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If you have any question, please contact us:


 

• Dimitrios Alivanistos

• Daniel Daza

• Emile van Krieken

• Anna Kuzina

• Stefan Schouten

• Shuai Wang

• Roderick van der Weerdt

• Taraneh Younesian

DO NOT HESITATE TO CONTACT US!

3 Jakub Tomczak

Michael Cochez

Peter Bloem

Lecturers:TAs:



During this course we will have:


• 14 lectures (incl. 2 invited lectures)


• 7 days with practical sessions (1 day, 5 time slots)


• 1 meeting for the final exam

LECTURES AND PRACTICAL SESSIONS
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Content of the course:


1. From logistic regression to fully-connected networks


2. Convolutional nets, recurrent neural nets


3. Generative modeling: GANs, VAEs, autoregressive models, flows


4. Graph convolutions, self-attention, transformers


5. Reinforcement Learning

LECTURES AND PRACTICAL SESSIONS
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Assignments:


1. MLP (Nov 14)


2. Autograd/backpropagation (Nov 28)


3. One of the two (Dec 8):


a. CNNs


b. RNNs


4. One of the three (Dec 19):


a. VAEs & GANs


b. Graph convolutions


c. Reinforcement learning

LECTURES AND PRACTICAL SESSIONS
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Assignments:


1. Use Python 3 ONLY!


2. Assignments 1 and 2 are implemented INDIVIDUALLY.


3. Assignments 3 and 4 are implemented IN GROUPS OF 3.


4. All methods must be implemented by you unless it’s specified otherwise.


5. In the assignments we will use mainly Numpy and PyTorch.


6. THERE IS NO RESIT FOR ASSIGNMENTS.


7. Late submissions: First contact Jakub. Second, -2pts for each day after 
the deadline.

LECTURES AND PRACTICAL SESSIONS
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Assignments

• Max. 40 pts (10 pts per assignment)

• Partial grade from the assignments: round(achieved points / 4)


Exam

• Max. 40 pts (40 questions)

• Partial grade: round(achieved points / 4)


Final grade

• At least 5.5 from the assignments and 5.5 from the exam.

• Final grade: 

round(0.5 * partial grade from assignments + 0.5 * partial grade from the exam)

GRADING

8



INTRODUCTION TO ARTIFICIAL INTELLIGENCE
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HISTORICAL PERSPECTIVE
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1950  
Turing test

(Turing)

1956  
Term “AI”

(McCarthy)

1995

Deep Blue

Kasparov

1995  
SVMs 
(Cortes&Vapnik)

1986  
Backpropagation  
(Rumelhart et al.)

1958

Perceptron  
(Rosenblatt)

1964

ELIZA

(Weizenbaum)

1940-1950 
Cellular automata

(von Neumann-Ulam)

1960s and 1970s 
Evolutionary computation

(Fogel, Holland, 

Rechenberg, Schwefel)

1997

LSTM

(Hochreiter&Schmidhüber)

1982  
ConvNets

(Fukushima)

1970s

Expert systems

(e.g., Quinlan, Michalski)

1985  
Bayesian Nets

(Pearl)

2000-…

Deep learning era

1948

Information theory

(Shannon)



WHY AI IS SUCCESSFUL?
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Accessible hardware

Powerful hardware

Intuitive programming languages

Specialized packages



Knowledge representation

How to represent & process data?


Knowledge acquisition (learning objective & algorithms)

How to extract knowledge?


Learning problems

What kind of problems can we formulate?

COMPONENTS OF AI SYSTEMS
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For given data , find the best data representation from a given class of 
representations that minimizes given learning objective (loss).


 

𝒟

min
x∈𝕏

f(x; 𝒟)

s.t. x ∈ 𝕐 ⊆ 𝕏

LEARNING AS OPTIMIZATION
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For given data , find the best data representation from a given class of 
representations that minimizes given learning objective (loss).


 

𝒟

min
x∈𝕏

f(x; 𝒟)

s.t. x ∈ 𝕐 ⊆ 𝕏

LEARNING AS OPTIMIZATION
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Optimization algorithm = learning algorithm.



LEARNING TASKS
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LEARNING TASKS

Supervised Learning


• We distinguish inputs 
and outputs.


• We are interested in 
prediction.


• We minimize a 
prediction error.
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LEARNING TASKS

Supervised Learning


• We distinguish inputs and outputs.


• We are interested in prediction.


• We minimize a prediction error.

Classification
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LEARNING TASKS

Unsupervised learning


• No distinction among variables.


•  We look for a data structure.


• We minimize a reconstruction error, 
compression rate, …
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LEARNING TASKS

Reinforcement learning


• An agent interacts with an 
environment.


• We want to learn a policy.


• Each action is rewarded.


• We maximize a total reward.



DEEP LEARNING
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Computer Vision


Information Retrieval


Speech Recognition


Natural Language Processing 


Recommendation Systems 


Drug Discovery


Robotics


…


APPLICATION AREAS
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EXAMPLES: HANDWRITING GENERATOR

24
A. Graves, “Generating Sequences With Recurrent Neural Networks“



EXAMPLES: IMAGE GENERATION

25
Gatopoulos & Tomczak, “Self-supervised Variational Auto-Encoders“



EXAMPLES: GENERATING IMAGE DESCRIPTIONS

26
Karpathy & Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions"



THREE CORE COMPONENTS OF DEEP LEARNING
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• A representation = a set of (abstract) features.


• Deep learning automatically extract feature.


• A hidden layer = an abstraction level.


• Good-quality features should be:


•􏰀Informative (e.g., discriminative);


• Robust to small perturbations;


•􏰀Invariant/Equivariant to transformations.


• Representation Learning = optimization algo.

AUTOMATIC FEATURE EXTRACTION / REPRESENTATION LEARNING
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PROBABILISTIC LEARNING
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•  - a random variable (a result of tossing a coin)c ∈ {0,1}

TOSS A COIN… 🎶
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•  - a random variable (a result of tossing a coin)

•  - probability of observing head

•  - probability of observing tail

•  - Bernoulli distribution

c ∈ {0,1}

x = p(c = 1)

1 − x = p(c = 0)

p(c |x) = xc (1 − x)1−c

TOSS A COIN… 🎶
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•  - a random variable (a result of tossing a coin)

•  - probability of observing head
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TOSS A COIN… 🎶
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Quick check:


p(c = 0 |x) = x0 (1 − x)1−0 = 1 − x

p(c = 1 |x) = x1 (1 − x)1−1 = x



•  - a random variable (a result of tossing a coin)

•  - probability of observing head

•  - probability of observing tail

•  - Bernoulli distribution


•  - iid observations (data)


c ∈ {0,1}

x = p(c = 1)

1 − x = p(c = 0)

p(c |x) = xc (1 − x)1−c

𝒟 = {c1, c2, …, cN}

TOSS A COIN… 🎶
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•  - a random variable (a result of tossing a coin)
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TOSS A COIN… 🎶
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EXAMPLE:

𝒟 = {0,0,1,1,0,1,1}



•  - a random variable (a result of tossing a coin)

•  - probability of observing head

•  - probability of observing tail

•  - Bernoulli distribution


•  - iid observations (data)

• The likelihood function:


c ∈ {0,1}

x = p(c = 1)

1 − x = p(c = 0)

p(c |x) = xc (1 − x)1−c

𝒟 = {c1, c2, …, cN}

p(𝒟 |x) =
N

∏
n=1

p(cn |x)

TOSS A COIN… 🎶
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The optimization problem:


TOSS A COIN… 🎶

36



The optimization problem:

Find such  that minimizes the negative log-likelihood function:





x ∈ [0,1]

min
x∈[0,1]

− log p(𝒟 |x)

TOSS A COIN… 🎶
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The optimization problem:

Find such  that minimizes the negative log-likelihood function:





Remarks:


x ∈ [0,1]

min
x∈[0,1]

− log p(𝒟 |x)

TOSS A COIN… 🎶
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The optimization problem:

Find such  that minimizes the negative log-likelihood function:





Remarks:

1) Why negative? Because: .


x ∈ [0,1]

min
x∈[0,1]

− log p(𝒟 |x)

max f (x) = min {−f (x)}

TOSS A COIN… 🎶
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The optimization problem:

Find such  that minimizes the negative log-likelihood function:





Remarks:

1) Why negative? Because: .

2) Why logarithm? Because:  and optimum is the same.

x ∈ [0,1]

min
x∈[0,1]

− log p(𝒟 |x)

max f (x) = min {−f (x)}
log∏ = ∑ log

TOSS A COIN… 🎶
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log p(𝒟 |x) = log
N

∏
n=1

p(cn |x)

=
N

∑
n=1

log p(cn |x)

=
N

∑
n=1

log xcn (1 − x)1−cn

=
N

∑
n=1

(cn log x + (1 − cn)log(1 − x))

TOSS A COIN… 🎶
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the log-likelihood 





Bernoulli distribution





log∏ = ∑ log

log ab = b log a

log ab = log a + log b












log p(𝒟 |x) = log
N
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∑
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N

∑
n=1
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=
N

∑
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(cn log x + (1 − cn)log(1 − x))

TOSS A COIN… 🎶
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the log-likelihood 





Bernoulli distribution





log∏ = ∑ log

log ab = b log a

log ab = log a + log b












log p(𝒟 |x) = log
N

∏
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N

∑
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log p(cn |x)
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N
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TOSS A COIN… 🎶
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the log-likelihood 





Bernoulli distribution





log∏ = ∑ log

log ab = b log a

log ab = log a + log b



(Finding ) Calculate derivative wrt  and set to 0:














x⋆ x

d
dx

N

∑
n=1

(cn log x + (1 − cn)log(1 − x)) = 0

N

∑
n=1

(cn

x
−

(1 − cn)
(1 − x) ) = 0

N

∑
n=1

(cn(1 − x) − (1 − cn)x) = 0

N

∑
n=1

cn − x
N

∑
n=1

cn − Nx + x
N

∑
n=1

cn = 0 ⇒ x =
1
N

N

∑
n=1

cn

TOSS A COIN… 🎶
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(Finding ) Calculate derivative wrt  and set to 0:
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  gives optimum


and


d
dx

f (x) = 0

d
dx

log x =
1
x



(Finding ) Calculate derivative wrt  and set to 0:
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  gives optimum


and


d
dx

f (x) = 0

d
dx

log x =
1
x



(Finding ) Calculate derivative wrt  and set to 0:














x⋆ x

d
dx

N

∑
n=1

(cn log x + (1 − cn)log(1 − x)) = 0

N

∑
n=1

(cn

x
−
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TOSS A COIN… 🎶
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  gives optimum


and


d
dx

f (x) = 0

d
dx

log x =
1
x

EXAMPLE:


𝒟 = {0,0,1,1,0,1,1}

x⋆ = 4/7



PROBABILISTIC LEARNING (LIKELIHOOD-BASED)
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1) Determine .
p(y |x)

PROBABILISTIC LEARNING (LIKELIHOOD-BASED)
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1) Determine .


2) Determine .


p(y |x)

p(𝒟 |x)

PROBABILISTIC LEARNING (LIKELIHOOD-BASED)
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1) Determine .


2) Determine .


3) Check constraints.


p(y |x)

p(𝒟 |x)

PROBABILISTIC LEARNING (LIKELIHOOD-BASED)
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1) Determine .


2) Determine .


3) Check constraints.


4) Find the best solution by minimizing .

p(y |x)

p(𝒟 |x)

−log p(𝒟 |x)

PROBABILISTIC LEARNING (LIKELIHOOD-BASED)
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1) Determine .


2) Determine .


3) Check constraints.


4) Find the best solution by 
minimizing .

p(y |x)

p(𝒟 |x)

−log p(𝒟 |x)

PROBABILISTIC LEARNING (LIKELIHOOD-BASED)
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e.g., Bernoulli, Gaussian…


e.g., iid or sequential


e.g., only values between [0, 1]


e.g., using gradient-descent



LOGISTIC REGRESSION
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• Example: Spam detection


‣  - whether a dth word occurs in an e-mail ( ) or not


‣  - whether an e-mail is a spam ( ) or not


‣ Goal: provide probability of a spam OR classify messages.

x ∈ {0,1}D x = 1

y ∈ {0,1} y = 1

SPAM DETECTION
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Detector
0

0,5

1

hello fine mom call



• , , 


• We model  by using the Bernoulli distribution:





where: 


linear dependency: 


sigmoid function: 

x ∈ ℝD y ∈ {0,1} θ ∈ ℝD

y

p(y |x, θ) = Bern(y |sigm(θ⊤x))

θ⊤x =
D

∑
d=1

θdxd

sigm(s) =
1

1 + exp(−s)

LOGISTIC REGRESSION
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LOGISTIC REGRESSION
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• , , 


• We model  by using the Bernoulli distribution:





where: 


linear dependency: 


sigmoid function: 

x ∈ ℝD y ∈ {0,1} θ ∈ ℝD

y
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LOGISTIC REGRESSION
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Sigmoid can model

probabilities!



• Properties of the sigmoid function:


‣ 


‣ 


‣ 


• In our model we have:





sigm(s) ∈ [0,1]
d
ds

sigm(s) = sigm(s) (1 − sigm(s))

sigm(−s) = 1 − sigm(s)

p(y = 1 |x, θ) = sigm(θ⊤x)

p(y = 0 |x, θ) = 1 − sigm(θ⊤x)

LOGISTIC REGRESSION
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• 


where: 

p(y |x, θ) = Bern(y |sigm(θ⊤x))

θ⊤x =
D

∑
d=1

θdxd

LOGISTIC REGRESSION
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…

x1

xD

∑

θ1

θD

sigm p(y = 1 |x, θ)





















∇θ − log p(𝒟y |𝒟x, θ) = ∇θ − ∑
i

log p(yi |xi, θ)

= ∇θ − ∑
i

(yi log sigm(θ⊤xi) + (1 − yi)log sigm(−θ⊤xi))
= − ∑

i
(yi

1
sigm(θ⊤xi)

sigm(θ⊤xi)sigm(−θ⊤xi)xi − (1 − yi)
1

sigm(−θ⊤xi)
sigm(θ⊤xi)sigm(−θ⊤xi)xi)

= − ∑
i

(yi sigm(−θ⊤xi) xi − (1 − yi) sigm(θ⊤xi) xi)
= − ∑

i
(yi (sigm(−θ⊤xi) + sigm(θ⊤xi)) xi − sigm(θ⊤xi) xi)

= − ∑
i

(yi xi − sigm(θ⊤xi) xi)
= ∑

i
(sigm(θ⊤xi) − yi) xi

LOGISTIC REGRESSION: GRADIENT-DESCENT
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∇θ − log p(𝒟y |𝒟x, θ) = ∇θ − ∑
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1
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1
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i
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LOGISTIC REGRESSION: GRADIENT-DESCENT
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LOGISTIC REGRESSION: GRADIENT-DESCENT
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LOGISTIC REGRESSION: GRADIENT-DESCENT
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= ∑
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LOGISTIC REGRESSION: GRADIENT-DESCENT
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• The update rule:





• What if  is large?


‣ Use mini-batches ( )! (Stochastic Gradient descent)





θ := θ − α
N

∑
i=1

(sigm(θ⊤xi) − yi) xi

N

M ≪ N

θ := θ − α
M

∑
j=1

(sigm(θ⊤xj) − yj) xj

θ := θ − α(sigm(θ⊤xj) − yj) xj

LOGISTIC REGRESSION: GRADIENT-DESCENT
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• The update rule:
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LOGISTIC REGRESSION: GRADIENT-DESCENT
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or even:



LOGISTIC REGRESSION: SGD VS. GD
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Stochastic Gradient Descent Gradient Descent



FULLY-CONNECTED NEURAL NETWORKS
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WHAT IF WE STACK MULTIPLE LOGISTIC REGRESSORS

72

…

x1

xD

∑

θ1

θD

sigm p(y = 1 |x, θ)



STACKING LOGISTIC REGRESSORS
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…

x1

xD

∑
sigm h1

∑
sigm hM

∑
sigm p(y = 1 |x, θ)

W ∈ ℝD×M

θ ∈ ℝM×1

…

W ∈ ℝD×M, θ ∈ ℝM×1weights:



• Stacking logistic regressions models the probability as follows:





• Notice that we still use the log-likelihood function as our objective!


• We refer to  as a hidden layer, and  is called a neuron.


• We can stack even more:


p(y = 1 |x, W, θ) = sigm(θ⊤ sigm(Wx)

h

)

h hm

p(y = 1 |x, {Wi}, θ) = sigm(θ⊤sigm(⋯W2sigm(W1x)))

FULLY CONNECTED NEURAL NETWORKS (FCN)
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• A linear layer:  (or with explicit bias: )


• with a non-linearity: 


• Typical non-linearities:


‣ sigmoid: 


‣ tanh: 


‣ ReLU: 


‣ softmax: 

a = Wx a = Wx + b

h = f (Wx)

sigm(x) = (1 + exp(−x))−1

tanh(x) = 2sigm(x) − 1

relu(x) = max{0,x}

softmax(x) = exp(xi)/ ∑ exp(xj)

FCN: COMPONENTS
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• A linear layer:  (or with explicit bias: )


• with a non-linearity: 


• Typical non-linearities:


‣ sigmoid: 


‣ tanh: 


‣ ReLU: 


‣ softmax: 

a = Wx a = Wx + b

h = f (Wx)

sigm(x) = (1 + exp(−x))−1

tanh(x) = 2sigm(2x) − 1

relu(x) = max{0,x}

softmax(x) = exp(xi)/ ∑ exp(xj)

FCN: COMPONENTS
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• A linear layer: 


• Initialization of :


• Gaussian: 


• Xavier (for tanh): 


• He (for ReLU): 

a = Wx

W ∈ ℝD×M

W ∼ 𝒩(0,σ2)

W ∼ 𝒩(0, 1/D)

W ∼ 𝒩(0, 2/D)

LINEAR LAYERS
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ACTIVATION FUNCTIONS

81

sigmoid tanh ReLU

∇f (x)



• So far, we talked about 2 classes (sigmoid for modeling probabilities).


• How to deal with K classes?

HOW TO DEAL WITH MULTIPLE CLASSES?
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• So far, we talked about 2 classes (sigmoid for modeling probabilities).


• How to deal with K classes?


• Softmax function:


p(y = i |x, θ) =
exp(θ⊤

i x)

∑K
k=1 exp(θ⊤

k x)

HOW TO DEAL WITH MULTIPLE CLASSES?
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• We introduced neural networks as stacked logistic regressors.

• How to learn FCN? Can we use SGD?

LEARNING: BACKPROPAGATION
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• We introduced neural networks as stacked logistic regressors.

• How to learn FCN? Can we use SGD? YES!

• Let us consider one hidden layer:


p(y = 1 |x, W, θ) = sigm(θ⊤f (Wx)))
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• We introduced neural networks as stacked logistic regressors.

• How to learn FCN? Can we use SGD? YES!

• Let us consider one hidden layer:





• We can use the chain rule to calculate gradients wrt all weights:


p(y = 1 |x, W, θ) = sigm(θ⊤f (Wx)))

dℓ
du

=
dℓ
df1

df1
df2

df2
du

LEARNING: BACKPROPAGATION
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Negative log-likelihood



• We introduced neural networks as stacked logistic regressors.

• How to learn FCN? Can we use SGD? YES!

• Let us consider one hidden layer:





• We can use the chain rule to calculate gradients wrt all weights:


p(y = 1 |x, W, θ) = sigm(θ⊤f (Wx)))

dℓ
du

=
dℓ
df1

df1
df2

df2
du

LEARNING: BACKPROPAGATION
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Full derivation:

Homework 🤓
Or wait till the next lecture!



• The sigmoid function is a good choice to model probabilities, however, 
it is bad as a non-linearity for hidden layers.


• The problem arises while calculating gradients:





If , then:


d
ds

sigm(s) = sigm(s) (1 − sigm(s))

sigm(x) ≈ 1
d
ds

sigm(s) ≈ 1 (1 − 1) = 0

VANISHING GRADIENT PROBLEM
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dℓ
du

=
dℓ
df1

⋅ 0 ⋅
df2
du

= 0

For instance:

😵



Thank you!
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