
Policy gradient methods in deep RL

Vincent François-Lavet

1



Outline

Sequential decision-making and the MDP setting

Why deep RL ?

Policy-based methods
Motivation

Stochastic Policy Gradient

A few words on model-based approaches

Conclusions

2



Sequential decision-making and the
MDP setting

3



Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
st → st+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
st → st+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= st

Environment
st → st+1

ωt+1

Environment
st → st+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

4



Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
st → st+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
st → st+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= st

Environment
st → st+1

ωt+1

Environment
st → st+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

4



Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
st → st+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
st → st+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= st

Environment
st → st+1

ωt+1

Environment
st → st+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

4



Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
st → st+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
st → st+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= st

Environment
st → st+1

ωt+1

Environment
st → st+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

4



Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
st → st+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
st → st+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= st

Environment
st → st+1

ωt+1

Environment
st → st+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

4



Example of a Markov Decision Process (MDP)

Figure – Representation of a (deterministic) mini grid-world with 9
discrete states and 4 discrete actions. The agent is able to move in the
four directions, except when the agent is trying to get “out of the
grid-world”.

5



Definition of an MDP
An MDP can be defined as a 5-tuple (S,A,T ,R, γ) where :

I S is a finite set of states {1, . . . ,NS},
I A is a finite set of actions {1, . . . ,NA},
I T : S ×A → P(S) is the transition function (set of conditional transition

probabilities between states),

I R : S ×A× → R is the reward function, where R is a continuous set of
possible rewards in a range Rmax ∈ R+ (e.g., [0,Rmax ]),

I γ ∈ [0, 1) is the discount factor.

s0 s1 s2

a0 a1r0 r1

. . .
Policy

Reward
function
R(s0, a0)

Transition
function

T (s0, a0, s1)

Policy
Reward
function
R(s1, a1)

Transition
function

T (s1, a1, s2)

6



Definition of an MDP
You can also see the MDP as a computation graph where the
nodes are random variables (denoted as upper case letters) that
depend on other random variables.

S0 S1 S2

A0 A1R0 R1

. . .
Policy

Reward
function

R(S0,A0, S1)

Transition
function

T (S0,A0, S1)

Policy
Reward
function

R(S1,A1, S2)

Transition
function

T (S1,A1, S2)

I S0 represent the distribution of initial states

I The action A0 depends on S0 and the policy.

I The reward R0 depends on S0 and A0.

I The next state S1 depends on S0 and A0.

I . . .

7



Performance evaluation

In an MDP (S,A,T ,R, γ), the discounted expected return
V π(s) : S → R (π ∈ Π, e.g., S → A) is defined such that

V π(s) = E
[∑∞

k=0
γk rt+k | st = s, π

]
, (1)

with γ ∈ [0, 1).

From the definition of the (discounted) expected return, the optimal
expected return can be defined as

V ∗(s) = max
π∈Π

V π(s). (2)

and the optimal policy can be defined as :

π∗(s) = argmax
π∈Π

V π(s). (3)

8



Overview of the techniques used for finding the optimal
policy π∗

In general, an RL agent may include one or more of the following
components :

I a representation of a value function that provides a prediction
of how good is each state or each couple state/action,

I a direct representation of the policy π(s) or π(s, a), or

I a model of the environment in conjunction with a planning
algorithm.

Experience

Value/policyModel

Acting
Model

learning

Planning

Modef-free
RL

Model-based
RL

Value-based
RL

Policy-based
RL

9



Why deep RL ?

10



Motivation

Figure – Example of an ATARI game : Seaquest

11



Motivation : Overview

12



Motivation

Figure – Application in robotics (credits : Jan Peters’team, Darmstadt)

13



Policy-based methods

14



Motivation

15



Motivation for policy based methods

They can represent stochastic policies : π : S → P(A).
When is it useful ?

I It is useful for building policies that can explicitly explore, and

I this is also useful in multi-agent systems where the Nash
equilibrium is a stochastic policy.

Figure – Super-human performance in heads-up no-limit poker
(Libratus and Deepstack)

16



Motivation for policy based methods

They can represent stochastic policies : π : S → P(A).
When is it useful ?

I It is useful for building policies that can explicitly explore, and

I this is also useful in multi-agent systems where the Nash
equilibrium is a stochastic policy.

Figure – Super-human performance in heads-up no-limit poker
(Libratus and Deepstack)

16



Different categories of policies

Policies can also be categorized under a second criterion of being
either deterministic or stochastic :

I The deterministic policy is described by π(s) : S → A.

I The stochastic policy is described by π(s, a) : S ×A → [0, 1]
where π(s, a) denotes the probability that action a may be
chosen in state s.

NB : This concept is very different than the determinist/stochastic
nature of the environment.

17



Policy gradient methods

Policy gradient methods optimize a performance objective
(typically the expected cumulative reward)

I by finding a good policy (e.g a neural network parameterized
policy)

I thanks to variants of stochastic gradient ascent with respect
to the policy parameters.

Policy gradient methods belong to a broader class of policy-based
methods

• We do not cover evolution strategies. These methods use a
learning signal derived from sampling instantiations of policy
parameters and the set of policies is developed towards
policies that achieve better returns.

18



Policy-based methods

I Parametrized policies Π = {πw : w ∈ Rn}.
I Policy search or gradient ascent on V πw to improve the policy.

We will see the stochastic gradient theorems that provide
gradients on the policy parameters in order to optimize the
performance objective.

19



Stochastic Policy Gradient

20



Policy gradient methods

Find the policy πw (s, a) in the set of parametrized policies
Π = {πw : w ∈ Rn} such that :

w∗ = argmaxwV
πw (s0)

In general, this can thus be seen as an optimization problem and it
can be solved with gradient ascent :

wt+1 = wt + η∇wV
πw (s0)

How can we estimate ∇wV
πw (s0) ?

21



Policy-based methods

The expected return of a stochastic policy π starting from a given
state s0 can be written as

V π(s0) =

∫
S
ρπ(s)

∫
A
π(s, a)R(s, a)dads,

where ρπ(s) is the discounted state distribution defined as

ρπ(s) =
∞∑
t=0

γtPr{st = s|s0, π}.

22



Policy-based methods

For a differentiable policy πw , the fundamental result underlying
these algorithms is the policy gradient theorem (see Sutton et al.
2000 for the demonstration) :

∇wV
πw (s0) =

∫
S
ρπw (s)

∫
A
∇wπw (s, a)Qπw (s, a)dadx . (4)

I Intuitively, the policy improvement step increases the
probability of the actions proportionally to their expected
return.

I This result allows us to adapt the policy parameters w :
∆w ∝ ∇wV

πw (s0) from experience. NB : the policy gradient
does not depend on the gradient of the state distribution !

23



Policy-based methods

The likelihood ratio trick can be exploited as follows to derive a
general method of estimating gradients from expectations :

∇wπw (s, a) = πw (s, a)
∇wπw (s, a)

πw (s, a)

= πw (s, a)∇w log(πw (s, a)).

(5)

24



Policy-based methods

Considering Equation 4 and 5, it follows that

∇wV
πw (s0) = Es∼ρπw ,a∼πw [∇w (log πw (s, a))Qπw (s, a)] . (6)

Note that, in practice, most policy gradient methods effectively use
undiscounted state distributions, without hurting their
performance.

25



Policy-based methods

Two things remain to be done :

I the policy evaluation estimates Qπw .

I the policy improvement takes a gradient step to optimize the
policy πw (s, a) with respect to the value function estimation.

26



Policy evaluation

How can the agent perform the policy evaluation step, i.e., how to
obtain an estimate of Qπw (s, a) ?

One “simple” option is to estimate Qπw (s, a) from (on-policy)
rollouts on the environment while following policy πw , which is the
REINFORCE algorithm (Williams, 1992).

X The Monte-Carlo estimator is an unbiased well-behaved
estimate.

× However, the main drawback is that the estimate requires
on-policy rollouts and can exhibit high variance. Many rollouts
are needed.

In practice, a more efficient approach is to instead use an estimate
of the return given by a value-based approach → actor-critic
methods.

27



Policy evaluation

How can the agent perform the policy evaluation step, i.e., how to
obtain an estimate of Qπw (s, a) ?

One “simple” option is to estimate Qπw (s, a) from (on-policy)
rollouts on the environment while following policy πw , which is the
REINFORCE algorithm (Williams, 1992).

X The Monte-Carlo estimator is an unbiased well-behaved
estimate.

× However, the main drawback is that the estimate requires
on-policy rollouts and can exhibit high variance. Many rollouts
are needed.

In practice, a more efficient approach is to instead use an estimate
of the return given by a value-based approach → actor-critic
methods.

27



Remark 1 : entropy regularizer

To prevent the policy from becoming deterministic, it is common
to add an entropy regularizer to the gradient. With this regularizer,
the learnt policy can remain stochastic (better behaved and this
ensures that the policy keeps exploring).

H(πw ) = −
∑

πw (s)logπw (s)

Other options are :

I KL(πw ‖ πwt )

I KL(πw ‖ πwt )

28



Remark 2 : baseline

Using Aπw (s, a) = Qπw (s, a)− V πw (s) has usually lower
magnitudes than Qπw (s, a). This helps reduce the variance of the
gradient estimator ∇wV

πw (s0) in the policy improvement step,
while not modifying the expectation 1. In other words, the value
function V πw (s) can be seen as a baseline or control variate for
the gradient estimator.

X Using such a baseline allows for improved numerical efficiency
– i.e. reaching a given performance with fewer updates –
because the learning rate can be bigger.

1. Indeed, subtracting a baseline that only depends on s to Qπw (s, a) in Eq. 4
does not change the gradient estimator because ∀s,

∫
A∇wπw (s, a)da = 0.

29



Policy optimization with softmax

In the finite number of actions case, one way to ensure that
πw (s, a) stays consistent with a probability distribution over
actions is to use at the last layer of a neural network the softmax
function that transforms the vector o(s, a;w) into a probability
distribution :

πw (s, a) =
eo(s,a;w)∑
a′ e

o(s,a′;w)

30



Further topics not covered here

I We have only covered one family of policy-based methods
(other possibilities : Deep Deterministic Policy gradient, . . .).

I In some specific settings, depending on the loss function and
the entropy regularization used, value-based methods and
policy-based methods are equivalent. All model-free methods
can be seen as different facets of the same family of
approaches.

31



Further resources on policy gradient

I Sutton, R. S., McAllester, D., Singh, S., Mansour, Y. (1999).
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1057-1063.

I Williams, Ronald J. ”Simple statistical gradient-following
algorithms for connectionist reinforcement learning.” Machine
learning 8.3-4 (1992) : 229-256.

32



A few words on model-based
approaches

33



Motivation

MCTS algorithms need (only) a generative model of the
environment (i.e. model-based) :

x ′, r ∼ G (x , a)

Advantages :

I it is possible to obtain samples without having the whole
transition function for the model in an explicit form.

I it can learn a strong policy only where needed (from the
current state x).

I it is useful for a sequence of decisions.

34



Motivation
I Tree search algorithms can be used along with different

heuristics as well as model-free deep RL techniques.

→ MCTS has been a key part of alpha Go for instance.

35



Discussion on model-based methods

The respective strengths of the model-free versus model-based
approaches depend on different factors.

I If the agent does not have access to a generative model of the
environment, the learned model will have some inaccuracies.

I Second, a model-based approach requires working in
conjunction with a planning algorithm, which is often
computationally demanding.

I Third, for some tasks, the model of the environment may be
learned more efficiently due to the particular structure of the
task.

36



MCTS with UCT
MCTS with UCT (upper confidence trees) provides a solution for

I exploration/exploitation by selecting the branches to expand
in the selection step

I random rollout from the leafs to get an estimate of the
win/lose.

Figure – Illustration of MCTS (Chaslot et al. 2008).

37



Conclusions

38



Summary of the lecture

I Introduction to deep RL

I Introduction to policy-based methods

I Stochastic policy gradient

39



Questions ?


	Sequential decision-making and the MDP setting
	Why deep RL?
	Policy-based methods
	Motivation

	Stochastic Policy Gradient
	A few words on model-based approaches
	Conclusions

