Lecture 9: Transformers

Peter Bloem
Deep Learning 2020

kvuuz
dlvu.github.io VU P AMSTERDA

In a previous lecture, we looked at sequence models,
and we saw two examples: RNNs and Convolutions. In
this lecture, we will add a third: self-attention. This is
the basic building block of the transformer family of
architectures. This is the type or architecture behind
modern chatbots like ChatGPT, Bard and Claude.

part one: self-attention
part two: transformers
part three: famous transformers

part four: scaling up

. VU¥

SELF-ATTENTION

VU

| section | Self-attention|

| video| https://www.youtube.com/embed/
KmAISyVVE1Y?si=iTl_8dul_vIbCS3u|

RECAP: SEQUENCE-TO-SEQUENCE LAYERS
w B B0 0NN

s2s layer

~FHA0EE

time

. Vu¥

Here is a recap of the main point to remember from
the lecture on sequence models. The sequence-to-
sequence layer is an abstract class of layer. It consumes
a sequence of vectors, and produces as output a
sequence of vectors. The sequences have the same
length. The dimension of the vectors doesn’t need to
be the same.

RECAP: SEQUENCE-TO-SEQUENCE LAYERS

Defining property: can handle sequences of different lengths with the
same parameters.

Versatile: label-to-sequence, sequence-to-label, sequence-to-sequence,
autoregressive training.

Causal or non-causal: casual models can only look backward.

. VU¥

The key property of sequence-to-sequence layers is
that they can be applied to sequences of different
lengths, with the same set of weights. This is what
makes it difficult to find mechanisms for sequence-to-
sequence layers, but also what makes them versatile.

RECURRENT CONNECTIONS, CONVOLUTIONS

RNN CNN

h1 h, h3 hal

sequential processing —»

6 < finite “memory” -» VU k

We've seen two examples of (non-trivial) sequence-to-
sequence layers so far: recurrent neural networks, and
convolutions. RNNs have the benefit that they can
potentially look infinitely far back into the sequence,
but they require fundamentally sequential processing,
making them slow.

This is shown by the orange connections: for the
computation of h; to start, we need the computation
of h: to have finished.

Convolution don’t have this drawback—we can
compute each output vector in parallel if we want to—
but the downside of convolutions is that they are
limited in how far back they can look into the
sequence. The output all the way on the right, cannot
depend in the input all the way on the left.

Self-attention is another sequence-to-sequence layer,
and one which provides us with the best of both
worlds: parallel processing and a potentially infinite
memory.

Best of both worlds: parallel computation and long dependencies.

Simple self-attention: the basic idea
Practical self-attention: adding some bells and whistles.

we'll expl.od_vx the name Later.

. VU¥

We will explain self-attention in two steps. First, a
version that is stripped down to the basic mechanism.
This lacks a few bells and whistles, but it already
provides us with a functioning sequence to sequence
layer.

Then, we will add a few features that are commonly
used to make the method a bit more versatile and
powerful.

Y1 Y2 Y3 Ya Y5 Ye

outputs |:| |:| |:| |:| |:| |:|
self-attention y1 = Z \/Vij X]
j

AR

. Vu¥

At heart, the operation of self-attention is very simple.
Every output is simply a weighted sum over the inputs.
For a given output y;, we multiply each input vector x;
with a scalar wij, Then we sum up all the vectors, and
the result is yi.

The trick is that the weights in this sum are not
parameters. They are derived from the inputs.

Note that this means that the input and output
dimensions of a self-attention layer are always the
same. If we want to transform to a different
dimension, we’ll need to add a projection layer after
the self-attention.

yi= E \\r’inj

I — x. Tx.
‘\yij = Xj X]

/
exp Wi;

- 2 expw]

For each combination of an input j and an output i, we
derive the weight by taking the dot product of the two
inputs x; and x;. That is the input vector, and the input
vector in the same position as the current output
vector.

Their dot product forms the raw weight. Roughly
speaking, this means that the more similar x; and x;
are, the higher we weigh x; in the weighted sum that
we return.

Then, we would like all the weight to sum to one, for a
given output. To achieve this, we apply a softmax over
all weights that correspond to a single output y;.

1

X1 X2

i 0

<>]

W31 X3 Was2

i 0

X1 X2

X3 W33 X3 W34

X3 X4 X5 X6

i 0 00

O N

X3 W35 X3 Wasg

1 | 1

X3 X4 X5 X6

Here is the whole process in an animation for one
vector in the output sequence.

Note that this does indeed provide a sequence-to
sequence operation. If the next sequence is longer or
shorter, we can apply exactly the same operation. In
fact, we haven’t yet introduced any parameters.

VECTORIZED

~E

softmax F
_

xT w’

o

w W YT

W =XTX

W = softmax(W’) YT =wx"

Self attention looks particularly simple when
vectorized, that is, expressed terms of matrix
operations.

Note first, that if we arrange all the weights for one
output vector, say y1, in a long vector w, with one
element for every input, then the computation of the
weighted sum for y1, is just w (as a row vector) times
XT, where X is a matrix containing all the input vectors.
If we then do the same for the other output vectors,
and concatenate all the w’s into a matrix W as its rows,
we see that the multiplication WXT computes a matrix
Y with all output vectors as its columns.

Next, we need to figure out how to easily compute this
matrix of weights. We’ll start with a matrix of raw
weights W’. The element ij of this matrix is the dot
product of two vectors i and j. This is essentially the
definition of a matrix multiplication: in the
multiplication AB = C, Cj is the dot product of the i-th
row of A and the j-th column of B. This means that if
we set up on matrix with x; as its i-th row and one
matrix with x; as its j-th column, multiplving these

together will give us W'.

Finally, we need to apply a softmax. This should go
over all the weights that correspond to a single output.
In the multiplication diagram on the right, we see that
these form the rows of W’. Therefore, we need to
apply a row-wise softmax.

Put differently, we want to ensure that all the rows
sumto 1.

With that, we have the three steps of a vectorized,
simple self-attention.

Simple self-attention has no parameters.

Whatever parametrized mechanism generates x; (like an embedding layer) drives the self attention.

In simple self-attention wii (x; to yi) usually has the most weight

not a big problem, but we’ll allow this to change later.

There is a linear operation between X and Y.

non-vanishing gradients through Y = WXT, vanishing gradients through W = softmax(XTX).

X%Y VU

There are some important properties of this
mechanism to note.

First, notice that we haven’t yet added any
parameters. The whole mechanism is defined by
whatever the input to the self attention is.

It’s important to realize that this doesn’t stop us from
learning. For instance, we can feed the a single, simple
self-attention with a sequence of embedding layers.
This would already result in a model that is model
flexible than just the embeddings by themselves (since
there is a small amount of interaction between the
embeddings added by the self-attention).

Next, note that the dot product of a vector with itself
is usually bigger than that of two other vectors. This
means that in the weighted sum for output i, input i
will have the biggest contribution. In fact, we can think
of the simple self attention as mostly reproducing the
input, but mixing into each vector a little bit of the
content of the other vectors in the sequence.

If we were to stack many simple self-attentions
together, they would probably end up with a uniform
mixture over all inputs.

Finally, one of the benefits of the self attention
becomes clear if we draw its computation graph as
shown in the slides. If we forget where W came from,
the whole operation become entirely linear. This
means it’s easy to learn, and it provides strong
gradients upstream. The nonlinearity is confined to a
second computation path, over which we’ll get poorer
gradients, but ultimately a more expressive operation.

Compare this to the residual connection. There too, we
provide one linear path for simple, strong gradients
early on, and a second computation path, for more
complex gradients, once learning gets underway.

No problem looking far back into the sequence.

In fact, every input has the same distance to every output.

More of a set model than a sequence model. No access to the sequential
information.

We'll fix by encoding the sequential structure into the embeddings. Details later.

Permutation equivariant.

for any permutation p of the input: p(sa(X)) = sa(p(X))

Here are some more properties that are important.

Unlike the RNN, there is no difference between nearby
inputs and far away inputs. They all influence the
output in the same way. One way of saying this is that
the distance on the computation graph from one
output is the same to every input.

In fact, the simple self attention doesn’t have access to
the sequential structure of the input.

We can say that the simple self-attention is
permutation equivariant: if we shuffle the input over
the time dimension, the resulting output is shuffled in
the same way. Equivalently shuffling the input and
applying the self-attention gives the same result as
applying the self attention and shuffling.

These are essentially three different ways of saying the
same thing.

A LITTLE MORE INTUITION: DOT PRODUCTS.

users movies

likes

|

. VU

To build some intiuition for why the self attention
works, how it allows us to learn the sort of thing that
we want, we need to look into how dot products
function. To do so, we’ll leave the realm of sequence
learning for a while and dip our toes briefly into the
waters of recommendation.

Imagine that we have a set of users and a set of
movies, with no features about any of them except an
incomplete list of which user liked which movie. Our
task is to predict which other movies a given user will
like.

movie m

has romance
has action
has comedy

user u [T [] score = uymy +ugma + uzms

uonoe sayI|

aduewol sayI|
Apawod say1|

)
2 i vectors.
no features? embedding

Vu¥

If we had features for each movie and user, we could
match them up like this. We multiply how much the
user likes romance by how much romance there is in
the movie. If both are positive of negative, the score is
increased. If one is positive and one is negative, the
score is decreased.

Note that we’re not just taking into account the sign of
the values, but also the magnitude. If a user’s
preference for action is near zero, it doesn’t matter
much for the score whether the movie has action.

How do we translate this back to self attention? There
these scores are our weights. If we think of the input
vectors as containing information, and the weight w;
as a score for how important input i is for output j, we
get a sense of how the self attention operates (we can
clarify this better when we add some bells and
whistles).

global max pooling Q
output sequence D U D U m D

simple self attention

embedding layer

g LEN NN

&
inputs

As a simple example of how you might use self-
attention, let’s build a sequence classifier consisting of
just one embedding layer followed by a global
maxpooling layer. We’ll imagine a sentiment
classification task where the aim is to predict whether
a restaurant review is positive or negative.

If we did this without the self-attention layer, we
would essentially have a model where each word can
only contribute to the output score independently of
the other. This is known as a bag-of-words model. In
this case, the word “terrible” would probably cause us
to predict that this is a negative review. In order to see
that it might actually be a positive review, we need to
recognize that the meaning of the word terrible is
moderated by the word not. This is what the self-
attention can do for us.

this restaurant

Yterrible

1
1

N

Vnot

|

|

Vterrible

was not too terrible

If the embedding vectors of not and terrible have a
high dot product together, the weight of the input
vector for not becomes high, allowing it to influence
the meaning of the word terrible in the output
sequence.

The self attention still can’t see that the words are
close together, but our model might already be able to
learn that if the word not appears in a sentence, it
should be a little bit more cautious about how to
interpret the word terrible.

BELLS AND WHISTLES: STANDARD SELF-ATTENTION

« scaled dot product

« multi-head attention

« key, value and query transformations

Vu¥

The standard self attention add some bells and
whistles to this basic framework. We'll discuss the
three most important additions.

the dot product, we use the dot product scaled by the
square root of the input dimension. This ensures that

the input and output of the self attention operation
have similar variance.

w!. = X% Why Vk? Imagine a vector in Rk with values all c. Its
1 \/E . Euclidean length is Vkc. Therefore, we are dividing out
Uput dim@“Sioh the amount by which the increase in dimension

increases the length of the average vectors.
Transformer usually models apply normalization at
every layer, so we can usually assume that the input is
VUl standard-normally distributed.

In each self attention computation, every input vector
occurs in three distinct roles:

KEYS, QUERIES AND VALUES

+ the value: the vector that is used in the weighted
sum that ultimately provides the output

-+ the query: the input vector that corresponds to the

e ey current output, matched against every other input

vector.
‘%\ID - the key: the input vector that the query is matched
|:| against to determine the weight.
the value

this restaurant was not too terrible

ATTENTION AS A SOFT DICTIONARY In a dictionary, a!l the operations are discrete: a query
only matches a single key, and returns only the value

d={a'":1, 'o' 2, 'c" : 3} corresponding to that key.
A A key value
dl'b'] 3 s
N ~ g a 1
>
% b 2
C 3
. VUt

ATTENTION AS A SOFT DICTIONARY If the dot product of only or.1e query/key palr.ls.non-
zero, we recover the operation of a normal dictionary.
Attention is a soft dictionary

« key, query and value are vectors

« every key matches the query to some extent

as determined by their dot-product

= a mixture of all values is returned

with softmax-normalized dot products as mixture weights

Self-attention

Attention with keys, queries and values from the same set.

. Vu¥

To give the self attention some more flexibility in
determining its behavior, we multiply each input
vector by three different k-by-k parameter matrices,
which gives us a different vector to act as key query

................ T and value.
ki = Kx; + by T

KEY, QUERY AND VALUE TRANSFORMATIONS

introduce matrices K, Q, V for linear transforms

and associated biases

. b j Note that this makes the self attention operation a
i = Qxi + q layer with parameters (where before it had none).
vi = Vx;+b,

<

model. Here, the word meaning of the word “terrible”
is inverted by “not” and moderated by “too”. Its

relation to the word restaurant is completely different:
nverts it describes a property of the restaurant.

% The idea behind multi-head self-attention is that

this restaurant was not too terrible multiple relations are best captured by different self-

\—/ attention operations.

property of

B Vu¥

MULTI-HEAD SELF-ATTENTION

self-attention 1

sroject tolower dim concatenate outputs \Y/ k
keys, ies and values. v

The idea of multi-head attention is that we project the
input sequence down to several lower dimensional
sequences, to give us a key, query and a value
sequence for each self attention and apply a separate
low-dimensional self attention to each of these. After
this, we concatenate their outputs, and apply another
linear transformation (biases not shown)

IMPLEMENTATION NOTE

I:l |:| head 1 key

I:l |:| head 1 query

I:l |:| head 1 value

Here we see that we can implement this multi-head
self-attention with three matrix multiplications of k by
k matrices (where k is the embedding dimension), just
like the original self-attention

NB. the matrix multiplication by We after
concatenation is an addition. It’s not clear whether this
operation actually adds anything, but it’s how self-
attention is canonically implemented.

Self-attention: sequence-to-sequence layer with
« parallel computation

« perfect long-term memory

Fundamentally a set-to-set layer, no access to the sequential structure of
the input.

A large part of the behavior comes from the parameters upstream.

. Vu¥

Lecture 9: Transformers

Peter Bloem
Deep Learning 2020

kvuuz
dlvu.github.io VU £ unversrer

TRANSFORMERS

VU

| section | Transformers|

| video| https://www.youtube.com/embed/
oUhGZMCTHtI?si=50SqAJ9u9uyArZKB |

transformer:

Any sequence-based model that primarily uses self-attention to propagate
information along the time dimension.

more broadly:

Any model that primarily uses self-attention to propagate information
between the basic units of our instances.

pixels -> image transformer

graph nodes -> graph transformer

. Vu¥

TRANSFORMER BLOCK

JUENl

’ feed-forward

class Block(nn.Module):

def forward(self, x):

y = self.layernorml(x)

res

layer normalization

|
' |

y = self.attention(y) ’

X=X +y

self-attention

y = self.layernorm2(x) ’ ‘ e

layer normalization

y = self.linear(y)

T

The basic building block of transformer models is
usually a simple transformer block.

The details differ per transformer, but the basic
ingredients are usually: one self-attention, one feed-
forward layer applied individually to each token in the
sequence and a layer normalization and residual
connection for each.

Note that the self-attention is the only operation in the
block that propagates information across the time
dimension. The other layers operate only on each
token independently.

LAYER NORMALIZATION

{x"};, 1 : input vectors (one per timestep t and batch instance b) in R¢
(y“)b.\ : output vectors (one per timestep t and batch instance b) in R4
¥, B : learnable parameter vectors
i
patch ime .
=g Z x{ mean over token
8 i
é o't = L Z()ci —u)? variance over token
b= d
2 X"
£ X = = standardize
Vo €
yi=y"%" 4B rescale
|:| |:| |:| |:| |:| |:| I normalize to N(0, 1)
VU

Layer normalization is like batch normalization, except
that it normalizes along a different dimension of the
batch tensor.

Note that this does not propagate information across
the time dimension. That is still reserved for the self
attention only.

While layer normalization tends to work a little less
well than batch normalization, the great benefit here is
that its behavior doesn’t depend on the batch size.
This is important, because transformer models are
often so big that we can only train on single-instance
batches. We can accumulate the gradients, but the
forward pass should not be reliant on having accurate
batch statistics.

global sum/avg/max pooling
e D U D U m m

transformer block

transformer block

transformer block

e TEDD DD v

Once we've defined a transformer block, all we need
to do is stack a bunch of them together. Then, if we
have a sequence-to-label task, we just need one global
pooling operation and we have a sequence-to-label
model.

WHAT ABOUT AUTOREGRESSIVE MODELS?

targets e] | o 1 |
L
transformer block o not caus®

transformer block

transformer block

. inputs h e | 1 o I VvUf

What about autoregressive modeling?

If we do this naively, we have a problem: the self-
attention operation can just look ahead in the
sequence to predict what the next model will be. We
will never learn to predict the future from the past. In
short the transformer block is not a causal sequence-
to-sequence operation.

MASKING: MAKING SELF-ATTENTION CAUSAL

xT

F apply mask softmax F

—00 0 0
5T w’ Y
W/’ w w
W/ =XTX W{i + —o0 ifj>1 W =softmax(W’) YT =wxT

VU

The solution is simple: when we compute the
attention weights, we mask out any attention from the
current token to future tokens in the sequence.

Note that to do this, we need to set the raw attention
weights to negative infinity, so that after the softmax
operation, they become 0.

WHAT ABOUT AUTOREGRESSIVE MODELS?
e | | o ! !

causal transformer block

targets

causal transformer block

causal transformer block

- inputs h e | | o ! VU%{

Since the self attention is the only part of the
transformer block that propagates information across
the time dimension, making that part causal, makes
the whole block causal.

With a stack of causal transformer blocks, we can
easily build an autoregressive model.

POSITION INFORMATION

This is not a real restaurant, it’s a filthy burger joint.

This is not a filthy burger joint, it’s a real restaurant.

TN

transformer block

transformer block

transformer block

IERRED

To really interpret the meaning of the sentence, we
need to be able to access the position of the words.
Two sentences with their words shuffled can mean the
exact opposite thing.

If we feed these sentences, tokenized by word, to the
architecture on the right, their output label will
necessarily be the same. The self-attention produces
the same output vectors, with just the order differing
in the same way they do for the two inputs, and the
global pooling just sums all the vectors irrespective of
position.

EQUIVARIANCE

oo

u uonenwiad

u uoneynuwiad

o

self-attention f > |:| |:| |:| |:| |:| |:|
B

u¥

This is a property known as equivariance. Self-
attention is permutation equivariant. Whether we
permute the tokens in the sequence first and then
apply self-attention, or apply self attention and then
permute, we get the same result. We've seen this
property already in convolutions, which are translation
equivariant. This tells us that equivariance is not a bad
thing; it’s a property that allows us to control what
structural properties the model assumes about the
data.

Permutation equivariance is particularly nice, because
in some sense it corresponds to a minimal structural
assumption about the units in our instance (namely
that they form a set). By carefully breaking this
equivariance, we can introduce more structural
knowlegde.

BREAKING EQUIVARIANCE

position embedding

position encoding

relative positions

VU

These are the three most common ways to break the
permutation equivariance, and to tell the model that
the data is laid out as a sequence.

POSITION EMBEDDING

word embeddings:

Vthe, Vman, Vpets, Veat, Vagain

position embeddings:

V1,V2,V3,V4, V5, ...

TN

transformer block

transformer block

B B B e e

Vihe + V1

Vihe + V4

the man pets the cat again

The idea behind position embeddings is simple. Just
like we assign each word in our vocabulary an
embedding vector, we also assign each position in our
vocabulary an embedding vector. This way, the input
vectors for the first “the” in the input sequence and
the second “the” are different, because the first is
added to the position embedding v1 and the second is
added to the input embedding v,.

This break our equivariance: the position information
becomes part of our embedding vectors, and is fed
into the self attention. This is very effective, and very
easy to implement. The only drawback is that we can’t
run the model very well on sequences that are longer
than the largest position embedding observed during
training.

POSITION ENCODINGS

word embeddings:

Vthes Vman; Vpets; Vcat; Vagain

position encodings:

V1,V2,V3,V4,V5,. ..

//\\
X

\
/
/ \
o
> \

4 image source: The annotated transformer

DEEEAD

transformer block

transformer block

B B B R B e

Vihe + V1 Vihe T V4

the man pets the cat again

Position encodings are very similar. Just like the
embeddings, we assign a vector to every position in
the sequence, and summing to the word embedding
for the word at that position.

The difference is that the position encodings are not
learned. They are fixed to some function that we
expect the downstream self-attentions can easy latch
on to to tell the different positions apart. The image
shows a common method for defining position
encodings: for each dimension, we define a different
sinusoidal function, which is evaluated at the position
index.

The main benefit is that this pattern is predictable, so
the transformer can theoretically model it. This would
allow us to run the model on sequences of length 200,
even if we had only seen sequence of length 100
during training.

RELATIVE POSITIONS

D

transformer block

2 3

]

=
I
£

2

pets

a2 Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context, Dai et al. 2019

|}]
120 51 g2

again

VU

The idea behind relative position encodings is that it
doesn’t really matter so much where the word is in the
sequence absolutely, it’s much more important how
close it is to the current word we’re computing the
output for.

Unfortunately, to put this idea into practice (naively),
we would need to give each word a different position
encoding depending on the output word. This is clearly
not feasible, but we can be a bit more clever, if we dig
into the definition of self attention.

https://nlp.seas.harvard.edu/2018/04/03/attention.html#attention

RELATIVE POSITIONS

vﬁw{j =q;"k; = (Qx;)" Kx; = x,TQ"Kx;

= (v VD TQTK(+)

= v‘{vl Q' Kv‘,-” \/Hw{j = v‘i”rlrQ ! va}”
+ v QK +vTQIKNVE
+vaQ[Kv}"’ +a[va;"’
+v2'QTKv? +b'KVE

VU

COMPUTING RELATIVE POSITION ENCODINGS/EMBEDDINGS

21-1 —
ence ;:sts
wT TP, P d b€
vi Q'K Vi
v Vf—l
wr |
U=KPV? " ‘
. vu¥

COMPUTING RELATIVE POSITION ENCODINGS

wil T po_ Wl
Vi Q KPVF,’ =43 U:,i—j—Lfl ‘ ‘

Uicjria

qu = qu.view(-1)
size 1(21 - 1)
q\{v pad qu with 1 @s
L # size 2¢1x1
. qu = qu.view(l, 2%1)
o L qu = qul:, :1]

VU

BREAKING EQUIVARIANCE

position embedding

easy to implement, flexible, no generalization beyond sequence length

position encoding

slightly harder, more ad-hoc choices, possibility of more generalization

relative positions

works with embeddings and encodings, must be implemented in the self attention

. Vu¥

These are the three most common ways to break the
permutation equivariance, and to tell the model that
the data is laid out as a sequence.

From self-attention to transformers:

« define a transformer block

« mask the self-attention if a causal model is needed
- stack a bunch of transformer blocks

« add positional information to the input vectors

. VU¥

Lecture 9: Transformers

Peter Bloem
Deep Learning 2020

o
divu.github.io VU k ASTEROAM

FAMOUS TRANSFORMERS

| section | Famous transformers|

| video| https://www.youtube.com/embed/
MN__ISncZBs?si=MHM6hT7vI5jltbaN |

The original transformer (2017)
BERT (2018)
GPT-2 (2019)
GPT-3 (2020)

B VUu¥

THE ORIGINAL TRANSFORMER

targets:

machine translation model OO0000 "m&ﬁ

[
no recurrent layers or convolutions |
[

=g
 — U
[planche
[roulettes
[<end>

encoder/decoder configuration [

teacher forcing (see lecture 5)

position encoding

512 dims, 8 heads, 2x6 blocks
FF: Lin(512, 2048), relu, Lin(2048, 512)

trained for 3.5 days on 8 GPUs

roulettes [|res

Attention Is All You Need, Vaswani et al, 2017.

Spiritual successor to ELMo D D D D D D

large unsupervised pre-training, supervised finetuning [——
Single stack of non-causal trf blocks

position embeddings
24 blocks
dim 1024, 16 heads, 24 blocks, 1 512
340 M parameters in total

FF: arelu layers with hidden size 4096

trained in 4 days on 64 TPU cores ‘ . 4 (8

layer norm

. gooooao VU¥

word-level tokenization

Large output layer. Not flexible to typos,

uncommon words

Here i o example of word sequence and the corresponding wordpiece sequence

character-level tokenization

Long sequences, much computation spent learning

Jet makers feud over seat width with big orders at stake

known words _Jet _makers feud _over seat _width _with _big _orders _at _stake

I thoabove cxampe, th word “J” i broken nt e wordyiecs *_J and “t” ane the word “fe
s broen . o wordpioes " and “ut. The cthr words feni s il ordpiocs. * s specia
Chntcte aiod 10 oark the bfaning. of a word

middle grou nd: sub-word Google's Neural Machine Translation System: Bridging the Gap

between Human and Machine Translation, Wu et al, 2016.

tokenization

~30K tokens, any sequence representable

. VUu¥

APPROACHES

Bytepair tokenization
Merge the bigram (character pair) with the highest frequency in the data.
the_man_commands_the _plan,.

the _man_commands _the _plan.

the _man _commands _the_plan. <

recursive merges allowed

Wordpiece tokenization (used in BERT)
Merge the bigram which most increases the likelihood of the data

Assuming iid draws according to relative frequencies

. Vu¥

https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144

BERT: TRAINING DETAILS

Data:
= 2500M words from English Wikipedia

« 800M words from BooksCorpus
11K copyright-free books by yet unpublished authors

In pretraining, all inputs are sequences of 1 contiguous tokens from the
corpus.

not necessarily sentences

VU

TASK 1: MASKING (BIDIRECTIONAL LANGUAGE MODEL)

mask out some input tokens

targets: dog a

randomly corrupt others |:| |:|

i.e. replace by different tokens

BERT

compute loss only corrupted/
masked tokens

BERT doesn’t know which these are D D D D D D
train on randomly sampled [ds] a jealousy on [mask] skateboard
sequences of 512 tokens

. VUu¥

TASK 2: CLASSIFICATION

sample either: target: (a)

(a) two sequences from different |:|
parts of the corpus.

BERT

(b) two sequences directly following
each other in the corpus.

cooocooocooa

[cs] a dog on a [sep] my cat s slightly

Classify on the features in the CLS
token.

By using only the output vector of the CLS token to
classify the sentence, we force the model to
accumulate global information into this token. This
means we don’t need a global pool, we can just look to
the first token for sequence-to-label tasks.

Like ELMo, BERT considerably advanced the state of
the art on many tasks. Its finetuning procedures were

Autoregressive language model

Single stack of causal trf blocks

position embeddings

dim 768, 12 heads, 48 blocks, 1 1024
1.5B parameters in total
FF: Lin(768, 3072), gelu, Lin(3072, 768)

trained in ~7 days on 256 TPU cores

gooooao

masked self-attn

k a 8
layer norm

00

00

I

48 blocks

VU

much simpler than those of ELMo,
System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -

Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 733 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTBAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLarGE 86.7/85.9 721 92.7 94.9 60.5 86.5 89.3 70.1 82.1

i3

GPT-2

TRAINING DETAILS

WebText dataset
« Web crawl of high-quality content

Wikipedia explicitly filtered

not necessarily sentences

Bytepair tokenization

16-bit unicode chars broken up into two bytes

60

High quality: any link with at least +3 “karma” on Reddit

478 base characters, 40K merges -> 40 478 vocabulary size

NB: GPT-2 is not trained on the content of Reddit, just on general websites linked to from Reddit.

« 45M links -> 8M documents, 40GB of text

All inputs are sequences of 1 contiguous words from the corpus.

VU

UNICORNS

remote, previou
surprising to the
perfect English.

horn,
e four-horned, silver-white unicorns were
previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

n evolutionary biologist from the University of La

ETal companions, were exploring the Andes Mountains when
they found a small valley, with no other animals or humans. Pérez
noticed that the valley had what appeared to be a natural fountain,
surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the
time we reached the top of one peak, the water looked blue, with some
crystals on top,” said

=
Creatures could be

seen from the air without
see them — they were s

o close they could to

New Al fake text generator may be too Dangerous” Al offers to write fake HOME BLOG- TIPSATRICKS~ WHATIS- INTERVI]
dangerous to release, say creators news =

The Elon Mustackad nanprot comparyOpenl declnes 0
e rotar et s ot oot

A few notes on OpenAl’s “fake
news-writing Al”

GHBUSINESS. 1o o s s e

An Al helped us write this article

ll@ll; :

[INNOVATE]

This Al is so good at writing that its creators won't let you use it

The Atlantic

The Supply of Disinformation Will Soon Be Infinice

Dinformaion campagas e 1 e ot of b o, b il

FuTmE,
YERrECT

Series of posts that (ry t0)
d myehs surrounding L.

ence rescarch lab OpenAl decided to release

releasing the ull Al mode, fearing It would be used for

GPT-3 (2020)

Autoregressive language model D D D D D D

Single stack of causal trf blocks
position embeddings

dim 12288, 96 heads, 96 blocks 96 blocks
sequence size 2048

175B parameters in total

masked self-attn
FF: Lin(dim, 4*dim), gelu, Lin(4xdim, dim) k C] va (8

layer norm

cooen wvue

http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com
http://talktotransformer.com

Common crawl dataset

almost 1000B words of web text

no model saw the same sentence twice (<1 epoch of training)

High quality selection:

- noisily select CC subset with a quality classifier
trained to tell webtext from random Common Crawl data

« fuzzy deduplication

Additional high-quality datasets added
WebText, Wikipedia, Books corpora

VU

Training Petaflop/s-days

10000
1000
0
©
{.. II
I S 5
& E LS
& &L e ¢
F & &£ &
& S

Total Compute Used During Training

Language models are few-shot learners. Brown et al 2019

VU

Note the logarithmic scale.

SAMPLE

Figw

Title:

2 Agree to Historic Split
btitle: Those who oppose gay marriage will form their own denomination

le: After two days of intense debate, the United Methodist Church

has agreed to a historic split - one that is expected to end in the

creation of a mew denomination, ome that will be "theologically and

socially conservative," according to The Washington Post. The majority of
delegates attending the church’s annual Gemeral Conference in May voted to
strengthen a ban on the ordination of LGBTQ clergy and to write new rules
that will "discipline” clergy who officiate at same-sex weddings. But

those who opposed these measures have a new plan: They say they will form a
separate denomination by 2020, calling their church the Christian Methodist
denomination.

The Post notes that the demomination, which claims 12.5 million members, w
in the early 20th century the "largest Protestant denomination in the U.S.,
but that it has been shrinking in recent decades. The new split will be the
second in the church’s history. The first occurred in 1968, when roughly

10 percent of the dencmination left to form the Evangelical United Brethren
Church. The Post motes that the proposed split "comes at a critical time
for the church, which has been losing members for years," which has been
"pushed toward the brink of a schism over the role of LGETQ people in the
church." Gay marriage is mot the only issue that has divided the church. In
2016, the ination was split over ordination of clergy, with
the North Pacific regiona ce voting to ban them from serving as
clergy, and the South Pacific regional conference voting to allow them.

re 3.1

written article (accuracy: 12%).

Language models are few-shot learners. Brown et al 2019

: The GPT-3 generated news article that humans had the greatest difficulty distinguishing from a human

FEW-SHOT LEARNING BY PROMPTING

Poor English input: T eated the purple berries.
Good English output: I ate the purple berries

Poor English input: Thank you for picking me as your designer. I’d appreciate it

Good English output: Thank you for choosing me as your designer. I appreciate it

Poor English input: The memtioned changes have dome. or I did the alteration that you
requested. or I changed things you wanted and did the modifications.

Good English output: The requested changes have been made. or I made the alteration that you
requested. or I changed things you wanted and made the modifications

Poor English input: I’'d be more than happy to work with you in another project.

Good English output: I’d be more than happy to work with you on another project.

Poor English input: I have tried to hit ball with bat, but my swing is has miss
Good English output: I tried to hit the ball with the bat, but my swing missed.

Figure 3.17: Representative GPT-3 completions for the few-shot task of correcting English grammar. Boldface
is GPT-3's completions, plain text is human prompts. In the first few examples example both the prompt and the
completion are provided by a human; this then serves as conditioning for subsequent examples where GPT-3 receives
successive additional prompts and provides the completions. Nothing task-specific is provided to GPT-3 aside from
the first few examples as conditioning and the “Poor English input/Good English output” framing. We note that the
distinction between "poor” and "good” English (and the terms themselves) is complex, contextual, and contested. As
the example mentioning the rental of a house shows, assumptions that the model makes about what “good” is can even
lead it to make errors (here, the model not only adjusts grammar, but also removes the word "cheap” in a way that alters
meaning). .

o re-training

Language models are few-shot learners. Brown et al 2019 e

FEW-SHOT LEARNING BY PROMPTING

. furry aninal to Tanzania. An example of sentence that use:

2 and we s se very cute whatpus

to jump up and doun really fast. An example of a sentence that uses

laying tag with my little sister, she got really sxcited and she
started doing these crazy farduddles.

A “yalubalu' is a type of vegetable that looks like a big punpkin. An example of a sentence
that uses the word yalubalu is

I was on a trip to Africa and I tried this yalubalu vegetable that vas grown in a garden
there. Tt was delicious.

A "Burringo" is a ¥ fast acceleration. An example of a sentence that uses the
word Burringo 1
In our garage we have a Burringo that my father drives to work evary day.

" is a type of Japanese musical instrument. An example of a semtence that uses the

To "screeg! something is to swing a sword at it. An example of a sentence that uses the word

We screeghed at each other for several minutes and then we went outside and ate ice cream.

Figure 3.16: Representative GPT-3 completions for the few-shot task of using a new word in a sentence. Boldface is
GPT-3's completions, plain text is human prompts. In the first example both the prompt and the completion are provided

by a humans this then scrves as conditioning for subscquent cxamples where GPT-3 receives successive additional
prompts and provides the completions. Nothing task-specific is provided to GPT-3 other than the conditioning shown V U 4

VIODEL BIAS It is not yet clear whether models like this just reflect
Top 10 Most Biased Male Descriptive Words with Raw Top 10 Most Biased Female Descriptive Words with Raw . . .
P ovurenes Comts 3 Occurencs Couns the data bias or amplify it too. Nevertheless, as we
Average Number of Co-Occurrences Across All Words: ~ Average Number of Co-Occurrences Across All Words:
12 29 said before (in lecture 5) even is these biases are

Large (16) Optimistic (12)

P Naugiy (12 accurate as predictions given the data, that does not
;..E“]:.ez‘.“:%éi T mean that they are safe to use to produce actions. Any
jolly gnant

i 22 Sih product built on this technology should be carefully
urvive (7) eautiful (158)

designed not to amplify these biases once released
Religion Most Favored Descriptive Words into production.

Atheism “Theists’, ‘Cool’, ‘Agnostics’, ‘Mad'’, ‘Theism’, ‘Defensive’, ‘Complaining’, ‘Correct’, ‘Arrogant’,
“Characterized”

Buddhism “Myanmar', ‘Vegetarians', ‘Burma’, ‘Fellowship', ‘Monk', ‘Japanese', ‘Reluctant’, ‘Wisdom', ‘En-
lightenment', ‘Non-Violent'

Christianity ‘Attend’, “Ignorant’, ‘Response’, ‘Judgmental’, ‘Grace’, ‘Execution’, ‘Egypt’, ‘Continue’, *Com-
ments', ‘Officially”

Hinduism “Caste’, ‘Cows’, ‘BIP", ‘Kashmir', ‘Mo, ‘Celebrated", ‘Dharma’, ‘Pakistani’, ‘Originated’, ‘Africa”

Islam “Pillars’, “Terrorism’, ‘Fasting’, ‘Sheikh’, ‘Non-Muslim’, ‘Source’, ‘Charities’, ‘Levant’, ‘Allah’,
“Prophet’
Judaism___‘Gentiles’, ‘Race’, ‘Semites’, ‘Whites’, ‘Blacks’, ‘Smartest’, ‘Racists’, ‘Arabs’, ‘Game’, ‘Russian’

‘Table 6.2: Shows the ten most favored words about each religion in the GPT-3 175B model.

EVALUATING GPT-3

Distinguish between GPT-3 and GPT-3 with a prompt
- Some problems cannot be solved zero-shot without assumptions

- The prompt is how we tell GPT-3 what assumptions to make.

Often, the relevant question is not can GPT-3 solve the problem?, but how
much of a prompt is needed?

Much has been written about GPT-3, most of it highly dubious.

Interpreting GPT-3’s performance requires some insight. Read the paper, not the op-eds.

Language models are few-shot learners. Brown et al 2019 VU ‘I

GPT-4 & ChatGPT (2023)

GPT-4: Reportedly, 8 parallel 200B parameter models.

These are employed as an ensemble, with each token produced by two models in parallel.

ChatGPT:
Instruction tuning
Finetune the model to follow instructions.
Chatbot wrapper
One conversation is a single prompt, with the ChatGPT responses sample autoregressively.

Reinforcement learning from human feedback (RLHF)

Use human supervision to tune behavior further.

., VU

Since GPT-3, the story has moved out of the sphere of
research and into the mainstream with the release of
ChatGPT.

OpenAl is tight-lipped about GPT-4, which is the most
powerful backend to ChatGPT and probably the most
capable language model available today. From leaks
here and there we can glean that GPT-4 is probably an
ensemble model, consisting of 8 separate 200B
parameter models trained in the style of GPT-3.
Reportedly, for each token it generates, two members
of the ensemble share responsibility. It’s likely that the
choice of these two changes for every token.

On top of that we have ChatGPT. This was built by
creating a simple chatbot wrapper around GPT. The
idea is that the use input, with a little annotation
functions as the prompt, after which the model
generates the response of “ChatGPT”. One way of
thinking about it, is that the model is predicting what
an Al chatbot would say to the given user query. After
it has finished (likely signalled by some stop token), the
user is asked for more input and then we sample
another reply and so on.

From a raw LLM, you can get this kind of behavior, but
it would be a bit ropy and unpredictable. To make the
system more predictable and better behaved, OpenAl
uses several techniques. The first is instruction tuning:
a simple approach, where the model is finetuned to
follow instructions in natural language. On top of that,
there is RLHF, a more complicated set up, where the
model learns explicitly from human feedback. This is
used by a small army of annotators to help control the
system, and make it behave (mostly) responsibly, and
in the way that OpenAl wants.

Lecture 9: Transformers

Peter Bloem
Deep Learning 2020

V k VRUE
. . si
dlvu.github.io U © AMSTERDAM

SCALING UP

)

| section|Scaling up|

| video| https://www.youtube.com/embed/
0qoUQE695X0?si=bihBSsZRuINILy30|

Transformers, more than any other type of model are
famous for being big. For some reason, this type of
model, trained on natural language, really performs
well in the regime of large data and big models. This is
true to some extent for other domains and model
architectures, but never quite as much as for
transformers on natural language.

Why do transformers scale so well?

How do you train such a big model?

. Vu¥

We'll try to look at where this behaviour comes from
(to the extent that we know) and perhaps more
importantly, how these big models are actually
trained.

SCALING LAWS

7 42
s L= (Dj5.4-107)0%% | 56 —— L=(N/B.8-10%3)0076
A 3.9 18
w5
§ R 3.6 1.0
3 2 2z
F3
3.0
24
L= (Crin/2.3+10%) 0%
2.7 _
{0 107 10° 10° 1070 10 10° 10° 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not

bottlenecked by the other two.

Kaplan, J,, McCandlish, S., Henighan, T, Brown, T. B., Chess, B., Child, R, ... & Amodei, D. (2020). VU o~

le

Scaling laws for neural language models. arXiv preprint arXiv:2001.08361

These plots are from a paper produced by OpenAl
(sometime between GPT2 and GPT3). It shows that
when we train an autoregressive transformer on
natural language data, and we increase the model size,
data size, and available compute in the right
proportions, then performance increases in a very
predictable way.

The takeaway for a lot of people, at least in this
domain, was that so long as this pattern holds, there is
not much value in investing in clever models. A larger
transformer trained on more data will always catch up
with any clever tricks we come up with.

We don’t know much about why language
transformers specifically seem to scale so well with
data. In part it’s just that language data is so readily
available. Another aspect seems to be the structure of
the data, since, for instance, visual transformers don’t
show quite the same effortless scaling behavior.

That doesn’t mean we can’t train large visual
transformers to give us benefits in performance, but it
isn’t as easy as it is with natural language models,
where it mostly seems to boil down to training the
same model, scaled up in the right proportions. In
other domains, it usually takes a lot more architectural
innovation to get to the next order of magnitude.
Here’s an example of such a jump.

Whatever the reasons, these discoveries led to a race
over the past few years to train ever bigger models.
Ending up, at the time of writing, with GPT4, which
consists (to the best of our knowledge) of 8 parallel
GPT models of 200B parameters each.

SCALING LAWS

Larger models require fewer samples

to reach the same performance

Test Loss 10

The optimal model size grows smoothly

with the loss target and compute budget

Compute-efficient
training stops far
short of convergence

10 o 10
Tokens Processed

0 100 o 10
Compute (PF-days)

Figure 2 We show a series of language model training runs, with models ranging in size from 10° to 10°

parameters (excluding embeddings).

Kaplan, J,, McCandlish, S., Henighan, T, Brown, T. B., Chess, B., Child, R, ... & Amodei, D. (2020). VU L3

le

Scaling laws for neural language models. arXiv preprint arXiv:2001.08361

Here are some more subtle points from the scaling
laws paper.

The left plot shows that for the same amount of
training tokens seen, a larger model gets more
performance out of the data than a smaller model (at
the cost of more compute per token, of course).

The right plot shows that if we increase the amount of
compute (measured in petaflops-days), the optimal
size of model increases in a predictable way. Moreover,
it’s usually better to train a big model to far short of
convergence, than it is to let a smaller model
converge.

“Why-do-transformers-seate-so-well?

How do you train such a big model?

So, we don’t fully understand why large language
models scale so well, but it seems clear that they do.
For a large part of our community, this was reason
enough to start training some very big models.

How is this done? The models we have been talking
about take hundreds of gigabytes to store. So far we
have always assumed that everything about our model
fits into memory: the parameters, the optimizer state,
and the full computation graph. With these kind of
models, that will no longer be possible.

WHAT CAN WE FIT ON ONE GPU?

1 GPU, 40 GB of memory

GPT-2:

dim 768, 12 heads, 48 blocks, 1 1024
1.5B params x 32 bits per param = 6Gb
-> One batch of 6 copies

But,

We also need to store all intermediate
values and their gradients, and the
optimizer states.

VU¥

To start with, let’s see how far we can get with one
modern GPU. The largest GPU that you might
commonly enounter (at the time of writing) is the
A100, which has 40Gb of GPU memory. How big a
model can we fit into GPU memory? We'll take GPT-2
as a point of reference. It has 1.5B parameters, so it
should take about 6 Gb to store (assuming 32 bits per
parameter).

That suggests we could comfortably store it in
memory. However, we also need to store the
gradients. This is another 6 Gb (it’s the same amount
of numbers). Next, we need to store the optimizer
state, which, for Adam, requires a momentum term
and a second-moment term for each parameter. That
means, that even if we forget about all the
intermediate values, and the computation graph, we
require 24 Gb for a single parameter update.

WHAT CAN WE FIT ON ONE GPU?

1 GPU, 40 GB of memory

GPT-2:
dim 768, 12 heads, 48 blocks, 1 1024

feedforward: 7682 x 48 x 4 x 32 bit = .5 Gb
self attn: 7682 x 3 x 48 x 32 b = .3Gb

hidden values: 768 x 1024 x 48 x 32 b = .2 Gb
attn weights: 10242 x 2 x 48 x 12 x32 b =4 Gb
embeddings: 40 000 x 768 x 32 b = 1.5 Gb VU

Here are some back of the envelope calculations for
how much it takes to store various parts of the model
and intermediate values during the forward pass. All
this adds about 6 Gb. for most of these, we also need
to store gradients (although pytorch may be able to
delete some of those when all upstream gradients
have been computed)

In short, we’ll be lucky if we can run the model for a
batch size of 1. Note also that this is a big GPU. In the
days of GPT-2, memory sizes of 12 Gb were much
more conventional, so training on a single GPU
wouldn’t have been feasible in this way.

Note that this is only a problem during training. During
inference we can do our forward pass, and at each
block forget whatever we did in the block before. Even
the computation of the attention weights can be
broken into chunks, so we can pretty much make the
memory cost as small as we like.

PUSHING 1 GPU: MIXED PRECISION (16 BITS PER NUMBER).

Mixed because we do need 32 bits for some parts of the network.

sign exponent (8 bit) fraction (23 bit)
1 r -
float32 © © 1 1 1 1 1 0o o 1 o o o o o looooooloooooo0o0o000

31 30 23 22 0

sign exponent (5 bit fraction (10 bit)
T -]
floatl6 o o110 ol 1ol o o0 o o lolo

15 14 10 9 0

sign exponent (8 bit) fraction (7 bi)
I or 1 r 1
bfloatl6 o o 1 1 1/ 1 /100 0o 1 0o o o o lo
15 14 7 6 o

Higher chance of NaN, loss needs to be scaled.

8 diagrams: https://en.wikipedia.org/wiki/Bfloat16_floating-point_format VU n!‘

Before we start bringing in more GPUs, let’s see how
we can get more mileage out of a single one.

One way we can fit more model onto one GPU is to
represent each number (parameters and intermediate
values) in 16 bits rather than 32 bits. For most parts of
the network it isn’t really important to be extremely
precise. A value of 0.1 may have broadly the same
effect as a value of 0.125, but due to the way decimal
numbers are represented the second can be
represented in a much smaller amount of of bits. By
using the second number instead of the first, we save
memory.

The fact that some numbers can be represented in
fewer bits than is down to the way floating point
representation work. For instance, the number 0.1 can
actually never be represented exactly. The closest we
can get with a standard floating point representation is
0.100000001490116119384765625. However, a
number like 0.125, because it’s equal to 2/-3, can be
represented exactly, even in very 16 bit versions of the
floating point representation. Here is a good tool to
help you understand how this works.

You can play around a bit with how many bits you use
on the exponent and how many on the fraction,

leading to slightly different formats like fLoat16 and

bfloat16. For smaller models, the choice won’t
matter too much, but for large models, they can be
crucial.

When using 16 bits floating point numbers, there are
some important points to pay attention to. First of all,
some parts of the network, like the computation of the
loss, suffer badly when they are done in 16 bits. This is
why we train in mixed precision. Usually, we do linear
operations in 16 bits, and nonlinear operation in 32
bits (in some frameworks, you can do a little bit more
of the computation in low-precision mode, but this is a
good rule of thumb). That means that all the weights
and intermediate values are in 16 bits, but for certain
operations they are cast up to 32 bit precision before
the operation, and back down to 16 again after. Since
matrix multiplications are almost always the
bottleneck in any neural net, we still save a lot of time
and memory by performing these in low precision.

There are some other things to take care of. NaNs—
some part of the computation resulting in not-a-
number—are a little more likely in mixed precision. So,
instead of stopping your training on a NaN loss, and
lowering the learning rate, we just ignore the NaN
losses. If we see a NaN, we ignore the forward, and
move on to the next batch.

Finally, the reduced precision may cause some
gradients to underflow to zero as they’re
backpropagating, causing all upstream gradients to
become zero as well. The solution is to scale up the
loss before starting the backpropagation, and then to
scale the gradients back down again by the same
factor when they have been computed.

In pytorch, all the necessary adjustments can be made
with a few wrappers around the optimizer and the
model and loss computation.

The result is that we use roughly half the memory.
Moreover, computations in low precision are also a lot
faster (on GPUs that support it).

https://en.wikipedia.org/wiki/Bfloat16_floating-point_format

The TitanX GPUs you have acces to on DAS-5 don’t
support accelerated mixed precision, but the RT2080’s
in the proq do.

PUSHING 1 GPU: GRADIENT ACCUMULATION

grad = @
for i, x in enum(data):

grad += Vlossx(model)
if 1 % 32 == 0:

model = model - 1lr * grad
grad = 0

After we switch to mixed precision, we may still be left
with the situation that we can only train with very
small batches, perhaps of only one or two instances.
The problem is that this may lead to very unstable
training, unless we set a very low learning rate.

The solution is simple. For a concrete example,
imagine that we can only train on a single instance at a
time, in the memory we have, but we would like to use
a batch size of 32. The gradient over of the batch of 32
is just the gradients of 32 single-instance batches
summed or averaged together. This means we can just
collect the gradients over 32 batches in 32 separate
forward and backward passes, and sum them as we
go. The pseudocode on the slide shows how you might
implement this from scratch.

Once we'’ve processed the 32nd single-instance batch,
we do a single gradient descent step with the collected
gradient. Then, we reset the gradients to zero and
keep going.

Of course, this is much slower than training a smaller
model with a single gradient update step for every
forward/backward. But that is the way we train big
models: we trade off compute for memory.

In principle, this works very well in pytorch. All you
need to do is move the lines opt.step() and
opt.zero_grad() inside an if statement as shown in the
slide.

Note however, that some operations make
assumptions that are broken by this approach. For
example, batch normalization won’t work if you have a
single instance, and it will work poorly if you have a
only a handful of instances. For this reason, large
models tend to use layer normalization instead.

PUSHING 1 GPU: GRADIENT CHECKPOINTING

% v the

class Op: sto’

/
def forward(cont‘éxt,):

recoMmpu instea L{- storing.
omp! ke, instes 5§ sto

c A

/

def backward(con;ext,):

We can see another way to trade off memory for
compute, if we look at the way we define the
operation nodes in our computation graph.

The key thing to remember is that we often record
intermediate values that we computed in the forward
pass, because we need them in the backward pass. In
our model of backpropagation, we used the context
object to store the parts of the forward computation
that we needed to re-use during the backward.

Instead of storing it these parts, we can also
recompute them. We leave the context object empty
and when we reach the backward for this node, we
just rerun the forward up to this node to get the
required intermediate values. This is expensive—we
could double our forward computations for just a
single checkpoint—but it can also save a lot of
memory.

Note that in deep learning, a saved model is also called
a checkpoint. These two things have nothing to do with
each other.

Here again, we need to be careful with certain
modaules. In particular ones that use randomness, like
dropout. It’s important that they behave exactly the
same way when the checkpoint is recomputed, as they
did in the first place. For this reason pytorch has a
mechanism for running models using the same
random seed, that you can use if you want to use
gradient checkpointing.

That way, the random number generator will produce
the same randomness in both the initial run and the
checkpointed run.

Breaking up the data, or breaking up the model.
- B B

Whether they’re on the same machine or not.
83

Main question: how do we break up training over multiple devices?

-
in us

VU

Once we've exhausted how much model we can cram
onto a single GPU, it’s time to start looking into
training with multiple GPUs. There are several possible
configurations for this. We could use a single
computer, called a node, with several GPUs. In this
case, we need to communicate internally between the
GPUs to coordinate what they’re doing over the
internal buses of the computer (over the PCle bus, or a
GPU interconnect). This allows for relatively quick
communication, but we’re usually limited to about 4 to
8 GPUs.

Maybe a little more on expensive hardware, but we
can’t cram unlimited GPUs into a machine. Note that
we usually have one device in charge of
synchronization, so we don’t need communication
between each pair of GPUs

If we want as many GPUs as money can buy, we’ll need
to distribute them over different machines. The
simplest option is one GPU per machine. In this case,
the communication between different training
processes goes over the network which is much

slower.

A final option is to have a network of nodes with
multiple GPUs each. This gives us the best of both
worlds, but it complicates the question of
synchronisation. If we want to make good use of the
high communication speeds between GPUs on the
same nodes, we should let them communicate more
often than we communicate over the network.

We will leave that question to the implementers of
distributed training libraries. We will only assume that
we have multiple acceleration devices (usually GPUs),
each with their own limited memory and some sort of
communication between them. The main question is
what data and model code should we give to each
device, and how should we communicate between
them to end up with one trained model?

PRIMITIVE OPERATION: ALLREDUCE

reduced
value

process 2

8

process 2

sum, mean,
value 3 product, etc.

VU

Communicating between nodes or between GPUs is a
complicated, technical business. We’d like to abstract
all of that away as much as possible.

Luckily, there are a few primitive operations that we
can build everything on top of. The first is called
AllReduce. It works as follows, we have a bunch of
processes working in parallel. At some point, the
AllReduce stops all processes, retrieves a values from
all of them (in our case a tensor) and applies a
reduction to the set of values. This is simply an
operation that takes the set of values as input, and
returns a single value computed from them. The
reduction is usually a simple operation like taking the
sum or the mean.

After the reduced value is computed, the same value is
given to each of the processes.

With this definition in place, the people who
understand GPUs and networking can get to work
implementing it efficiently. A naive way do implement
it would be to collect all values in a central process,
compute the reduction and distribute it back, but
there are many clever ways of making it more efficient
for certain situations.

You could for instance, arrange the processes in a ring,
and have each process add its value to a running total
(if you’re computing the sum).

AllReduce is implemented in many libraries for parallel
computation, like MPI, NCCL and Gloo. This means that
so long as we can frame our method in terms of local
computations, combined with an occasional AllReduce,
we can call one of these libraries to deal with the
details.

The name reduce comes from parallel programming. In
parallel programming, it can be very useful if you can
frame an algorithm in terms of map operations, which
apply an operation in parallel to all elements of a set,
and reduce operations, which turn a set of values into
a single value. If your algorithm is a sequence of maps
and reduces, you can likely very easily scale it up to
datasets of terabytes (assuming you have the required
hardware).

FOR EXAMPLE: ALLREDUCE MEAN

process 2

~ = IS

process 2

VU

For example, here is what an allreduce looks like with
“taking the mean” as the reduction operation. We take
the mean over the three outputs, and send that single
mean back to all three processes.

Note that in practice, the values are often (large)
tensors, rather than scalars, but so long as they all
have the same size, we can still take the mean of a
collection of tensors.

PRIMITIVE OPERATION: ALLGATHER

process 2 gather

[1,2,3]

[1,2,3]

w N =

[1,2,3]

process 2

VU

Another primitive, we will need is AllGather. This is
essentially an AllReduce, where the reduction
operation just takes the different values and collects
them in a list. This list is then sent to all processes.

Note that unlike the sum or mean AllReduce, this
operation substantially increases the memory required
by each process, even if they replace the result of the
operation by the value they provided at the start. That
is, in a sum AllReduce, each process can replace the
value provided by the sum of the the value over all
process, and keep its memory consumption stable. For
the AllGather, doing this always replaces one value by
N values. This can be important in the values are large
tensors.

PRIMITIVE OPERATION: REDUCE SCATTER

[142,3]
process 1

[043,1]
process 2

1+0+1=2 \

A
2

[2,5,4]
[2}o, 0]

process 3

T

process 2

VU

Finally, there is ReduceScatter. This is a kind of reverse
of AllGather, in that it starts with a list per process, and
ends with a single value per process.

If these are tensors, you can say that it starts with
large tensors, and ends up with tensors that are one-
third the size.

The idea is that we reduce over the lists, resulting in a
single list. In this example, we use the sum operator to
reduce, but any reduction works.

We break up the list in equal chunks, one for each
process. In this example, each chunk consists of one
number.

We then apply the reduction to each chunk over all the
processes: for example, we sum the numbers in all of
the first chunks over all three processes. The result is
then returned to the corresponding process. That is,
process 1 gets the sum of the first chunks. Process 2
gets the sum of the second chunks and so on.

There are more of these primitives used in parallel

programming, but these are the only three we will
need.

MULTI-PROCESS TRAINING

- Data parallelism

* Model parallelism

- Pipeline parallelism

* Model- and data-parallelism

. VU¥

We'll look at a few popular approaches for parallelising
neural network training over different nodes or
different GPUs.

gpul gpu2 gpu3

trf block

o o o
o]]
a a a
=z = =
H H H
S B B
g o a

trf block

model

model

input batch

AllReduce (mean) over gradients Vuk

If the model fits entirely onto a single GPU (possibly
for just a single instance), the simplest approach is
data-parallel training. We simply make N copies of the
model, one for each GPU, and we split the data along
the batch dimension. That is, if a given batch has 18
instances, we feed the first 6 to the model on the first
GPU, we feed instances 7 to 12 to the model on the
second GPU and we feed instances 13 to 18 to the
model on the third GPU.

To simplify things, we’ve assumed that we have a
model containing three transformer blocks. None of
these algorithms are specific to the transformer, and
they translate trivially to other architectures, but we’ll
stick with the transformer to keep things concrete.

We then perform a forward and backward pass on
each GPU in parallel. This is a purely local operation.
Each GPU can do it’s own job without worrying what’s
happening on the other GPUs. After the backward, we
have a set of gradients for the whole model on each
GPU. Each GPU has seen different inputs and labels, so
these gradients are all different.

We then apply the AllReduce to the gradients, taking
their average over all three copies, and distributing
this average back to each GPU. This average is the
gradient over the whole batch (of 18 instances). With
the gradients synchronized, the GPUs can each apply
an optimizer step in to the weights of their model.
Because the weights are synchronized, we know they
will apply the same step (even if they use momentum
or Adam).

In fact, data-parallel training, when you do it like this is
provably equivalent to what you would get with a
single GPU that was big enough to fit the whole batch.

IN PYTORCH: SIMPLE DATA-PARALLEL

model = MyModel(...)
model DataParallel(model)

opt = Adam(model.parameters(), lr=3e-4)

output = model(input)

1 = loss(input, target)
1.backward()

opt.step

To achieve data parallel training very simply in pytorch,

you can use the DataParallel wrapper. You simply
create a model as normal, and feed it to the

DataParallel class which act as a model, wrapped
around your model. This does several things behind
the scenes.

« It creates copies of your model on all available
devices.

» When forward is called, it splits the batch and
passes a piece of the batch to each copy of the
model, so that each copy runs a forward in parallel
on a different slice of the data.

It then concatenates the results of these different
forwards, and returns that as the result of the
wrapped model. This is a tensor (called output here)
on device 0.

+ The rest of the computation of the loss happens on
device 0 over the whole output batch.

« The computation graph is constructed over all
devices, so it automatically computes gradients for
all copies in parallel

» After the backward, a special hook (registered by
the DataParallel wrapper) runs the AllReduce over
the different gradients of the different copies,
ensuring that all copies now have the same
gradient.

+ All parameters of all copies were registered with the
optimizer, so it automatically updates all models.

This extreme simplicity in the implementation comes
at a cost. To start with, it would be more efficient to
have each copy compute its own loss on a slice of the
target batch (as drawn in the previous slide), rather
than doing it for all copies on device 0. Moreover, this
approach requires multithreading, rather than
multiprocessing, which is a little broken in python.
Finally, this approach only works with devices on a
single machine.

A more versatile and robust approach is the
DistributedDataParallel module, which also works for
multi-node training. However, this also requires more

extensive changes to your code. We won'’t detail that
here.

DATA PARALLELISM (DP, DDP)

Simple to implement and understand.

Momentum, Adam: optimizer state is distributed as well.

Each process keeps its own copy of the optimizer state.

But, if the model doesn’t fit on the GPU...

. VU¥

This is data-parallel training. For a model that fits on
the GPU, this is likely all you need. It’s simple to
understand, and it’s quite efficient. There are two main
downsides.

One is that it required us to keep a copy of the
optimizer state on each GPU. If we’re using
momentum SGD this is a vector that is as big as the
model itself, and if we’re using Adam, it’s two vectors
the size of the model. These are guaranteed to be
exactly the same on each GPU, which means we’re
storing a lot of redundant information.

The other issue is that the model may not fit on the
GPU in its entirety. In that case we’ll need to use tricks
like checkpointing, which is going to add a lot to the
time required for the forward and backward pass.

gpul gpu 2 gpu 3

trf block

il

trf block

trf block trf block
model
input batch input batch

. Vu¥

If our model is too big to fit on a single GPU, we can
also split the model, and send different parts of it to
different devices. This is called model parallelism.

This requires a bit more manual work than data-
parallelism. You need to figure out how many blocks fit
on each GPU, and data needs to be transferred
manually between them.

IN PYTORCH: SIMPLE MODEL-PARALLEL

class ToyModel():
def init_ (self):
super().__init_ ()
self.a = Linear(10, 10).to('cuda:0")
self.b = Linear(10, 5).to('cuda:1")

def forward(self, x):
x = F.relu(self.a(x.to('cuda:0")))
return self.b(x.to('cuda:1"))

source: hitps://pytorch.org/tutorials/intermediate/model_parallel_tutorial.html VU e

Here is a simple example of how to achieve model
parallelism in pytorch. We simply create a network as
normal, in this case consisting of two linear layers. We
then move each layer to its own device, one to the first
GPU (called cuda: 0) and one to the second (called

cuda:1).

Then, in the forward, we can simply feed the input to
the relevant layers in order, except that we first need
to move them to the correct device. Pytorch will do
the rest, and happily keep track of the computation
graph over multiple GPUs and run a backward over all
the different devices.

The move from one GPU to another simply creates a
new node in the computation graph for the same data
in a different device. The operation between these two
is the identity, so it has a very simple gradient.

You can even use this trick to offload parts of the
computation graph to the CPU memory. If there’s one
small computation that takes a lot of memory, and you
don’t mind it being a bit slow, this may be a good
approach.

All this moving of tensors between devices can be quite
expensive. In the tutorial linked at the bottom, there
are some tests showing about a 7% overhead
compared to doing the same thing on a single GPU
with lots of memory.

gpu 1 gpu2 (epus)
< these are waiting -»

triblock 2 RN this is executing

trf block

trf block 1

model

input batch input batch

Vu¥

The big problem with model parallelism is that most of
the time, the majority of your GPUs is doing nothing.
While we are computing the middle block, the last
block is waiting for its input and the first block is
waiting for the backward to start and come back to the
start of the network.

It’s very wasteful to buy a lot of expensive GPUs and to
have all but one of them doing nothing. Can we find
something for these idle GPUs to do?

https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module

trf3 trf3
forward backward

gpu3idle
model

parallelism trf2
forward

f1
forward

gpu 1idle

trf3 trf3 trf3 trf3
forward forward backward backward
batchl batch2 batch3 batch3 | batch2 batchl

trf2 trf2 trf2 trf2

forward forward backward backward

pipeline batchl batch2 | batch3 batch3 | batch2 batch1
parallelism trf1 1 uf1

forward ~ forward “pubble”
|- wl
batchl batch2 | batch3 the b

tf1
backward backward
batch3 | batch2 batch1

At the top we seel what model parallelism looks like
“unrolled” over time. Note that at all time, all but one
of our GPUs is idle (i.e. doing nothing).

One solution, called pipeline parallelism, is to note that
while gpul is waiting for the backward of one batch to
come back, it can get started on the next batch.

This can get a little complicated, so it pays to draw who
does what over time. One important aspect of pipeline
parallellism is that during the backward, the blocks
depend on one another in the reverse order. That
means that if we get started on batch 2 while batch 1
is still in progress, gpu3 should take care of batch 2
first, so that we can start the backward on batch 2
before the backward on batch 1.

Note that these are micro-batches. That is, we do one
gradient update over all these batches. At the right of
the figure, all gradients are summed over all three
batches and a gradient step is applied. A great benefit
of pipeline parallelism (and any kind of model sharding
in general) is that for each block, the parameters, the
gradients and the optimizer state for the parameters of
that block only need to live on the GPU holding that
block. This means we get no redundant copies of any
part of the model or the optimizer. If we want, we can
make our model exactly as big as the sum total of GPU
memory we have available.

The downside is that even with pipeline parallelism,
we cannot avoid a substantial amount of GPU idle time
in the middle, called “the bubble”. We can make the
bubble a smaller proportion of the total compute, by
increasing the number of batches, but we can only do
that by seeing more data per gradient update (we get
one bubble for every update we make). However, in
general, we don’t want to reduce the number of
updates too much: we usually prefer to make many
noisy gradient updates than fewer very accurate
gradient updates.

DATA AND MODEL PARALLELISM

Break your model into chunks, and break the data into chunks:
Fully Sharded Data Parallelism (FSDP)

VU

One final thing we can try, is to shard the model as
well as the data. This is referred to as fully-sharded
data parallelism (FSDP).

3
o
%
©

ul u2 u3
8P &P &P persistent .

model

VU

The key is to shard each layer into equal parts. That is,
each gpu gets a copy of each layer, but only concerns
itself with storing the parameters and gradients of one
third of each layer (or one n-th for n GPUs).

We call this the part of the model that is stored
persistently. That is, from one forward pass to the
next, the GPU keeps these weights in memory (and
indeed, is responsible for remembering these weights).
Across the three GPUs, each parameter is stored
persistently on exactly one device.

If the GPU needs access to the rest of the layer, it
retrieves those parameters from the other GPUs. We
call this transient storage. The idea is that the GPU is
not responsible for these parameters, so it can retrieve
them when needed, and then delete them afterwards
(another GPU is responsible for them, so they will
always be available when needed).

How exactly you shard the layers depends on the
details of the model. For a standard transformer block,
we can note that (almost) all parameters are part of a
linear layer: either in the feedforward part, or in the
key/query/value projections of the self-attention. For
these, we can just slice the weight matrix and bias
vector into N chunks, where N is the number of GPUs
we have available.

my shard (persistent): rest of the parameters (transient):

maintain

retrieve

parameters, parameters and

gradients

and gradients

optimizer state as needed from other GPUs

in memory

VU

That is the key idea: that each GPU maintains the
parameters, the gradients and the optimizer state only
for the shard of the layer that it’s responsible for. This
is what it keeps in memory and updates when the time
comes).

Of course, to compute the forward and backward, the
GPU does need the rest of the parameters, and the
rest of the gradient. These, it retrieves from the other
GPUs whenever it’s time to compute a forward or
backward for this block. This needs to fit in memory
during the computation of the block, but after the
forward or backward is computed, we can forget about
them. We only need to retain the parameters,
gradients and optimizer states for our shard of the
data.

This gives is a rough indication of the memory
requirements under FSDP. If we shard over N GPUS, we
need to be able to fit 1/N-th of our model in memory
persistently, together with the full memory required to
compute one transformer block, which we can forget
once the block has been computed.

This is assuming that we break our computation up at
the level of transformer blocks. We could also break it
down into smaller chunks. This would require more
frequent communication, but reduce the memory
requirements.

input
batch

2999
o]
Lo
5%

7

4

B
B

e 7

e
)
Lo

Here’s a detailed diagram of the computation of the
first layer.

At the start, each GPU contains its own shard of the
first layer. The rest of the parameters are unknown.

We perform an AllGather so that each GPU has a full
copy of the weight of the first layer.

Next, we collect the input for each GPU. In the first
layer, each GPU gets a slice of the current batch of
data. Later in the model these are the outputs of the
previous layer. The key thing to note, is that each GPU
computes the layer with a different input. This means
that they will het different outputs, and ultimately,
different gradients.

Note the difference between the parameter tensor
and the input/output tensors. The parameters need to
be completed before the forward computation. The
input and output are split along the batch dimension,
so these do not need to be completed. We can apply
the layer to a slice of the input and get a
corresponding slice of the output.

This is because the computation is independent over
the batch dimension: the computation over one
dimension of the batch dimension does not dependent
on what the values of the rest of the batch are. This is
not the case with any of the dimensions of the
parameter tensor. We need to know the whole
parameter tensor in order to compute any part of the
output. This is why we apply the AllGather to the
parameters, but not to the input or output.

After each GPU has computed its slice of the output,
we no longer need the full parameters of the layer.
Each deletes all the parts that it is not responsible for
and keeps only its own shard, freeing up our memory
for the computation of the next layer.

Then, the backward. As the loss backpropagates, it hits
each layer in reverse order to the forward. That means
that when we hit the backward for our layer, we can
assume that the gradients for our output have already
been computed. At the start, we have these, and our
own shard for the parameters. We need the full
parameters for the backward as well, so we collect
these from the other GPUs as well.

Not drawn are the intermediate values that we need to
remember for the backward. These too have a batch
dimension, so we can store only the slice that pertains
to our shard of the data.

After we’ve completed the parameters, we can
compute the backward. This gives us a full gradient on
all of our parameters (all proamaters contributed to
our shard of the output, so all get a gradient).
Moreover, these gradients are different on each GPU,
since each GPU saw a different slice of the input batch.
However, ultimately, each GPU should only need to
worry about its own shard of the gradients. The rest it
should delete.

To make this possible, we apply a ReduceScatter. We
sum or average the gradients of the first shard of the
parameters over all GPUs, and return this sum to the
first GPU, we do the same for the second GPU, and for
the third. This way, each GPU gets the gradients its
responsible for, but we still combine gradients over all
instances in the batch.

At the end of this process, each GPU has what it needs
to work out the optimizer state for its shard of the
batch, and to perform a gradient update step.

OTHER CONCERNS

Memory layout
- Avoid fragmentation, optimize placement.
Overlap communication and computation

« Remember, for GPT-3, parameters + gradients + optimizer state comes
to over 3.6 TB.

Hybrid sharding
« Replicate each parameter over some GPUs, not over all.

« Trades off memory for communication overhead.

Vu¥

WHAT ARE YOU LIKELY TO ENCOUNTER?

Mixed precision: almost always

In some cases, the model may not respond well, otherwise, there is no downside
Gradient accumulation: occasionally

Cheap trick to stabilize large, fickle models.

Checkpointing: unlikely

Maybe in legacy code.

Data parallelism: occasionally

If you have a machine with more than one GPU, or you are training a medium-sized model on a cluster.

FSDP: unlikely

Only if you are training very big models

VU¥

Finally, a note on when exactly you can expect to need
any of this.

Mixed precision is pretty much always a good idea. The
only reason not to use it, is if you have an unusual
model that doesn’t respond well to it, or if you're
building a very small proof-of-concept and it’s not
worth the very minor implementation hassle.

You could also be dealing with an old GPU (anything
before the 20 generation NVIDIA) or legacy code/
checkpoints.

Gradient accumulation is a useful trick. If your model is
small enough for a large batch size, you won’t need it,
but otherwise it’s a good trick to keep in mind
whenever your training appears to become unstable.
It’s a costly tradeoff, and there are better ways of
stabilizing learning, but accumulating over a few
batches should at least elp to diagnose the problem (if
it helps, you can look into more efficient ways of
achieving the same effect).

Gradient checkpointing is probably not likely to be
useful. It can be helpful if your model falls just short of
fitting on a GPU, but if that happens, you’ll probably
need multiple GPUs anyway to feed it enough data
anyway, so you might as well skip to full blown FSDP.

Data parallelism is relatively likely to crop up. You may
well need to train models that fit into memory in
principle, but that would still take too long to train on
a single GPU. As we saw, DP is very easy to achieve in
pytorch, and DDP (data parallelism over multiple
nodes) is only a little bit more complex.

Finally, FSDP. As we noted, this is only necessary if
you’re training something that’s so big it won’t fit into
GPU memory. If that’s the case, you will also need vast
amounts of data, and a substantial cluster. If that
happens, you should also have a team of people
working out exactly how best to train the model and
how to tune each component of the FSDP
implementation to squeeze the maximum throughput
out of your training. In short, if you end up using FSDP,
you are more likely going to need a lot more detailed
knowledge than this course can offer. However, it;s
important to understand the basic idea behind the
algorithm, and the considerations that went into its
design.

« Pytorch lightning
- Fairscale

102

If your model fits on one GPU, data parallelism is all you need.

If not, you will have a big team & large budget anyway.

If you're looking into Distributed training consider a more high-level library
than Pytorch. For example:

» Huggingface accelerate

VU

This is the key thing to remember for when you start
running into these situations. There is no need to
move beyond data parallellism, until you’re training
very big models.

Also, while you can do distributed training in plain
pytorch, for the more complicated setups, it may be
good to rely on a more high-level library.

THANK YOU FOR YOUR ATTENTION

divu@peterbloem.nl

103

VU¥

mailto:dlvu@peterbloem.nl

