Lecture 1: Introduction

Jakub M. Tomczak

Deep learning

VRIJE
UNIVERSITEIT
AN° AMSTERDAM

COURSE ORGANIZATION

: VU

DO NOT HESITATE TO CONTACT US!

If you have any question, please contact us:

TAs: Lecturers:
e Dimitrios Alivanistos

e Daniel Daza

e Emile van Krieken

e Anna Kuzina

e Stefan Schouten

e Shuai Wang

e Roderick van der Weerdt

e Taraneh Younesian

Peter Bloem

Michael Cochez

L)

A

3 Jakub Tomczak

VU¥

LECTURES AND PRACTICAL SESSIONS

During this course we will have:
e 14 |ectures (incl. 2 invited lectures)
e 7 days with practical sessions (1 day, 5 time slots)

e 1 meeting for the final exam

4 VUf¥

LECTURES AND PRACTICAL SESSIONS

Content of the course:
1. From logistic regression to fully-connected networks
2. Convolutional nets, recurrent neural nets
3. Generative modeling: GANs, VAEs, autoregressive models, flows
4. Graph convolutions, self-attention, transformers

5. Reinforcement Learning

VU¥

LECTURES AND PRACTICAL SESSIONS

Assignments:
1. MLP (Nov 14)
2. Autograd/backpropagation (Nov 28)
3. One of the two (Dec 8):
a. CNNs
b. RNNs
4. One of the three (Dec 19):
a. VAEs & GANs
b. Graph convolutions

c. Reinforcement learning

: VUf¥

LECTURES AND PRACTICAL SESSIONS

Assignments:
1. Use Python 3 ONLY!
Assignments 1 and 2 are implemented INDIVIDUALLY.
Assignments 3 and 4 are implemented IN GROUPS OF 3.
All methods must be implemented by you unless it’s specified otherwise.
In the assignments we will use mainly Numpy and PyTorch.
THERE IS NO RESIT FOR ASSIGNMENTS.

Late submissions: First contact Jakub. Second, -2pts for each day after
the deadline.

: VUf¥

N o U s~ W N

Assignments
e Max. 40 pts (10 pts per assignment)
e Partial grade from the assignments: round(achieved points / 4)

Exam
e Max. 40 pts (40 questions)
* Partial grade: round(achieved points / 4)

Final grade

e At least 5.5 from the assignments and 5.5 from the exam.

e Final grade:

round(0.5 * partial grade from assignments + 0.5 * partial grade from the exa\rr})U k

8

INTRODUCTION TO ARTIFICIAL INTELLIGENCE

9 VU

HISTORICAL PERSPECTIVE

1940-1950 1948 1950 1956 1958 1964
Cellular automata Information theory Turing test Term “Al” Perceptron ELIZA
(von Neumann-Ulam) (Shannon) (Turing) (McCarthy) (Rosenblatt) (Weizenbaum)
1960s and 1970s 4
1986 1985 1982 1970s Evolutionary computation;
Backpropagation Bayesian Nets ConvNets Expert systems (Fogel, Holland, /

(Rumelhartetal.) (Pearl)

(Fukushima) (e.g., Quinlan, Michalski) Rechenberg, Schwef

1995 1995 1997
SVMs Deep Blue LSTM 2000-...

(Cortes&Vapnik) Kasparov (Hochreiter&Schmidhiber) . Deep learning era

s p. = o
A~ — NP N — &= o e g o o o o

~—C ¥ Jur

O PyTorch T

TensorFlow

Accessible hardware Intuitive programming languages

Powerful hardware Specialized packages

; VUf¥

COMPONENTS OF Al SYSTEMS

Knowledge representation
How to represent & process data?

Knowledge acquisition (learning objective & algorithms)
How to extract knowledge?

Learning problems
What kind of problems can we formulate?

. VUf¥

LEARNING AS OPTIMIZATION

For given data 7, find the best data representation from a given class of
representations that minimizes given learning objective (loss).

min f(x; D)

xeX

st. xeVYC X

. VU

LEARNING AS OPTIMIZATION

For given data &/, find the best data representation from a given class of
representations that minimizes given learning objective (loss).

min f(x; D)

xeX

st. xeVYC X

Optimization algorithm = learning algorithm.

. VUf¥

LEARNING TASKS

. VU

LEARNING TASKS

Supervised Learning

e We distinguish inputs
and outputs.

e \We are interested in
prediction.

e \We minimize a

prediction error.

. VU

LEARNING TASKS

Supervised Learning Unsupervised learning

e We distinguish inputs e No distinction among
and outputs. variables.

e \We are interested in e We look for a data
prediction. structure.

e \We minimize a e \We minimize a
prediction error. reconstruction error,

compression rate, ...

., VUf¥

LEARNING TASKS

Supervised Learning

e We distinguish inputs

e \WWe are interested in

and outputs.

prediction.

e \We minimize a

18

prediction error.

Unsupervised learning

e No distinction among

variables.

e We look for a data

structure.

e We minimize a
reconstruction error,

compression rate, ...

Reinforcement learning

e An agent interacts with

an environment.

e We want to learn a
policy.
e Each action is rewarded.

¢ \We maximize a total

reward.

VU¥

LEARNING TASKS

Supervised Learning

e \We distinguish inputs and outputs. Classification
e We are interested in prediction. —— '.a“

e WWe minimize a prediction error.

label = 3

label =5 label = 3

label = 2 label = 8

19

LEARNING TASKS

A
e No distinction among variables. ‘

e \We look for a data structure. i i

e WWe minimize a reconstruction error,

Unsupervised learning

compression rate, ...

>

20 > VU%

LEARNING TASKS

Reinforcement learning

e An agent interacts with an

environment.
e \We want to learn a policy.
e Each action is rewarded.

¢ \We maximize a total reward.

21

DEEP LEARNING

, VU

APPLICATION AREAS

Computer Vision @z GO I€
Information Retrieval NVIDIA. 8
Speech Recognition Bl earch facebook
Natural Language Processing 0

. BaiW&EE £
Recommendation Systems Alibaba Group

e

Drug Discovery NETFLIX
Robotics ama;OH e MERCK

') NOVARTIS
. VU¥

EXAMPLES: HANDWRITING GENERATOR

)(4/\/‘ —
Coo 2 oo

oy ap T TS

~ (Jz-tw, re X on el o] [O}L/Q—ej-e(/Au’{'th\V

) !
e Conen e 4 gy (o0

R @OIMO a. e conrredTn ¢

107,06))4 el U‘WMTZS wine e

/>9(A/Q< Lokt Ow\e >"\\ ->C>“£’VY REGY

aves b \/wg\/\ll WN@”T%S\./"“N‘JP Vuk

A. Graves, “Generating Sequences With Recurrent Neural Networks*

24

EXAMPLES: IMAGE GENERATION
AY

i1) selfVAE - sketch
aum~
iii) VAE - ReaNVP

1) selfVAE - downscale - 31vl

) 4 = VUi

Gatopoulos & Tomczak, “Self-supervised Variational Auto-Encoders”

EXAMPLES: GENERATING IMAGE DESCRIPTIONS

‘man in black shirt is playing ‘construction worker in orange “two young girls are playing with "boy is doing backflip on
guitar.” safety vest is working on road”” lego toy.” wakeboard.”

"'man in blue wetsuit is surfing on

‘girl in pink dress is jumping in "black and white dog jumps over "young girl in pink shirt is wave"

26 air. bar. swinging on swing

Karpathy & Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions"

VU

L

THREE CORE COMPONENTS OF DEEP LEARNING

- The INTERNET

- Unlabeled data

- ImageNet database
14,197,122 images

IM&AGENET

- Parallel computing
- GPU, FPGA
- Deep learning frameworks

theano Caffe
+

o -

PYTHRCH

uDNN

VU¥

COH”O

27

AUTOMATIC FEATURE EXTRACTION / REPRESENTATION LEARNING

Man in glasses

e A representation = a set of (abstract) features.
e Deep learning automatically extract feature.
e A hidden layer = an abstraction level.

e Good-quality features should be:

e |?]Informative (e.g., discriminative);

e Robust to small perturbations;

e [?]Invariant/Equivariant to transformations.

e Representation Learning = optimization algo.

28

PROBABILISTIC LEARNING

. VU

TOSS A COIN... .

¢ €{0,1} - arandom variable (a result of tossing a coin)

. VU

TOSS A COIN... .

¢ €{0,1} - arandom variable (a result of tossing a coin)
e x =p(c = 1) - probability of observing head
e 1 —x = p(c =0) - probability of observing tail

e p(c|x) = x° (1 — x)!=¢ - Bernoulli distribution

. VUf¥

TOSS A COIN... .

¢ €{0,1} - arandom variable (a result of tossing a coin)
e x =p(c = 1) - probability of observing head
e 1 —x = p(c =0) - probability of observing tail

e p(c|x) = x° (1 — x)!=¢ - Bernoulli distribution

| Quick check: |
plc=0]0)=x"1-x)""0=1-x|

ple=1x=x"(1-x)"=x

TOSS A COIN... .

¢ €{0,1} - arandom variable (a result of tossing a coin)
e x =p(c = 1) - probability of observing head

e 1 —x = p(c =0) - probability of observing tail

e p(c|x) = x° (1 — x)!=¢ - Bernoulli distribution

e I ={c, ¢y, ...,cy} - iid observations (data)

. VUf¥

TOSS A COIN... .

¢ €{0,1} - arandom variable (a result of tossing a coin)
e x =p(c = 1) - probability of observing head

e 1 —x = p(c =0) - probability of observing tail

e p(c|x) = x° (1 — x)!=¢ - Bernoulli distribution

e I ={c, ¢y, ...,cy} - iid observations (data)

| EXAMPLE:
P = {0,0,1,1,0,1,1)

y - | VUf¥

TOSS A COIN... .

¢ €{0,1} - arandom variable (a result of tossing a coin)
e x =p(c = 1) - probability of observing head
e 1 —x = p(c =0) - probability of observing tail
e p(c|x) = x° (1 — x)!=¢ - Bernoulli distribution
e 9 ={c|,C,...,cy} - iid Observations (data)
e The likelihood function: v
p(@|x) =[],

n=1

. VUf¥

TOSS A COIN... .

The optimization problem:

. VU

TOSS A COIN... .

The optimization problem:
Find such x € [0,1] that minimizes the negative log-likelihood function:

min — log p(Z | x)
x€[0,1]

. VU

TOSS A COIN... .

The optimization problem:
Find such x € [0,1] that minimizes the negative log-likelihood function:

min — log p(Z | x)
x€[0,1]

Remarks:

. VUf¥

TOSS A COIN... .

The optimization problem:
Find such x € [0,1] that minimizes the negative log-likelihood function:

min — log p(Z | x)
x€[0,1]

Remarks:
1) Why negative? Because: max f(x) = min {—f(x)}.

. VUf¥

TOSS A COIN... .

The optimization problem:
Find such x € [0,1] that minimizes the negative log-likelihood function:

min — log p(Z | x)
x€[0,1]

Remarks:
1) Why negative? Because: max f(x) = min {—f(x)}.
2) Why logarithm? Because: logH = Z log and optimum is the same.

. VUf¥

TOSS A COIN... .

N
log p(2|x) = 10gHP(Cn | %) the log-likelihood

n=1

. VU

TOSS A COIN... .

N
log p(2|x) = 10gHP(Cn | %) the log-likelihood

n=1

N
= Zl log p(c, | x) logH = Z log

. VU

TOSS A COIN... .
N

log p(2|x) = long(Cn | %) the log-likelihood

n=1

N
= 2 log p(c, | x) 10gH — Z log

_Zlogx (1 -x)' Bernoulli distribution

. VU

TOSS A COIN... .

N
log p(2|x) = long(Cn | %) the log-likelihood

n=1

Il
M=

lng(Cn |x) logH — Z log
n=1
N
= 2 log xr (1 —x)'= Bernoulli distribution
n=1
N
= 2 (cn logx + (1 —c¢,)log(1 — x)) loga® = bloga
n=1

logab =loga +logb

. VUf¥

TOSS A COIN... .

(Finding x*) Calculate derivative wrt x and set to O:

. VU

TOSS A COIN... .

(Finding x*) Calculate derivative wrt x and set to O:

d d o .
) (culogx+(1 = ¢log(1 = 1)) =0 —— /() =0 gives optimum
n= and
N —
Z(ﬁ_(l cn))zo 9 ogr =2
x (1-x) dx

n=1

. VUf¥

TOSS A COIN... .

(Finding x*) Calculate derivative wrt x and set to O:

d d o .
= <Cn logx + (1 — ¢,)log(1 — x)> —0 — /() =0 gives optimum
dx
n= and
u - 1
Z(ﬁ_(l cn))zo 9 ogr =2
x (1=x dx x

1

3
I

M=

1 (cn(l 0 —(- cn)x> =0
N N

ch—xiv:cn—Nx+chn=O = X=lZCn

n=1 n=1 n=1 n=1

; VUf¥

3
I

TOSS A COIN... .

(Finding x*) Calculate derivative wrt x and set to O:

d N

) <cn log x + (1 — ¢,)log(1 —x)) =0
e, (1—c) B
2(7_(1—@)_0

M=

1 (cn(l 0 —(- cn)x> =0
N N

ch—xiv:cn—Nx+chn=O =

3
I

48

if(JC) =0 gives optimum
dx

and

4 et

dx gx-x

| EXAMPLE: |

P ={0,0,1,1,0,1,1} |

X* = 4/7 (.

PROBABILISTIC LEARNING (LIKELIHOOD-BASED)

. VU

PROBABILISTIC LEARNING (LIKELIHOOD-BASED)

1) Determine p(y|x).

. VU

PROBABILISTIC LEARNING (LIKELIHOOD-BASED)

1) Determine p(y|x).
2) Determine p(9 | x).

. VU

PROBABILISTIC LEARNING (LIKELIHOOD-BASED)

1) Determine p(y|x).
2) Determine p(9 | x).

3) Check constraints.

; VU

PROBABILISTIC LEARNING (LIKELIHOOD-BASED)

1) Determine p(y|x).
2) Determine p(9 | x).
3) Check constraints.

4) Find the best solution by minimizing —log p(Z | x).

; VU

PROBABILISTIC LEARNING (LIKELIHOOD-BASED)

1) Determine p(y|x). e.g., Bernoulli, Gaussian...

2) Determine p(9 | x). e.g., iid or sequential

3) Check constraints. e.g., only values between [0, 1]
4) Find the best solution by e.g., using gradient-descent

minimizing —log p(< | x).

y VUf¥

LOGISTIC REGRESSION

, VU

SPAM DETECTION

e Example: Spam detection
» x € {0,1}? - whether a dth word occurs in an e-mail (x = 1) or not
» y € {0,1} - whether an e-mail is a spam (y = 1) or not

» Goal: provide probability of a spam OR classify messages.

=N
1 _ [
0,5 l;l I I— Detector
0 . . .

: N

hello fine mom call

. VUf¥

LOGISTIC REGRESSION

e xeRP,y€{0,1},0 €RP

* We model y by using the Bernoulli distribution:

p(y|x,0) = Bern(y | sigm(' x))

. VU

LOGISTIC REGRESSION

e xeRP,y€{0,1},0 €RP
* We model y by using the Bernoulli distribution:
p(y|x,6) = Bern(y | sigm(6"x))

where:

D

linear dependency: 07x =) 6,x,
d=1

1

1 + exp(—s)

sigmoid function: sigm(s) =

, VUf¥

LOGISTIC REGRESSION

e xeRP,y€{0,1},0 €RP

* We model y by using the Bernoulli distribution:

p(y|x,0) = Bern(y | sigm(' x))

where: Sigmoid can model
D probabilities!
linear dependency: 07x =) 6,x,
d=1
sigmoid function: sigm(s) = |
1 + eXp(—S) 04 -

0.2 1

VU¥
59 4 -2 0 2 4

LOGISTIC REGRESSION

* Properties of the sigmoid function:

» sigm(s) € [0,1]

. disigm(s) = sigm(s) (1 — sigm(s))
)

» sigm(—s) = 1 — sigm(s)
e I[n our model we have:
p(y =1|x,60) = sigm(8"x)
p(y=0]|x,60) =1 —sigm(@'x)

. VUf¥

LOGISTIC REGRESSION

e p(y|x,0) = Bern(y|sigm(0"x))

D
where: 0"x = Z 0,x,
d=1

= > p(y=1]x,0)

§ VU

LOGISTIC REGRESSION: GRADIENT-DESCENT

Vo—log p(Dy19,.0) = Vy— Y log p(y;| ;. 0)

. VU

LOGISTIC REGRESSION: GRADIENT-DESCENT

Vo—log p(Dy19,.0) = Vy— Y log p(y;| ;. 0)

=Vy— Z (yl- log sigm(@"x;) + (1 — y,)log sigm(—QTxi)>

l

. VU

LOGISTIC REGRESSION: GRADIENT-DESCENT

Vo —log p(2,192,.0) = Vy— Y log p(y;]x,0)

=Vy— Z (yl log sigm(@"x;) + (1 — y,)log sigm(—@Txi)>

sigm(0" x;)sigm(— 9Txi)xi>

— — sigm(@ x)sigm(—=0 " x)x. — (1 — y.
Z(31gm(6’Tx) igm(OTx)sigm (=073 — (1 =3 s

y VU

LOGISTIC REGRESSION: GRADIENT-DESCENT

Vo —log p(2,192,.0) = Vy— Y log p(y;]x,0)

=Vy— Z (yl log sigm(@"x;) + (1 — y,)log sigm(—é’Txi)>

sigm(0" x;)sigm(— 9Txi)xi>

— — sigm(@ x)sigm(—=0 " x)x. — (1 — y.
Z(s1gm(6’Tx) igm(OTx)sigm (=073 — (1 =3 s

- Z <)’i sigm(—=6"x;) x; — (1 —,) sigm(0'x,) x,)

- Z (yi (sigm(—0Tx;) + sigm(0'x,)) x; — sigm(0"x,) xi)

. VUf¥

LOGISTIC REGRESSION: GRADIENT-DESCENT

Vo —log p(2,192,.0) = Vy— Y log p(y;]x,0)

=Vy— Z (yl log sigm(@"x;) + (1 — y,)log sigm(—é’Txi)>

sigm(0" x;)sigm(— 9Txi)xi>

— — sigm(@ x)sigm(—=0 " x)x. — (1 — y.
Z(s1gm(0Tx) igm(OTx)sigm (=073 — (1 =3 s

= _ Z (yl- sigm(—0'x,) x; — (1 —y,;) sigm(0"x,) xi)
= — Z (yl. (sigm(—QTxi) + sigm(QTxi)) X; — Sigm(eTxi) xi)
= — Z (yl- x; — sigm(6 ' x)) xl->

= Z (sigm(QTXi) - }’i> X;
66 | VU k

LOGISTIC REGRESSION: GRADIENT-DESCENT

e The update rule:

. VU

LOGISTIC REGRESSION: GRADIENT-DESCENT

e The update rule:

N
0 :=0-— az (Sigm(QTxl-) — yl-) X;
i=1
e What if Nis large?
» Use mini-batches (M <« N)! (Stochastic Gradient descent)

M
0:=0-— az (sigm(@ij) — yj> X;

J=1

. VUf¥

LOGISTIC REGRESSION: GRADIENT-DESCENT

e The update rule:

N

0:=0- az (Sigm(QTxl-) — yl-> X;
i=1
e What if Nis large?

» Use mini-batches (M <« N)! (Stochastic Gradient descent)

M
0:=0-— az (sigm(@ij) — yj> X;
or even: j=1

0:=6-— a(sigm(Qij) — yj) X;

. VUf¥

LOGISTIC REGRESSION: SGD VS. GD

Stochastic Gradient Descent Gradient Descent

. VUf¥

FULLY-CONNECTED NEURAL NETWORKS

. VU

WHAT IF WE STACK MULTIPLE LOGISTIC REGRESSORS

= » p(y =1|x,0)

; VU

STACKING LOGISTIC REGRESSORS

p(y =1]|x,0)

weights: W € R g ¢ RM*!

. VUf¥

FULLY CONNECTED NEURAL NETWORKS (FCN)

e Stacking logistic regressions models the probability as follows:

p(y=1[x,W,0) = sigm(GT Sigm(Wx)>

h

., VU

FULLY CONNECTED NEURAL NETWORKS (FCN)

e Stacking logistic regressions models the probability as follows:

p(y=1[x,W,0) = sigm(@T Sigm(Wx)>

h

e Notice that we still use the log-likelihood function as our objective!

. VUf¥

FULLY CONNECTED NEURAL NETWORKS (FCN)

e Stacking logistic regressions models the probability as follows:

p(y=1[x,W,0) = sigm(GT Sigm(Wx)>

h

e Notice that we still use the log-likelihood function as our objective!

e We refer to i as a hidden layer, and %, is called a neuron.

. VUf¥

FULLY CONNECTED NEURAL NETWORKS (FCN)

e Stacking logistic regressions models the probability as follows:

p(y=1[x,W,0) = Sigm<9T Sigm(Wx)>

h

e Notice that we still use the log-likelihood function as our objective!
e We refer to i as a hidden layer, and %, is called a neuron.

e \We can stack even more:

p(y = 1]x, (W,},0) = sigm(HTsigm(---Wzsigm(Wlx)))

., VUf¥

FCN: COMPONENTS

e Alinear layer: a = Wx (or with explicit bias: a = Wx + b)

e with a non-linearity: 7 = f(Wx)

. VU

FCN: COMPONENTS

e Alinear layer: a = Wx (or with explicit bias: a = Wx + b)
e with a non-linearity: 7 = f(Wx)
e Typical non-linearities:

» sigmoid: sigm(x) = (1 + exp(—x))_1

» tanh: tanh(x) = 2sigm(2x) — 1

» RelLU: relu(x) = max{0,x}

. softmax: softmax(x) = exp(x;) / 2 exp(x;)

. VUf¥

LINEAR LAYERS

e Alinear layer: a = Wx

e Initialization of W € RP*M:
e Gaussian: W ~ 4(0,6°)
o Xavier (for tanh): W ~ #(0,4/1 /D)

« He (for ReLU): W ~ #(0,4/2 /D)

. VU

ACTIVATION FUNCTIONS

sigmoid tanh RelLU

10 100 5
0.75
0.8 1 4
0.50
06 025 3
0.00
04 -0.25 B
-0.50
02 1
-0.75
0.0 1 -1.00 4 0
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
0.25 1 05 10 -
0.20 0.4 1 0.8 -
0.15 1 031 0.6
0.10 02 1 0.4 1
0.05 1 014 0.2 -
000 1 T T T T T 00 1 T T T T 00]

: O wuF

HOW TO DEAL WITH MULTIPLE CLASSES?

e So far, we talked about 2 classes (sigmoid for modeling probabilities).

e How to deal with K classes?

, VU

HOW TO DEAL WITH MULTIPLE CLASSES?

e So far, we talked about 2 classes (sigmoid for modeling probabilities).
e How to deal with K classes?
e Softmax function:
exp(6; x)
Y1 P x)

p(y =i|x,0)=

. VUf¥

LEARNING: BACKPROPAGATION

e We introduced neural networks as stacked logistic regressors.

e How to learn FCN? Can we use SGD?

y VU

LEARNING: BACKPROPAGATION

e We introduced neural networks as stacked logistic regressors.
e How to learn FCN? Can we use SGD? YES!

. VU

LEARNING: BACKPROPAGATION

e We introduced neural networks as stacked logistic regressors.
e How to learn FCN? Can we use SGD? YES!

e Let us consider one hidden layer:

p(y = 1|5, W,0) = sigm<9Tf(Wx)))

. VUf¥

LEARNING: BACKPROPAGATION

e We introduced neural networks as stacked logistic regressors.
e How to learn FCN? Can we use SGD? YES!

e Let us consider one hidden layer:
POy =11x, W,0) = sigm(07f(Wx)

e \We can use the chain rule to calculate gradients wrt all weights:

dz dz df; df,
du df; dfy, du

. VUf¥

LEARNING: BACKPROPAGATION

e We introduced neural networks as stacked logistic regressors.
e How to learn FCN? Can we use SGD? YES!

e Let us consider one hidden layer:
p(y=1]x,W,0) = sigm(eTf(Wx)))
e \We can use the chain rule to calculate gradients wrt all weights:

\ dz df, df,
' df, df, du

Negative log-likelihood

. VUf¥

LEARNING: BACKPROPAGATION

e We introduced neural networks as stacked logistic regressors.
e How to learn FCN? Can we use SGD? YES!

e Let us consider one hidden layer:
POy =11x, W,0) = sigm(07f(Wx)

e \We can use the chain rule to calculate gradients wrt all weights:

dz dz df; df,
du df; dfy, du

| Full derivation:
|
| Homework

Or wait till the next lecture!

89

VANISHING GRADIENT PROBLEM

e The sigmoid function is a good choice to model probabilities, however,
it is bad as a non-linearity for hidden layers.

e The problem arises while calculating gradients:

disigm(s) = sigm(s) (1 — sigm(s))
s

If sigm(x) ~ 1, then:

d
—sigm(s) 1 (1-1)=0
ds

. VUf¥

VANISHING GRADIENT PROBLEM

e The sigmoid function is a good choice to model probabilities, however,
it is bad as a non-linearity for hidden layers.

e The problem arises while calculating gradients:

disigm(s) = sigm(s) (1 — sigm(s))
s

If sigm(x) ~ 1, then:
For instance:

d . _
a31gm(S) ~1(1-1D=0 dZ d7 0 df;

du df, du

. & VU

=0

Thank you!

EXTRA READING

Bishop, “Pattern Recognition and Machine Learning”

Murphy, “Machine Learning: A Probabilistic Perspective”

Courville, Goodfellow, Bengio,”Deep Learning”

Kruse et al., “Computational Intelligence: A Methodological Introduction”,

Springer

. VUf¥

