?

CONVOLUTION - EQUIVARIANCE ANALYSIS

The convolution is not a rotation or scale equivariant mapping. 

What about other transformations?, e.g., rotation, scaling, … 

Are ConvNDs rotation and scale equivariant?

CONVOLUTION - EQUIVARIANCE ANALYSIS

The convolution is not a rotation or scale equivariant mapping. But a 

network can learn rotated / scaled versions of the same filter. 

BUT approx. equivariant 

for scales /  rotations 

learned by the network. 



CONVOLUTION - EQUIVARIANCE ANALYSIS

Approx. equivariant for 

scales /  rotations 

learned by the network. 

Problem: Each of these filters are independent weights:

● The network wastes a lot of parameters learning transformed 

versions of the same -> Parameter Inefficient!

● To learn these filters the network must see these transformations in 

the training set -> Data Inefficient + No equivariance guarantees!

CONVOLUTION - EQUIVARIANCE ANALYSIS

Approx. equivariant for 

scales /  rotations 

learned by the network. 

Solution: Group Convolutions:

● Not just share parameters for translation but also other transformations! 

● Extreme parameter sharing + equivariance guarantees.

● Active field of research. Amsterdam is a big player in this field. Several 

papers written at the VU, the UvA and Qualcomm AI Research.* 

* Let us know if you are interested in writing your thesis in this topic ;) 

PART FOUR: Example of a real world CNN

Showed the feasibility of deep learning

○ Mainly thanks to the use of GPUs for computing convolutions

○ Achieved a top-5 error of 15.3% on a dataset with 1000 categories

By some considered as the real start of adoption of neural networks by 

the industry

Is actually just a variant on an older idea 

● LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard, R. E.; Hubbard, W.; Jackel, L. D. (1989). "Backpropagation Applied to Handwritten Zip Code Recognition”

AlexNet (                                                                                                         )
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Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep 

convolutional neural networks." Advances in neural information processing systems. 2012



AlexNet

105
image source: https://www.learnopencv.com/number-of-parameters-and-tensor-sizes-in-convolutional-neural-network/

part 1: Introduction - why are convolutional architectures needed?

part 2: One-dimensional convolutional neural networks (conv1D)

part 3: Two-dimensions and beyond (conv2D, conv3D, ...)

part 4: Example architecture

Summary
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