This lecture is about diffusion, a technique for building
generative models.

Lecture 11: Diffusion
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k’ VRIE
R s
divu.github.io VU © AusTEROMM

Diffusion models behind most of the “Al image

generators”, whose output these days populates social
ORANGE  GRANDE  ORAWBERY  SRANDIA 'STRAWBERRY media'“
~ LUES ANDERSON é @ 6 8
- ~ I809&
‘ Y 1 = T6Ye]

.

@

IASHED.

POTINOS

‘It the opposite of art' why Trotlerge / Ton / s | Ssercs | Enaroma ... and occasionally, the news.

illustrators are furious about Al

Getty lawsuit against Stability Al to go to
trial in the UK / Stability tried to get the case
thrown out.

() AN
Incoherent, creepy and
gorgeous: we asked six
leading artists to make
work using AI- and here
are the results

Text-to-image Al models can be tricked into
generating disturbing images

jonand DALL-E 2into producing

Alimage generator Stable Diffusion
racial and gendered

;tucrly finds

stafan Milne




part one: naive diffusion ..
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part two: understanding Gaussians

part three: Gaussian diffusion

We will first discuss a very simple version of the
diffusion process, with all the math stripped away. This
will help to illustrate how simple the basic idea is: it
can be explained with (almost) no math at all.

Next, to help us build an efficient and robust diffusion
system, we will need to use Gaussian noise. This is
noise from a Gaussian or normal distribution. To help
us build diffusion on top of Gaussian noise, we will
need to understand Gaussians very well, so we will
spend a little time developing our intuition, and setting
up the properties that we need.

: Vu# Then we will develop Gaussian diffusion, the basic
principle behind modern diffusion systems like DALL-E,
Midjourney and Stable Diffusion.
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GENERATIVE MODELING

given: produce:

This is the basic task of generative modeling: We are
given a set of instances. In this case images, but they
could also be sentences, bits of music or anything else
we can think of. Given this dataset, our job is to
produce a model that functions like a black box with a
single button: we push the button and out pops an
instance that looks like it belongs in the dataset.

It shouldn’t literally come from the data, that would be
overftting, but it should seem to follow the same
distribution as the one we got the data from.



WHY IS GENERATIVE MODELING DIFFICULT

No input/output pairs.

How to get and use randomness?

How to avoid mode collapse?

Why does generative modeling require all these
special tricks to apply deep learning to them? What
makes it so difficult?

The first reason is that it doesn’t come with explicit
input/output pairs. Neural networks are functions
from an input to an output. We can only start training
them when we have an example of what a given
output should look like for a given input. In generative
modeling we don’t have that. We just want a sample
from the data distribution, and we want a new sample
every time. We don’t even know what the sample
should be, so long as it looks like the data.

To make the sample different each time, we need
randomness. In some way, the model should consume
random bits, and then it should translate these to an
output sample.

If we do this naievly, for instance, by randomly pairing
up one noisy input with an instance in the data, and
making the model predict one from the other, we get
what is called mode collapse. Instead of producing
different samples with high variety (for instance, a
different digit every time), it produces the sample
sample every time: the point that minimizes the
average distance to all data points. Instead of
producing variety, the model collapses to a single
output. The big challenge in generative modeling is
avoiding this kind of behavior.

DIFFUSION

add noise

add noise

add noise

4

X

V

|t

our model f predicts zi.1 from z¢

Here is the the basic idea behind diffusion. We start
with an image from the data, and we gradually, step by
step, add a little noise to it. In this case we do that by
picking a few random pixels and setting them to black
or white at random. As we do this, the information in
the original image gradually disappears, until we are
left with an image that consists entirely of noise: each
pixel is black or white with 50% probability, and there
is no further structure.

We can then train a model to reverse this process.
This is essentially a denoising model, something that
neural networks have been able to do for decades.
Note that we now have input/output pairs for our
neural network. For each time step t we can just give it
image t+1, and train it on how close the input is to the
image at timestep t.

It’s not possible to do this task perfectly, but for many
of the noisy pixels, especially at the start of the
diffusion process, you can see pretty well what it
behind them, so we can at lest make an educated
guess at most stages of the diffusion process.



We call the image from our data x, and we call the
sequence of noisy images zr. We use T to refer to the
number of noising steps we apply, so zr is our final
image. We set T to some high value where we’re sure
that at that point every pixel has been corrupted at
least once and no information from the original image
remains.

SAMPLING sample zr
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Then, when the time comes we essentially fake the
process of denoising. For zr we know exactly what the
distribution is. We can sample a new zT from this
distribution very easily: we just create a new image,
where we decide to set every pixel to black or white at
random. This the same noisy image we would get if we
took a sample from our data, and added noise to it bit
by bit, exc ept in this case, there is no actuall image
“behind” the noise.

However, we still ask our model to “denoise” it. As the
model starts to remove parts of the noise, it will begin
to hallucinate small details to take the place of this
noise. In the next step, these details replace what it
hallucinates for the next noise to remove and so on. |
everything works, at the end of the denoising process,
the model has hallucinated an entire image, that looks
like it came from our dataset.

NAIVE DIFFUSION (1)

training sampling
initialize model f given f
for x in Data: sample zr
for t in steps: for t from T-1 to 0:
z¢ = add_noise(zt1) Ze1 = (2zt)
ot1 = f(zu)

loss = llzt-1 = o0tll2 return ze

brackprop & sgd on loss

Here is the training and sampling process.

During training, we follow the diffusion process, and
add noise step by step. At each stage, we then
immediately train the model for one step of gradient
descent, to predict the previous image from the next
one. We do this by running the model and comparing
its output o1 to the true value for z.1. For now, we will
simply use the squared Euclidean distance between
the two.

We’ll take a more principled approach to the loss later.
For now we just work on the intuition that o1 should
be as close to z..1 as possible so the distance between
them should be a reasonable thing to minimize (and
the squared distance is easier to work with, and
remove a square root form the computation, so should
give better gradients.).



WHAT SHOULD f LOOK LIKE? THE U-NET
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residual connections

So, how do we set up the model? We need to map one
image to another. This means that we cannot go with
fully connected layers if we want to work on high-res
images.

For that reason, we want the kind of hourglass shape
that we also saw in the variational autoencoder. We
uses a series of convolutions and pooling operations to
gradually work down to a low-resolution, high-
dimensional representation, and then we reverse the
process with transpose convolutions and upsampling.

A transpose convolution (sometimes called a
deconvolution) is essentially a reverse convolution:
where a convolution maps an input patch of k x k pixels
to one output pixel, and transpose convolution maps
one input pixel to a patch of output pixels. In both
cases, we usually set them in such a way that the input
and output resolutions are the same. A reqular
convolution would also work in the decoder stage (but
the transpose provide a pleasing kind of structural
symmetry).

This allows the model to learn powerful image-to-
image functions. However, it also makes it difficult to
learn certain very simple functions. For instance, in this
case, the model needs to leave most of the image
intact, and only remove a few noisy pixels. To output
all the pixels that should stay the same, the model
should encode them through all the convolutions and
then decode them again. This is a complex function to
learn, when all you want is to reproduce the input.

For this purpose, we add residual connections. Before
we send the input through the convolutions, we
remember it, and then at the end, concatenate it to
the input along the channel dimension, and project
down to 3 channels with a simple 1x1 convolution.

In other settings it’s more common to add residual
connections (like we saw in the transformer). As far as |
can tell, you can do that here as well, without any loss
in performance, but for some reason, the convention
when building a UNet is to concatenate rather than
add.

Note that UNets existed long before diffusion models.
This is just the first time we’ve come across them in
the course, so we introduce them here.



ADDITIONAL INPUTS

time: f(x, t)

It helps to know at which point in time we’re denoising.

positional embeddings/encodings

Break the translational equivariance of convolutions.

Both are embeddings, added to each pixel at every convolution.

It help to tell the model at which point in time we are
denoising, so we give it an extra argument t. We
usually don’t show this in the notation, but you can
assume it’s always there.

It can also help a lot to tell the model at which point in
space image it’s working.That is, the coordinates of the
pixel to which a convolution is being applied. We've
discussed before that convolutions are translation
equivariant, which means they necessarily do the
same thing regardless of where in the image they are
applied. However, many things are very dependent on
which part of the image you're in. For example, if
you're generating portrait photos, your much more
likely to generate a nose in the center of the image
that in the top right.

For both t and the pixel coordinates, we create
embeddings. These are then added to the pixels before
every convolution and transpose convolution.

RESULT

Here is the result on a fairly quick experiment without
too much tuning.

The final step doesn’t exactly show recognizable digits,
but it’s enough to indicate that the method has
promise.

WHAT ARE OUR LIMITATIONS?

Samples aren’t iid.

Model needs to identify noisy pixels.

Keep the rest the same. But convolutions are translation invariant.

Model needs to choose arbitrary pixels to denoise.

What can we improve about this approach?

One issue is that we are feeding examples to our
model in sequence. It will first see a bunch of very
unnoisy images from the start of the diffusion process,
and then a bunch of noisy images. This causes learning
to become unstable. For instance, the network might
forget what it’s learned from the unnoisy images while
it’s learning about the noisy images.

We know that neural networks suffer from
catastrophic forgetting under slight changes in the
data distribution.

For this reason, it would be better to pick a random t
and train the neural network on the images at that
point in time. However, in our current set up that
would be expensive, since we would have to run the
whole diffusion process up to point t, just for one
sample.

We could work out the distribution on how many pixels
are corrupted at time t, sample that and then corrupt



that amount of pixels, but that would require a bit of
math, and | promised no math in this section.

A second downside is that the model needs to identify
which pixels are noise and then do something very
different for those than for the other pixels. This is not
what convolutions are good at. They are much better
at doing the same thing to all pixels in parallel.

Even worse, only some of the corrupted pixels were
added in this noising step. Ideally, the model removes
those, and leaves the rest as they are. But the model
has no way to tell which is which. The best it can do is
denoise all pixels a bit.

Make f always predict x from z. prediction target
f
—_
f
——

Before we more onto the alternative types of noise,
here is one approach to diffusion that solves some of
these problems.

Instead of training the network to predict the next step
in the denoising process, we train it to fully denoise
the image. That is, we always predict x from z;, no
matter how far along the noising process we are.

For high t, the image will be so noisy that there isn’t
much to predict, and the network will mode collapse
to predicting mostly the data mean, possibly with very
slight amount of variation. For low t, with little noise, it
will be very easy for the model to make an almost
perfect prediction.

NOISE: ONE PIXEL AT A TIME

Only corrupt one pixel per step.
Only corrupt as-yet uncorrupted pixels.

We keep track of which pixels we’ve already corrupted.

Thus:
« Tis exactly height x width.
* We can easily sample z; directly

Just corrupt t pixels.

One thing we can now do is add noise one pixel at a
time. We’'ll keep track of which pixels we’ve already
corrupted, and only corrupt pixels we haven’t
corrupted before. This means we diffuse for exactly as
many steps as we have pixels. This seems inefficient,
but that turns out not to be the case.

First, because during training, we can always easily
sample z; directly. We just pick a random t between 0
and T, and corrupt t pixels of x chosen randomly
(without replacement).

Second, because our sampling algorithm works by
denoising and renoising, we don’t need to sample with
the same step size we did before. We can just denoise
from level t=1000 and renoise at level t=900. This is a
way to trade off sampling speed for quality.



SAMPLING: DENOISE, RENOISE
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The idea is that during sampling, instead of denoising a
little bit—from level t to level t-1—we fully denoise
from level t , and then add some noise back in at level
t-1. The idea is that the model doesn’t need to worry
about modeling the noise (which in the case of
binomial noise is hard to do for a unet). It can just
predict the fully cleaned image and we’ll add some
noise back using the noising operator we also used
during training.

The result is that we start with a very fuzzy prediction:
If we feed the model a fully noisy image with no signal,
all it can do is predict the data mean. Then, we
renoise, hiding most of the image, except some very
small details of the fuzzy image. There are different
every time, so they may steer the model slightly
towards a different outcome. The more noise we
remove, the more the predictions serve to add detail,
and the more the prediction moves away from the
data mean and towards a specific sample.

NAIVE DIFFUSION (2)

training
initialize model f
T = height * width

for x in Data:
t = uniform(@, T)
z¢ = add_noise(zt-1, lvl=t)
o = f(zta)
loss = lix - oll2

brackprop & sgd on loss

sampling
given f
sample z
for t from T to @ in steps of K:
x = f(z)

z = add_noise(x, lvl=t)

return x

With that, here is our second diffusion algorithm in
full.

The parameter K lets us trade off sampling speed for
image quality.

RESULT




COLD DIFFUSION

Degraded Generated
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Figure 1: Demonstration of the forward and backward processes for both hot and cold diffusions,
While standard diffusions are built on Gaussian noise (top row), we show that generative models
can be built on arbitrary and even noiseless/cold image transforms, including the ImageNet-C
snowification operator, and an animorphosis operator that adds a random animal image from AFHQ.

source: Bansal, A, Borgnia, E,, Chu, H. M, Li, J. S, Kazemi, H., Huang, F, .. & Goldstein, T. (2022). Cold diffusion: VU -3
Inverting arbitrary image transforms without noise. arXiv preprint arXiv:2208.09392.

This kind of no-frills approach to diffusion is not just a
teaching tool. It can actually be used to generate high-
quality images. In this paper, the authors show that a
simple noise function and a squared error loss (like we
used) is often all you need. In fact, you don’t even
need noise. You can gradually degrade the image by
any means you can think of: evend slowly overlaying a
picture of a random animal allows the diffusion
process to work.

The authors use our second algorithm, with a slight
adaptation required for work with non-noisy
degradation operators.

REQUIREMENTS AND LIMITATIONS

We want to
be able to sample from p(zr) easily.
We need to know what distribution our diffusion converges too.
be able to sample z; easily.
Without performing t steps of diffusion explicitly.
have the noise affect the whole image.
So f doesn’t need to select pixels.
have a principled approach to our loss.

The squared error was an ad-hoc choice.
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That’s about as far as we can go without mathematics.
In the remainder of the lecture, we will show how
using Gaussian noise can solve many more of our
problems.

UNDERSTANDING GAUSSIANS

VU

| section-nv|Understanding Gaussians
|video| |

Most diffusion models work on the basis of Gaussian
noise. That is noise from a Gaussian or normal
distribution. These distributions have many nice
properties, that mean they are used a lot in machine
learning. It can however, be a little daunting to work
with Gaussians at first.



THE GAUSSIAN
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dont worry about this

A big reason for this is that the function for the
probability density is complex. This is usually how
Gaussians are defined and how their basic properties
are proved. We can make things a lot simpler by
forgetting about this formula, and defining Gaussians a
slightly different way.

Define the standard Gaussian in 1D, and ND.

Build the rest of the family on affine transformation.
Using only simple matrix and vector manipulations.

Derive the canonical parametrization.

In terms of the mean and Covariance.

Prove the properties we need for Gaussian diffusion.

1D NORMAL DISTRIBUTION (WITHOUT PARAMETERS)
A\ — exp-¥%x?
derivative
inflection points
definite scale: most probability

mass is near 0 (decays more than
exponentially)

-3 -2 -1 1 2 3 ~68% of probability mass in [-1, 1]

properties:
mean: 0
variance: 1

We start with the 1D standard normal distribution.
That is, a single distribution which has its mean at zero,
and which has a very simple shape.

One of the main properties of the Gaussian is that it
has a definite scale: it assigns some nonzero
probability density to every point between negative
infinity and positive infinity, but we can still say with
strong certainty that a sample will be in the range [-1,
1], and with extreme certainty that a sample will be in
the range [-10, 10]. This means, for instance, because
people’s heights are roughly normally distributed, you
may see the occasional people being 2m tall, and one
person in history might have come close to being 3m
tall, we will never see a 4m tall person. In short, this
normal distribution are why doors are feasible.

Compare this to the distribution on wealth, for
instance, which does not have this property: if we look
at 10 times as many people, the maximum wealth in
the population will always increase by about 10 as
well.



To get a distribution like this, we can use exponential
decay: every step of 1 we take away from 0, we
multiply the density by a fixed number smaller than 1.
The function e-Ixl, or exp -|x|, is an example. the
normal distribution adds even more decay by squaring
the x. exp-x2.

There are various reasons for this square: One is that
with the square in there the curve has two inflection
points. This is where the derivative flattens out and the
curve goes from growing more quickly to growing
more slowly (on the left) and from decaying more
slowly to decaying more quickly (on the right). Because
the peak is in between the two inflection points and
that’s where the rate of change slows down, we get a
“bulk” of probability mass in that range. In short this is
a natural range to consider the scale of the normal
distribution.

We multiply by 1/2 before the square so that the
inflection points land precisely on -1 and 1, which
means that for the standard gaussian, the meanis at 0
and the bulk of the mass is in [-1, 1]. The variance also

MULTIVARIATE STANDARD GAUSSIAN

X1
XQ The x/'s are
X = . Xl ~ NS independent of each
other
Xd
p(x) = Ns = NS

Next, we define a Gaussian in d dimensions. That is, a
distribution on vectors of d elements. Imagine that we
sample d numbers x; independently from Ns! and stick
them in a vector x. The resulting distribution on x, we
call N9 (or just Ns if the dimension is clear from
context).

That is, the standard Gaussian in d dimensions just
consists of d independent standard Gaussians, one
along each axis.

WHAT DOES Ns LOOK LIKE?

px) =px1) plx2) ... plxa)
logp(x) = logp(x1) + logp(x2) + ... +logp(xa)
= x2— X2 — xd2+
= Zmz +
T
= IxI*+

a spherical (or isotropic)
distribution

VU¥

What does the density of the standard Gaussian look
like? When we sample x, each of its elements is
sampled independently, so p(x) = p(x1) p(x2) ... p(xd)-
We’ll look at the log density of this to make things
simpler. The log density of x; under Nl is -1/2 x;2 plus
come constant, so we get a sum of these for all xi. If we
collect the squares into a sum, we see that this sum is
equal to the squared length of x.

What this tells us, is that all x that have the same
length, have the same (log) density. This means that
the contour lins of Ns2 form circles and in higher
dimensions, the contour surfaces form hyperspheres.

For this reason we call this type of distribution
spherical (the word isotropic is also used).



With a little more reasoning (which we’ll skip), you can
also work out that the smaller circles have higher
density, and that the density decays with the diameter
of the circle in the same way as it does in the 1D case.

This means that the distribution in 2D roughly looks
like a rotated version of the 1D curve.

DEFINING THE REST OF THE GAUSSIAN FAMILY

7

We now define: any affine transformation of N is a “Gaussian”.

Affine transform: multiplying by a matrix A and adding a vector t.

that is, if: s~ Ng
and: x=As+1t

then we call p(x) a Gaussian.

Next, we define the family of Gaussians. We will do
this by assuming that we have a vector s which is
drawn from a standard normal Gaussian in d
dimensions. We then apply an affine transformation to
s (that is, a matrix multiplication and a translation),
resulting in the vector x.

Obviously, if we know s, then x is fully determined. But
what if | told you | had done this, but didn’t tell you
what s | had drawn. What would the distribution p(x)
be? We call this distribution a Gaussian. The matrix A
and the vector t function (for the time being) as the
parameters of this Gaussian.

Note that we are using this as a definition of what a
Gaussian is. In other contexts, you may see the
Gaussian defined differently (in terms of that horrible
formula) and then the fact that they are all affine
transformations of Ns is a property of Gaussians. Here
we use it as a definition, in order to simplify the
construction of the Gaussians.

For our definition, it is not necessary that A is square.
However, any Gaussian defined by a non-square A, can
also be defined by a square A (possibly with s of a
different dimension), so we will limit ourselves mostly
to square As in this lecture.



AFFINE TRANSFORMS OF CIRCLES ARE ELLIPSES

x=As+t

7
NP

How should we visualize these Gaussians? A simple
way is to think of all the points inside a circle under Ns.
This circle will be mapped to an ellipse by A and t.

In higher dimensions, we call these ellipsoids.

If, say, 68% of the points s fall inside the inner circle,
then they will all be mapped to the inner ellipse on the
right. This means that 68% of the points x will fall
inside the inner ellipse.

In short, the general Gaussian is not spherical.

question: What would A and t need to look like for the
distribution on the right to be spherical as well?

THE MEAN OF A GAUSSIAN

NB: the mean is a property of Gaussian now, not part of its definition.

n=~Ex with x =As+t

frnd ESNNS AS + t <= £ is a Linear f’uma‘_‘;iom
E
=0+t Es= :82 =0

ESd

Next, we can ask about some of the properties of
these Gaussians. For example, the mean.

The mean is defined as the expected value of the
distribution. That is, what does the average of a
sample converge to for an increasing sample size?

Again, the mean is normally part of the definition of a
Gaussian, but we're flipping it around. We’ve already
defined the Gaussian, so now we’re studying the mean
as a property.

We use two properties in this derivation. First, that the
Expected value is a linear function. That means that
any matrix multiplication and vector addition can be
taken out of the mean in the same way we would take
it out of a set of brackets.

The second is that the mean of the standard Gaussian
is 0 (that is, the O-vector). This follows from the fact
that the elements of s are independently sampled, so
the expected value of s is the vector made up of the
expected values of its elements. And the expected
value of Nglis 0.

The end result is that the mean of a Gaussian (A, t) is
equaltot.



THE COVARIANCE OF A GAUSSIAN

. Covs=1I
. Covx=E(x—p)(x—p)T"
. —E(As+t w)(As+t )T

E oy —EAs(As)T = AEs(As)T = AEssTAT
=A(Ess") AT = AAT

L
covariance of x; with x;
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Next, the covariance. Again, think of this as a property
of any multivariate distribution not (necessarily) a
parameter.

The covariance matrix of p(x) collects the variance of
all the elements of x along the diagonal and the
covariance of any two elements on the off-diagonal
elements. This tells us what the covariance matrix of s
is: the variances are all 1, because all elements are
distributed according to Ns!, and the covariances are
all 0, because all elements are independently drawn. In
short, the covariance matrix of s is the identity matrix.

We can now work out what the covariance matrix of a
Gaussian (A, t) is. We use the definition that the
covariance matrix of p(x) is the expected outer product
of (x - i), where p is the mean of p(x).

In the previous slide, we worked out that i = t, so if we
fill in the definition of x in terms of s, the translation
term t and the . cancel out. Next, we are left with two
matrix multiplications. Working these out of the
expectation, we are left with EssT, which is the
covariance of the standard Gaussian, which is |, so it
disappears.

The end result is that the covariance of the Gaussian
(A, t) is AAT.

TRADITIONAL PARAMETRIZATION
s ~ Ny
y=Ax+t

y~N(p=tX=AAT)

NB: (t, A) is not a unique name for Gaussian, (p, Z) is.

Because A and t transform so simply to the mean and
the covariance (and back) this means we can now use
the mean and covariance as a name for the Gaussian

as well (we have a simple method for translating one

type of name to another).

The mean and covariance is, of course, the traditional
way of parametrizing the Gaussians. It has one benefit
over the affine transformation: the mean and
covariance are unique names. The affine
transformation naming scheme has many names for
the same Gaussian.

Consider for instance what we get if we use a rotation
matrix and t=0.



SPHERICAL GAUSSIANS

x=o0ls+t s~ N.

x ~ N(t,oI(cI)T) = N(t, 0?)

02 : variance
o :standard deviation

off-diagonal: 0

One thing that is going to be important when we build
diffusion models is the subset of Spherical Gaussians.
These are Gaussians that retain the property of the
standard Gaussian that all the contour lines are circles,
spheres or hyper-spheres.

We achieve this if A scales each dimension uniformly
(that is by the same amount). In other words, if A is
the identity matrix | times some scalar o.

There are other matrices that also lead to spherical
Gaussians (again, consider rotations), but if we limit
ourselves to As that are a scalar times the identity
matrix, we can define all spherical Gaussians.

Following what we derived earlier, this shows that the
covariance matrix is | times o2.

By seeing what happens in the 1D case, we can see
that these are natural analogues of the variance and
the standard deviation, and we will name them as
such. That is, even though a d-dimensional distribution
doesn’t have a single variance or standard deviation, in
a spherical distribution the variance and standard
deviation are the same in all direcitions, so in this
specific case, we can talk about a single scalar variance
and standard deviation.

PROPERTIES

Any affine transformation of a Gaussian is a Gaussian.

The sum of two Gaussian variables is a Gaussian.

Making one Gaussian sample the mean of another results in a Gaussian.

The KL divergence between two Gaussians has closed form solution.

Vu¥

To finish up our discussion, we will look at 4 properties
of Gaussians that will help us to define the Gaussian
diffusion process.



1) AFFINE TRANSFORMS OF GAUSSIANS

XNN('a')
y=Ax+t

x=Bs+q s~ Ng
y=A(Bs+q)+t=ABs+Aq+t

—

matrix mult translation vector

We start with the simplest one. We already know that,
by definition, an affine transformation of the standard
Gaussian is a Gaussian. If we combine this with the
fact that the composition of two affine transformation
is another affine transformation, we can show that the
affine transformation of any Gaussian (standard or
not) yields another Gaussian.

Say that we have a Gaussian G and and affine
transformation (A, t). What we want to show is that
sampling from G and applying (A, t) results in a
Gaussian.

Sampling from G is, by definition, equivalent to
sampling from Ns and then transforming by some
affine transformation (B,t in the slides). All we are
doing then, is applying another affine transformation
(A, t) after that. The composition of two affine
transformations is another affine transformation, so
what we are doing is equivalent to sampling from Ns
and then applying a single affine transformation. By
our definition, this is a Gaussian.

As the slides show, the combined affine transformation
is (AB, Aq +1t).

2) SUM OF GAUSSIAN VARIABLES
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Here’s a slightly more involved one to prove: if we take
samples x and y from two separate Gaussian, their
sum is also distributed as a Gaussian.

Note that this is distinct from taking the probability
density functions of two Gaussians and summing them
(the result of which is a mixture-of-gaussians).

The way to show this, and to work out what the
parameters of the resulting Gaussian are, is to frame
this process as an affine transformation. If we fill in the
definitions of x and y, we get an affine transformation
in two variables s1 and s2. We can rephrase this as an
affine transformation in a single variable, by simply
concatenating A and B horizontally and s; and s,
vertically.

Finally, we can see that the concatenation of s; and s;
is a standard Gaussian vector. This is because we
defined a standard Gaussian vector as one whose
elements were sampled independently from Ns!. The
elements of s; and s, were each sampled indepently,
so s must also be standard Gaussian.



The result is that z is an affine transformation of a
standard Gaussian, so it must be a Gaussian.

Note, however, that this doesn’t give us as nice a
definition as we have found so far: the problem is that
we are defining z as an affine transformation of
Gaussian noise s, but s has twice as many dimensions
as z. In our previous definitions s always had the same
number of dimensions as the resulting variable.

The solution is to work out the covariance matrix. This
is a unique parametrization of this Gaussian on z, so it
must be square.

BUT WHAT ARE THE PARAMETER OF THE GAUSSIAN ON z?

x=As; +t ~N(u, =t,Z, = AAT)
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To get the covariance matrix matrix, we need to work
out what we get if we multiply (A B) by its transpose.

Note that (A B)T flips the matrix along its diagonal. This
means that the height and width become reversed.

The result is AAT + BBT, the sum of the two covariances
of the original two distributions.

If we want to translate this back to an affine
transformation, we will need to find a square matrix C,
such that CCT is equal to this expression. Happily this is
always possible (usually in a few ways), using
operations like a Eigen- or Cholesky decomposition
(note that is AAT + BBT symmetric)

SUMMING SPHERICAL GAUSSIANS

X=l+ 081 x~ N1y, 0T
Y=ty +0ys2  x~N(i, 07T

x+y~N(i + 1y, 0T+ 0, 2T)

= Nlps + oy, (032 + 02)0)

X+y =+ 1y + \V 0X2+0y2s

—_—
square the variances, sum and then take square root
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This operation, summing two Gaussian variables, will
become especially important in the context of
spherical Gaussians.

Applying the rule we derived in the previous slide, we
can see how to work out the sum of two Gaussians in
the affine transformations notation: we take the two
variances (the sigma’s without a square), we square
them, then sum them then take the square root again.

We recommend that you memorize this rule as well as
understanding it.



3) CHAINING GAUSSIANS

The third property, we’ll call chaining Gaussians. This is
when we take a sample from one Gaussian, and make
it the mean of another Gaussian.

This happens, for instance, if you take one noisy
measurement, and use it in another noisy process. For
example if | measure the length of one plank of wood,
and then try cut another plank of wood at that length,
the length of the resulting plank of wood will be a
combination of how poorly | measured the first plank
and how poorly | made my cut. If both processes are
Gaussian, what we'd like to show, is that the resulting
distribution on the length of the second plank has and
acceptable variance, and that the mean of the whole
process is equal to the length of the first plank, so that
at least on average the planks are the same length.

VU¥

We can think of this as a convolution of two Gaussians.
Each possible measurement x contributed some
probability density to the final point y, proportional to
how likely x is to be measured. Adding up (or rather
integrating) all these bits of probability density, will
give us the answer.

We call this a convolution, because we’re sliding one
Gaussian along the horizontal axis, and taking a
(weighted) “sum” of all the copies we encounter.

Of course, this is not an easy integral to work out,
especially if we want to move to higher dimensions.
Instead, we will take a geometric perspective again.

3) CHAINING GAUSSIANS

XNN(M7Z)
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What is p(y)?

Here’s what the picture looks like in N dimensions.
Writing the two Gaussians as transformations of
standard Gaussian noise, shows how we can solve this
puzzle: we just plug the definition of x into the
definition of y.



GEOMETRIC SOLUTION
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Doing this gives us y as a function of two vectors of
standard Gaussian noise s; and s,. The trick here, is
that we can interpret this as the sum of two Gaussians
(one with mean t, and one with mean 0).

We’ve seen already how to combine these into a a
single Gaussian. We sum the means, and the
covariances.

The result is that our distribution on y has t as a mean,
and the sum of the two covariances for its covariance
matrix.

In the example of cutting a plank, we see that we do in
deed get two planks of the same length on average,
and the sum of the variances of our measuring and our
cutting needs to make an acceptable error margin for
the final product.

THE SPHERICAL CASE

x=0s; +1t

Yy =TSg +X
y=08y+718 +t+0
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As before, the story becomes much simple in the
spherical case. Here, we just square and sum the
variances and then take the square root.

4) KL DIV. HAS A CLOSED FORM SOLUTION

p(x)
q(x)

K(P» Q) = _Ex~q 10g
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The KL divergence, written here as an expectation,
expresses how “similar” two probability distributions
are. If the are exactly the same, the KL divergence is 0,
and the more they differ, the bigger it gets.

It’s relevant to us, because the quantity we’re actually
interested in optimizing (the data log-likelihood under
our model) can often be rewritten into one or more KL
divergences, as we saw earlier with the VAE.

For this to lead to a loss function we can use, we need
a closed-form expression for the KL divergence. The
formula here is no good to us, because the expectation
isn’t necessarily computable. We need an expression
that we cannot just compute quickly, but that we can
backpropagate through (remember, this will be our
loss function).

This is our final reason for liking Gaussians: the KL
divergence between two Gaussians has a simple
closed-form expression.



USEFUL PROPERTY
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We will make use of the following useful property: the
expected value between random vector x and constant
vectory, if x is distributed according to a spherical
Gaussian, is the squared distance between y and the
mean of the Gaussian, plus d times the variance.

If you’ve following the derivation, note that on line 5
we make use of the fact that Es™s = d (where d is the
dimension of s). You can work this out by writing the
dot product as a sum, and working the expectation
inside the sum. Then note that E s?is the variance of
Ns1, which we know to be 1.
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Now, to the KL divergence.

We won't work it out for general Gaussians (although
it exists), we will just show a simple case: the KL loss
for two spherical Gaussians, in terms of the means. We
will assume that our model only controls the mean of
one of the Gaussians, so that we can ignore any terms
that are constant with respect to that mean.

In the first line, we expand the logarithm over the two
Gaussians, and remove any terms that don’t contain 1,
which is the term we assume we’re optimizing. Then
we work the expectations inside as shown.

To line 2, we can apply the property from the last slide,
resulting inline 3 as shown. The second term reduces
to a constant, and the first to a constant (in 1) plus a
constant, times the distance between 1 and v, which is
the fundamental property that we should be
minimizing.

This should make some intuitive sense: to make two
spherical Gaussians as similar as possible to one
another, without changing their variances: align their
means.



We can do a lot of thinking about Gaussians by:
= Using a geometric definition.

« Relying on linear properties.

We have shown that:

- affine transformations between Gaussians
« summing of Gaussian variables

« and chaining Gaussians

all result in more Gaussians.

. VU¥

GAUSSIAN DIFFUSION

VUt

| section-nv| Gaussian diffusion |
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At last, we are ready to start building Gaussian
diffusion models.

Denoising Diffusion Probabilistic Models

1 Introduction
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Ll it MR S

There are many different ways to do this, and many
state-of-the art models add their own little tweak and
touches to the derivation.

We will focus on this specific approach. The first to
show that diffussion models could be trained to do the
things we’d seen models like GANs do, like generate
realistic human faces. Besides being very powerful,
this model is also remarkable for its simplicity. More
powerful models have been published since, but this is
probably the best in terms of its tradeoff of simplicity
and performances, so it’s a good model to use as a
foundation of your understanding of diffusion models.

If you are continuing in diffusion models after this
lecture, perhaps for your thesis, then we suggest
carefully following all the steps in the derivation of this
model, and then seeing how other models deviate.



RECAP: DIFFUSION
[ v
X A

Add noise to the image step by step. Train a model to reverse the process.
Make sure that:

the process converges to a known distribution on zr.

Izt

Should be easy to sample from.
we can sample the noisy image z: directly for any t.

Without going through t steps of diffusion. VU ‘;

Here is the picture of diffusion models that we’ve built
up so far. We add noise to an image, slowly erasing the
information in it step by step, and then we train a
model to reverse this process.

The key feature that made this work is that the noise
we converge to in the diffusion is a known distribution
that we can easily sample from.

We also saw that a nice property to have was if we can
sample the noisy image z: at time step t directly rather
than explicitly having to go to t steps of diffusion. We
will require both these properties from our Gaussian
noise process.

GAUSSIAN NOISE
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Here is what Gaussian noise looks like.

We will model our data as color images, even though
this particular dataset is black and white. We don’t
have to do this, but it isn’t difficult for the model to
learn that the images should always be black and
white, and it’s visually a little more interesting.

Here is what that looks like in 2 dimensions. We start
with a Gaussian that is centered on x (that is, x is its
mean). We then sample z; from that distribution. This
is an image that will looks like a noisy version of x. We
then repeat the process, we create a Gaussian that is
centered on z1, sample from that and so on.

This is, of course, the Gaussian chaining that we talked
about in the last part. So we know that our distribution
on z; is a Gaussian.

Currently, the variance of this Gaussian grows bigger
with every step we take, and the mean stays at x, so
we’re not really removing information from x very
effectively. We'll fix that by slightly tweaking the
process.
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Here’s how we can write down this diffusion process.

What we need it for our process to converge to a
single, know Gaussian that we can sample from. This
can be any Gaussian, but it would be neatest if this
was the standard Gaussian. We'll see what we need to
do to achieve that.

Zty1 = V¢ + 08

The first thing we need is for the mean to go to 0. We
can achieve this with a simple trick. Instead of putting
the next Gaussian right on top of the previous sample,
we first shrink the sample a bit, by multiplying it by
some value, y, between 0 and 1.

Note that the Gaussian chaining property still applies:

=N(yz, 0”1) this shrinking is an affine operation, so we are still
chaining Gaussians.
This shrinking creates a kind of force that steadily pulls
the mean to 0. It’s reasonable to assume that this will
e cause the process to converge to a zero-mean
VU% distribution, but we should really prove that.
Additionally, we should work out what to set the
variance to at each step, so that the distribution
converges to variance 1.
To work this, we will write down the first couple of z,
WHAT y AND 0 ENSURE CONVERGENCE TO N(0, 1)? and rewrite them in terms of x. To do this, we can
21 =YX+ 08 apply the same principle that we used to show the
22 = V21 + 08 chaining property was true. We write each z as an
22 =Y (yX 4 081) + 085 = YyX + Y081 + 08, affine transformation of the previous z and some
=+ /202 + 0% Gaussian noise s. We then plug in the definition of the
3 = V23 + 0S3 previous z, and work this into a function of x and a
=v(v*x+ /702 + 02 5) + o83 single standard noise vector s.
=7v*x+ 7/ v02 + 0% s+ 085 Remember, to combine two standard noise vectors s;
=7’x+ Vy0% +7202 + 0% s’ and sz, we square their variances, sum, and square-
=1 root to get the variance for a single standard noise
7 = v'x + os with o2 = UZ Vs VU? vectors.

i=0

By z3, the pattern (hopefully) becomes clear: the scalar
in front of x is just y to the power of t. The variance is a
sum with t terms, where each term is our chosen
standard deviation o, times y to the power of i, where i
increases in steps of 2.
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With this, we can work out what to set ¢ to so that the
variance of z; converges to 1.

They key is to recognize that the sum on the right-
hand-side is a standard geometric sum in for y2 which
a closed form expression is known. With that, we can
rewrite and figure out what o2 should be.

SCHEDULE y

bigger steps
L]
smaller steps
.E

In practice, it turns out that it’s better to take big steps
at the start of the diffusion process, and smaller steps
at the end. This is because denoising is easier if you
can see more of the image. That mean that the start of
the process, we can ask the mode to remove more
noise, which we achieve by taking bigger steps there.
This means we can take smaller steps at the end, when
it’s more difficult for the model to figure out what is
“behind” the noise.

Yi>Y2> ... >VT

Zt = ViZt + 0S

2 7 2
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We achieve this by setting a noise schedule. We use a
different value for each timestep, and ensure that
these decrease with t.

If all of these are smaller than 1, we can be sure that
the process still converges to mean 0, but what should
we set the variance to at each step to ensure that we
get a standard Gaussian at the end? A lucky guess
might be the same value we got earlier: one minus the
square of y, except now to do this at each timestep for
the specific y: we used.

Let’s see if that guess pays off.
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We proceed as before, by writing out the definitions of
the first few z:, and plugging the previous z: into the
definition of the next.

The result is more complex, but not by much.

To get the mean of zt, x is scaled by the product of all
Vi so far. The scalar in front of s is once again a sum of t
terms. Each term i consists of the variance use at time i
times all the square of the y:'s used after time i.

Zy =YX+ 08

with v, =v,vo--v

t—1

and 2 = § o1y

i=0

Finally, we need to show that if we set each to the
value of one minus the square of the gamma used at t,
we get the desired result (a variance that goes to 1).

The key is to realize that if we multiply out the
brackets, we get a telescoping sequence. We show it
here for t=4, but it works for all t. Each term before we
multiply our the brackets yields two terms afterwards
one with the squared y:'s from i to t and one with the
squared y:'s from i+1 to t. Since i increments by 1 each
term, the first term we create by multiplying our one
set of brackets will be equal to the second term we
generate by multiplying out the next set of brackets.
This is true for every set of brackets, so that we end up
only with the final 1 and the full sequences of squared
vi's from the first term.

This tells us that the variance of z: can be expressed as
one minus the square of the product of y: all so far,
which goes to 0, so the variance goes to 1.

Z = Vizg 1+ 1—7v?%s
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So there we have it: a noise step for our diffusion
process that generally affects all pixels to some extent,
that can be easily sampled at time t and that
converges to standard noise as t increases.



A PRINCIPLED LOSS
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The next thing we want is a principled loss. Instead of
just appealing to intuition, and minimizing the squared
distance between two fairly arbitrarily chosen images,
we are going to start with a well-chosen principle, and
derive from this a loss that we can optimize.

The principle we choose, just as we did with the VAE, is
maximum likelihood: we should try to set the
parameters of our UNet so that the probability of our
data is as high as possible.

And that high probability density should transfer to our
validation and test data (so that we are not
overfitting).

To keep things simple we will

+ Only state the maximum likelihood objective for
one instance x. It would be more correct to
maximize the likelihood for the whole dataset, or
even better to maximize the expected likelihood of
one instance sampled from the data distribution,
but there we will just do what we always do in deep
learning: loop over the individual instances (or
batches of instances) and follow the gradient of the
loss for these with stochastic gradient descent. In
short, this part of the approach is exactly the same
for generative models as it is for classification or
regression, so we will start with the maximum
likelihood objective for a single instance.

+ Take the negative log-likelihood as a starting point.
As we noted before, we put a logarithm in front of a
probability (density) to help with the math and the
numerical stability, and we put a minus in front
because we are looking for a quantitiy to minimize.

The next question is, what is the probability of x under
our model? In this view the entire denoising chain,
from sampling zt all the way to the final x is a process
that we call p. p is controlled by the parameters of our
UNet, which we collectively call 6. Our job is to set 8 so
that this whole sampling chain is as likely as possible to
generate our training, validation and test data.

Note the subtle, but fundamental change in
perspective. Before we started by assuming that there
was a diffusion process. Now, we never refer to it in
our objective. If we could optimize this objective
function directly, we would never need to worry about
the existince of a diffusion process at all. All we would
need, would be the denoising process.

As it is, we cannot easily optimize this function directly,
so we bring in the diffusion process, and call it g.

This is similar to the way we set up a VAE: we start
with just a generator network (also known as the
decoder) and we bring in asecond network to help us
optimize it.



A PROBABILISTIC MODEL
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To fit this picture we need to slightly adapt our UNet,
or at least our perspective on it. The UNet should now
compute the function p(zt-1|zt). That is, instead of
giving us a single guess for what picture preceded zt, it
gives us a probability distribution on the whole space
of possible images.

Practically, this isn’t as involved as it sounds. The
simplest way to achieve this is to treat the output of
the UNet as a mean of a probability distribution. We
will combine this with a variance to get a spherical
Gaussian on zt-1. is a hyperparameter that we
schedule manually.

It’s not too difficult to also have the network output a
variance, as we do in the VAE. This is often done as
well, but in Ho et al, which we follow here, the UNet
only outputs a mean.

what we want to optimize: ingredients:

. (continuous) expectation
argemln - 1Og Pe (X) Jensen’s inequality:
log Exf(x) > Exlog f(x)

functions we can compute:

(our model)
—N(0,1)
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So, here’s the situation: we want to rewrite the
negative log probability density of the data into
something we can compute and that we can
backpropagate through. The functions that we can
easily compute are

+ under p (our model):
« the density of z: conditioned on zu1

« the density of zr (the last step in our
diffusion process) which we assume to be
standard Gaussian noise.

+ under g (the diffusion process which we will bring
in)
- the density of z: conditioned on z:1

- the density of z: conditioned on x

In our derivation, we will make use of the properties of
continuous expectation, and of Jensen’s inequality. The
latter is a general rule about what happens when you
take the sum of points on a concave function, versus
summing first and then applying the function. In our
case, we need a specific consquence of Jensen’s
inequality, which is that if we are working with the
logarithm, a concave function, of an expectation, a
sum or integral, then moving the logarithm inside the
expectation changes the value, but it makes it strictly
larger.

We will use this in the same way we did in the VAE. We
can’t work this loss into something we can compute,
but we can compute a lower bound using Jensen’s
inequality. Maximizing the lower bound (or minimizing
its negative) will, if the lower bound is good enough,
also maximize the thing we’re lower-bounding.
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Here is our full derivation. Step by step:

1: We can get to a particular x by many different
sequences of denoising steps. If we call this sequence
of intermediate pictures Z, then the total probability is
the probability of x given a particular Z, integrated over
all possible 2. In probability theory jargon: we start
with the joint probability of x andf the 2 that generated
it, and then we marginalize out Z to get our loss.

2: We use the chain rule of probability to decompose
the joint probability into the product of all
probabilities of zt given its successor. This is a very
common approach in sequence modeling. If you’ve
never seen it before, have a look at these slides.

3: We feed in the diffusion process. There is not much
intuition here, except that we’re allowed to do this
because the factor we add in is equal to 1. Note that
this probability is slightly different than the one under
p, because here x only appears in the conditional. The
reason is that we want q to correspond to our
diffusion process in which x is given and we sample Z.

4: We move the numerator out in front, and the
denominator we decompose in the same was as we
did with p. This gives us a factor q(z: | z.1) for every
factor p(zt1]z:). | recommend trying this with a short
sequence on pen an paper, to see that it works out this
way.

5: The probability next to the integral shows that we
have created an expectation. Specifically, the expected
value of some probabilities multiplied together, under
our diffusion process. This is relevant, because we can
estimate expectations by sampling, and we can easily
sample from our diffusion process. In short, this is
starting to look like something we can estimate.

6: Just as with the VAE, we use Jensen’s inequality to
move the logarithm inside the expectation. This turns
the quantity we’re working out into an upper bound of
the quantity we actually want to minimize. This is
called the evidence lower bound or ELBO (it’s a lower
bound if you take the perspective that you’re
maximizing the probability of the data).

7, 8: Next, we work out all the log factors separately. In
our case, only the terms containing p(z:1|z:) are
affected by the parameters. The rest are constants, so
we can ignore them without affecting the gradients we
ultimately get.

9: We open up the formula for the Gaussian that our
model outputs. Because of the logarithm and our
assumption that the variance t: is constant, the only
term that is influenced by the parameters is the
squared euclidean distance. The multiplicative
constant should be included if we’re strict (since it’s
different for different t), but it’s often found that the
algorithm performs better if we ignore it and tune the
learning rate carefully.
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If we move the sum outside the expectation, a very
simple algorithm presents itself. We will take this sum
of expectations and optimize one term at a time. That
is, we pick a random t and optimize only the term
corresponding to t.

In that case, the expectation over the whole sequence
Z reduces to the marginal distribution on z.1 and z.
These we can sample easily to estimate the
expectation.

Finally, we just compute the squared Euclidean
distance between z:1 and the model output and
backpropagate that.

This is, of course, what we were doing already. You
may ask what the point of all this is, if we just end up
where we started, when the original idea was already
obvious. One benefit of this derivation, is that it tells
us how to adapt the model in a rigorous way. We can,
for instance, decide not to ignore the variance of the
distribution that the model outputs. Or, we can make
that variance an output of the model instead of a
hyperparameter. In such cases, all we have to do is
follow the derivation and see how the loss function
changes as a result.

V1 work, but suffers from high variance.
What if we could compare p(ze1 | z:) to g(zea | z)?

NB g is in the opposite direction of the diffusion process.

0(ze1 | z¢) is intractable ... °x

oy’

but q(ze1 | zi, x) isn’t.
In fact, it’s a Gaussian.

VU¥

The version of our algorithm in the last slide was used
in early diffusion models. It worked, but it suffered
from high variance: that is, the loss differed a lot from
one sample to the next. This isn’t surprising: we do a
lot of sampling, and everything we sample to estimate
some expectation that we want to compute, increases
the variance. There is one place where we can replace
a sample with a more direct computation.

In the algorithm we have now, we sample z1 and then
we maximize the probability density of z.1 under p
(given z:). What if, instead, we could work out the
probability distribution that q puts on z.1 given z:and
just tell our model to get as close to that distribution
as possible? Comparing two probability distributions
to each other should lead to less variance than
comparing one probability distribution to a sample
from another distribution.

The problem is that q(z+1] z:) is the opposite direction
of how we can easily compute g. We can try to flip the
conditional around with Bayes’ rule, but it turns out
this doesn’t lead to a tractable distribution. To see



why, imagine that the data can come from two points x
and x’ as shown in the image. What we want to know
is the distribution on z:1 given z. If we started with x,
then this z.1 is very likely, since the diffusion process
mostly follows a straight line towards the origin.
However, if we start with x’, then all the probability
mass is on the line between x’ and the origin, and this
z.1 is very unlikely.

The takeaway is that the distribution q(z«1]z:) is highly
dependent on the shape of the distribution on x. This
distribution is first of all highly complex, and second of
all unknown (it’s what we’re trying to learn).

However, what we also see is that if we condition on
which x we started with, the resulting distribution
0(zt1]zt, x) is actually quite simple. In fact, with a little
analysis, it turns out that this distribution is a
Gaussian.

IT TURNS OUT... (TAKE MY WORD FOR IT)
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st standard normal vector used to generate z; from x

VU

The derivation itself is a little complex so we’ll skip it
here, but these are the parameters of the resulting
Gaussian.

Note that the mean looks like a random value itself,
but that isn’t what’s happening here. What we have
done is to remove x from the formula by remembering
the specific gaussian noise s: that we sampled when
we generated z:. So, what we are looking at is just a
function of know values. In other words, this function
doesn’t work for general zt and x, but it we generated
z: from x (as we do in sampling from our diffusion
process), then we can use this formula if we remember
the specific Gaussian noise we used.

So now we have a distribution to compare out model’s
output distribution to, not just a single point. But how
do we work this into the loss? We wanted to work
from first principles, so we can’t just start comparing
these two distributions arbitrarily. We will have to go
back to our derivation, and take a slightly different
route.
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Here is the derivation.

1: In the first line, we have already followed some
steps from the original derivation, including
marginalizing in Z, working in g, and turning the
integral into an expectation. Note that we have not
applied Jensen’s inequality yet (the logarithm is still
outside the expectation).

2: We note that q(z:|z+1) is equal to q(zt|z«1, ). This is
because z:is independent of x when contioned on
zw1.Put simply, if we already know z:.1 then also
knowing x doesn’t give us extra information. So adding
x to the conditional doesn’t change anything. It will
however change things when we use Bayes’ rule to flip
the conditional around.

3: We separate the first factor from our product. This
will help us later on.

4: Next, we flip the conditional in the denominator of
our product using Bayes’ rule. We flip around z: and
21, and keep x in the conditional for all factors.



5: Note that this extra factor that we got from Bayes’
rule “telescopes” over the factors. That is, every z that
appears in the numerator as z.1 will appear in the
denominator as z: in the next factor. All of these cancel
out, against each other, except the first and the last,
which we take out of the sum.

6: We cancel the the two q(z1|x)’s

7: We apply Jensen’s and separate out three terms for
our loss function as shown.

8: We now recognize that almost all terms are KL
divergences. That is, they naturally express the
similarity between two Gaussian distributions. Only
the first term is a log-probability of x given the final
image in our denoising process zi.
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Looking at this loss function, let’s see what we have.
The middle term doesn’t have any parameters, so we
can ignore it. The first term is an odd duck. What Ho et
al do is to train a separate model for this part, which
tells us how to generate x given z1. Note that z; is
almost completely denoised, so this model has an easy
job.

The main reason for this separate decoder is that Ho et
al. want to evaluate their model in the number of bits
it uses to represent an image. This is a great evaluation
metric (see here for an explanation), but it requires a
discrete distribution on your space of images, while the
Gaussian is continuous. Ho et al. use this extra term as
an opportunity to translate to a discrete representation
of images.

For the final term (or rather T-2 terms), we can fill in
what we worked out earlier about the KL divergence
for two spherical Gaussians: as a function of the
means the KL divergence is just the (scaled) squared
euclidean distance plus some constants that don’t
affect our gradients.

Ho et al find that they get better results by ignoring
the scaling factor, but other authors prefer to include
it. We'll ignore it for the sake of simplicity and just
minimize the squared Euclidean distance as we did
already for the naive diffusion.

What has changed from the previous algorithm? There
we also took the output of the model and computed a
squared distance. The difference is in what we
compute the distance to. Previously, that was the
sample zt-1, Now, we compute the distance to the
mean of the distribution on z..1. By not sampling z.1
but looking instead at the mean of its distribution, we
are reducing the variance of our loss.



ONE LAST TRICK: PREDICTING st INSTEAD OF
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We are almost finished, but Ho et al have one last trick
up their sleeve. By rewriting a little bit further we can
have the model predict the noise that has been added
to our image instead of the partially denoised image.

First we fill in our formula for computing the mean on
Zi-1.

Next, we change our model output from a prediction
of this mean, to a prediction of the noise s; used to
generate this mean. From that, we compute the mean
by the same formula as we used in the other term.

The factor in front of the noises is the same on both
sides, so we can take it out of the loss, and absorb it
into the learning rate.

We’ve written se as sc(z:) here to emphasize that this is
the output of the model when given z: as an input.

GAUSSIAN DIFFUSION (HO ET AL 2020)

training sampling
initialize model f given f
for x in Data: sample zr ~ N(0, 1)
t = uniform(@, T) for t from T to 2:
st ~ N(0, I) sample zea ~ N(f1,7,%)

ze = Vx4V 1— 7%,
1 1—v2

= - 2 i = s
loss = llst = f(z)ll with H " (Zt T M*n(m))

brackprop & sgd on loss return z;

VU¥

With that, here is our second Gaussian diffusion
algorithm, which is exactly equal to the one used by
Hoetal.

During training, we pick a random point t and sample
z;using some random standard noise s;. We then have
the model predict s:.

During sampling, we sample z..1 from the distribution
g(ze1 | z, x) that we worked out earlier. You might
think that in this case it’s a problem that we don’t have
X, but that’s where out model comes in. We changed
the functional dependence on x by rewriting the mean
as a function of st and this is a value that our model
can predict.

The result is a kind of combination of the two
algorithms we saw in the first part.There we had two
options: we either predict z..1 from z: directly, or we
predict x from z..1, and we denoise and renoise during
sampling. Here, we do neither. We instead predict the
noise vector s; that describes z; as a function of x.
From this we can compute either our best bet for the
fully denoised x, or for zi1. In short the first and
second algorithms from the first part of the lecture are
the same algorithm, but only if we use Gaussian noise,
and we predict st.



NOT COVERED (MAYBE NEXT YEAR)

Efficient sampling (DDIM)

Continuous time models

Conditional generation

Condition generation on the class of the image, or even a text description.

That should give you a basic idea of how Gaussian
diffusion works. There are many variations on this idea
and all of them require you to follow this derivation
and to change some thing here or there, or to rewrite
something in a slightly different way. Understanding all
these models requires understanding this derivation in
detail.

Some important things you may want to look into if
you want to continue with diffusion models are:

- Ways to make the sampling more efficient. Ho et al
required 1000 steps during sampling, which means
1000 forward passes to generate one batch of
images. This puts diffusion models at a substantial
disadvantage to VAEs and GANs which can generate
images with a single forward pass. Several methods
exist which allow us to reduce the number of
sampling steps required (possibly at the cost of a
slight drop in quality).

« If your sampling algorithm doesn’t require you to
visit all time steps in the diffusion process, then you
can make those steps as small as possible. We saw
this idea in part 1 in the denoising/renoising
algorithm. In the limit of infinitely small time steps,
we get a continuous value t. Theoretically, the
models starts to look like a differential equation, but
practically, not much changes.

» Finally, the most impressive uses of diffusion models
are those that condition the generation on
something, in particular on a text description of
what the image should contain. Practically, this is as
simple as feeding the text description to an LLM to
get an embedding and then to add that embedding
to the inputs of the model. However, it turns out
that it’s good to have a way to control how much
the model tries to make the image fit the data
distribution, and how much it tries to make it fit the
description. This is usually done with a method
called classifier-free guidance.




