
Hi and welcome to lecture eight of the deep learning
course. I'm Michael Cochez, and today we will be talking
about learning with graphs.

Michael Cochez
Deep Learning

Lecture 8: Learning with Graphs

dlvu.github.io

part 1: Introduction - Why graphs? What are embeddings?

part 2: Graph Embedding Techniques

part 3: Graph Neural Networks

part 4: Application - Query embedding

THE PLAN

2

So, this will basically be split into four or five parts. The
first part has two subparts. The first one talks about why
we care about graphs and what crafts actually are. The
second part 1 cares about what embeddings are. Then, in
part 2, we will talk about the craft embedding techniques,
basically combining these two aspects from the first part.
After that, we will talk about graphene networks, which is
a different way of getting graphs into neural networks. In
part 4, we will talk about applications on query
embedding. So now we have part one a; we first talk about
what graphs are and why we care about them.

|section|Introduction - Graphs (1A)|

|video|https://www.youtube.com/embed/y87PNsQj9aM
?si=yL27Igg-sLbShUGm|

PART ONE - A: INTRODUCTION - GRAPHS

When was the last time you ...

 reconnected with a friend?

So in this context, I want you to think about when the last thing
was when you reconnected with a friend. Now, chances are that
you have been using what is called Facebook social graph. So
what Facebook is keeping is a large graph within their friends,
people who know each other, and what people do, and so on.

animation: 1

When was the last time you ...

 reconnected with a friend?

Facebook Social Graph

animation: 2

When was the last time you ...

 reconnected with a friend?

http://www.businessinsider.com/explainer-
what-exactly-is-the-social-graph-2012-3

Facebook Social Graph

animation: 3

When was the last time you ...

 reconnected with a friend?

 visited a doctor?

Now, the last time when you visited a doctor, maybe not so
much in Europe but at least in other countries like, for example,
in the U.S., you would have tools like IBM Watson, which are
very large knowledge systems. Internally, they also keep a graph
for representing certain key concepts and relationships within
the domain. So a doctor can use that knowledge graph, and you
can use that system to, for example, search what the disease
might be corresponding to certain symptoms.

animation: 1

When was the last time you ...

 reconnected with a friend?

 visited a doctor?

IBM Watson

animation: 2

When was the last time you ...

 reconnected with a friend?

 visited a doctor?

https://www.ibm.com/think/marketing/how-watson-learns/

IBM Watson

animation: 3

When was the last time you ...

 reconnected with a friend?

 visited a doctor?

 browsed through products in a webshop?

Another example is you might have been visiting a webshop. So
you might have gone, for example, to Amazon, and Amazon is
keeping a very large product graph, meaning basically the
relation between the different products they have. To give an
example, they might give a relation between a washing machine
which you might have bought and the washing liquid which you
actually need for it.

animation: 1

When was the last time you ...

 reconnected with a friend?

 visited a doctor?

 browsed through products in a webshop?

Amazon Product Graph

animation: 2

When was the last time you ...

 reconnected with a friend?

 visited a doctor?

 browsed through products in a webshop?

 did a web search?

Or you might have been doing a web search; that's maybe the
most famous example. So Google is keeping a very large
knowledge graph of all kinds of concepts. That means, for
example, painters, paintings which they have been painting,
they keep cities, they keep the major of the cities, they keep the
university where that major of the city has been studying, they
keep other people in that university and so on.

animation: 1

When was the last time you ...

 reconnected with a friend?

 visited a doctor?

 browsed through products in a webshop?

 did a web search?

Google Knowledge Graph

animation: 2

When was the last time you ...

 reconnected with a friend?

 visited a doctor?

 browsed through products in a webshop?

 did a web search?

https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html

Google Knowledge Graph

animation: 3

When was the last time you ...

 browsed through products in a webshop?

 reconnected with a friend?

 visited a doctor?

 did a web search?

Knowledge graphs are all around us.

So, really, these knowledge crafts or these graphs are all around
us, right? So there are a lot more examples. Some examples are
very about very general domains like for the search engines and
so on. Now we also find examples, things like, for example,
Springer, which is mentioned here, or Elsevier. So they would
keep knowledge graphs of research articles, so they can go from
a very narrow domain to a very broad domain.

animation: 1

When was the last time you ...

 browsed through products in a webshop?

 reconnected with a friend?

 visited a doctor?

 did a web search?

Knowledge graphs are all around us.

Other examples: Cyc, Freebase, DBPedia, Wikidata,
YAGO, Thomson Reuters, Microsoft Satori, Yahoo
KG, Springer, ...

animation: 2

Graphs - Undirected - Simple Graphs

17

Now let's get back to basics on knowledge graphs. So our
graphs, so the first, the very simple, the simplest thing
which you can do is what is called a simple graph, right? So
a simple graph, what does it mean? So we have nodes,
also sometimes called vertices, and then we have edges or
arcs connecting these together, right? So that means that,
this could represent that the nodes here, the circles, they
could be people, and the relation between them could be
a friendship, a friendship relation. Then this whole graph
would basically be a friendship network. Now what you
can see in this graph is that we basically have sort of two
parts. So there is the part of the graph that is connected,
and then there is this separate part of the graph that is
disconnected. We call this graph disconnected; it means
we have two completely separate parts. A graph which is
completely connected would be a connected graph.

Graphs - Undirected - Self loop

18

One thing which cannot happen in a simple graph but
which we can add is something called self-loops. So in this
case, we have the node here, and basically, it has a
connection to itself (the red line). So what could this graph
now represent? Let's take another example. All of these
nodes could be representing a network of atoms. Each
atom has edges between them, which could bind to each
other to form bigger molecules.

Graphs - Undirected - multigraph

19

Now one additional thing which we can have on graphs is
what is called multi-edges or multi-graphs. So it basically
means, um, between these two nodes, we don't have just
one edge, but we have two. So now what could you do
with this kind of graphs? Well, let's imagine we are now in
this pandemic situation. So let's imagine that this graph
represents which people have been meeting up with
which other persons in the past month. So you have a
person here, this person because there is this edge, we
know that he has been meeting with that person over
here. And now here, there are two edges, so that basically
means that two meetings have happened between these
two people. So each of the edges basically represents one
of the meetings.

Graphs - Directed

20

Now, another enhancement we can make is to assign
direction to the edges. Until now, concepts like friendships
or meetings lacked a specific direction. In this case, we aim
to introduce directionality, imbuing it with a specific
meaning. For example, consider a network resembling
Twitter, focusing on people following each other. Picture
this: one person here is being followed by another person
over there. In this context, the edge's meaning and
direction signify that the person at the start of the edge is
being followed by the person at the end.

It's important to note that while not illustrated in this
example, reciprocal following can occur. This person
follows that one, and reciprocally, the latter also follows
the former. In such instances, two edges are necessary to
indicate this bidirectional relationship. Another example
fitting into this graph concept is links between web pages.
If each node represents a web page, the edges could

represent links from, say, this page to that page.

Graphs - Edge and node labels/types

21

Coffee
cream

Milk

Double
Cream

cheese

Bob

Likes

Dislikes

Likes

Similar to

Similar to

The next step in working with graphs involves assigning
labels and types. For each edge and node, I've introduced
descriptive words. For instance, this node is labeled Bob,
another is labeled double cream, and one more is labeled
cheese, and so forth. This allows us to express
relationships, such as saying that "Bob likes cheese." I've
extended this labeling to the edges, giving them distinct
meanings.

In addition to labels, I've introduced types. In this context,
Bob is classified as a type of person, while other entities
like double cream, cheese, and milk are categorized as
dairy products. This establishes different types for the
nodes.

One more aspect of this graph is the inclusion of both
directed and undirected edges. I've combined direct
attachments with undirected ones, providing a mix of both
in the graph structure.

http://exa
mple.com

/Bob

Graphs - Edge and node labels/types - RDF (simplified)

23

http://exa
mple.com
/Coffee_c

ream

http://exa
mple.com

/Milk

http://exa
mple.com
/Double_
Cream

http://exa
mple.com
/cheese

http://exa
mple.com
/Likes

http://example.com/Dislikes

http://exa
mple.com
/Likes

http://example.com/Similar_to

http://example.com/Similar_to

48

http://exa
mple.com
/Fat_perc
entage

http://example.com/Similar_to

Taking another step forward, we can create what is known
as an RDF (Resource Description Framework) graph,
maintaining a somewhat simplified perspective. Notably,
the labels, which were previously simple textual labels,
now each represent a URL, serving as a unique identifier
for the nodes. This approach carries tangible benefits,
particularly when attempting to merge graphs. The
presence of unique identifiers facilitates a seamless
merging process.

Additionally, observe a change in the nature of the edges.
This graph exclusively features directed edges,
transitioning from the single edge in the previous
representation. I've also corrected an oversight, ensuring
that the indicated edge should be a double one.

Furthermore, I've introduced a distinct type of node—one
that carries a literal value. In this case, it contains a
numerical value representing the fat percentage of the

double cream. This highlights a capability within RDF where
nodes can directly contain literal values, expanding the
expressive power of the graph.

Graphs - Edge and node labels/types + weights

23

Coffee
cream

Milk

Double
Cream

cheese

Bob

Likes 0.9

Dislikes 0.7

Likes 0.8

Similar to 0.5

Similar to 0.8

In graphs, we can assign weights to edges. In this instance,
we've reverted to standard labels and added weights such
as 4.9, 0.8, and 0.5. The interpretation of these weights
depends on how you analyze the graph. For instance, Bob
prefers double cream with a weight of 0.8 and coffee
cream with a weight of 4.9, indicating a stronger
preference for the latter. The similarity score between
these two preferences is 4.5, while another pair has a
similarity score of 4.8.

Graphs - Edge and node labels/types + weights

24

Coffee
cream

Milk

Double
Cream

cheese

Bob

Likes
weight: 0.9
when: evening
with: Coffee

Dislikes
weight: 0.7
when: always

Likes
weight: 0.8
when: morning
with:
strawberries

Similar to
weight: 0.5

Similar to
weight: 0.8

Beyond weights, we have additional possibilities.
Properties can be added to edges, going beyond the
basics. Consider Bob: he likes coffee cream, but with
added temporal and contextual details. For instance, he
prefers this cream only in the evenings and exclusively
with coffee. Similarly, he enjoys double cream, but
exclusively with strawberries in the morning. These
additional details specified on the edge are known as
qualifiers, providing more information about the edge
itself.

● For a given graph, you should know whether it has:

○ Self loops or not

○ Multigraph or not

○ Directed/undirected/mix

○ Edge labels (unique?)

○ Node labels (unique?)

○ Properties on edges (also called qualifiers)

■ Edge weights

● Any combination of these is possible

Graphs - summary

25

We've observed the progression from a basic graph to a
more complex property graph. When someone mentions
using a graph, it's crucial to inquire about its
characteristics. Is it a simple graph or does it permit
features like self-loops, multigraph elements, directional
aspects, or a blend of both? Are there labels for edges or
nodes, and are they unique? Does it support edge
properties, such as qualifiers, or even edge weights? These
elements can be combined in various ways, offering a wide
range of possibilities.

What is now a knowledge graph?

26

Coff
ee

crea
m

Milk

Dou
ble

Crea
m

chee
se

Bob

Likes
weight:
0.9
when:
evening
with:
Coffee

Dislikes
weight:
0.7
when:
always

Likes
weight: 0.8
when:
morning
with:
strawberri
es

Similar
to
weight:
0.5

Similar
to
weight:
0.8

http
://e
xa

mpl
e.c
om/
Bob

http
://e
xa

mpl
e.c
om/
Cof
fee
_cr
ea
m

http
://e
xa

mpl
e.c
om/
Milk

http
://e
xa

mpl
e.c
om/
Do
ubl
e_
Cre
am

http
://e
xa

mpl
e.c
om/
che
ese

http
://e
xam
ple.
co
m/L
ikes

http://examp
le.com/Dislik
es

http
://e
xam
ple.
co
m/L
ikes

http://example.
com/Similar_to

http://exampl
e.com/Similar
_to

48

http
://e
xam
ple.
co
m/F
at_
per
cen
tag
e

The term knowledge graph does not have a crisp
definition. See also https://arxiv.org/abs/2003.02320

most commonly, people would classify both Property
graphs and RDF graphs as knowledge graphs. Note that
they are equivalent in expressive power. We can remodel
the attributes on edges in another form into an RDF graph.

https://arxiv.org/abs/2003.02320

|section|Introduction - Embeddings (1B)

|video|https://www.youtube.com/embed/Q70zKCbfKyk?
si=_pu9Q75GE9hgEApT|

In part B, we'll delve into embeddings, which are
low-dimensional representations of objects. To better
understand, let's break down this concept.

PART ONE - B: INTRODUCTION - EMBEDDINGS

Embeddings are low dimensional representations of objects

● Low dimension: Much lower as the original size

● Representation: There is some meaning to it, a representation

corresponds to something

● Objects: Words, sentences, images, audio, graphs, ….

Embeddings

28

Low dimension, in the context of embeddings, means a
representation much smaller than the original size. For
instance, an image embedding shouldn't be as large as the
number of pixels but significantly smaller. These
representations hold meaning, corresponding to
real-world objects, which can range from words and
sentences to images, audio, or even graphs, as we'll
explore later on.

Embedding of images

29

These are
embeddings!

image source: https://cs231n.github.io/convolutional-networks/#fc

You've encountered various examples of embeddings,
even if we didn't always use that term. Consider the left
example, where an input image passes through
convolutional filters, resulting in a lower-dimensional
output—a form of embedding. Similarly, generative
models like variational autoencoders generate points in a
distribution space, each point serving as an embedding
corresponding to a real-world image.

Embedding of images - navigable space

https://arxiv.org/
abs/1911.05627

Some embedded spaces exhibit a valuable structure that
allows navigation. Moving in specific directions within this
space holds meaningful changes in certain features of the
object. For example, in images, navigating could transition
from a smiling person to a non-smiling one or from a
female to a male gender along a certain direction. When
features disentangle in this way, they separate and
correspond to distinct semantic features in the objects
within the embedding space.

Distributional hypothesis

○ “You shall know a word by the company it keeps” Firth 1957

○ “If units of text have similar vectors in a text frequency matrix, then

they tend to have similar meaning” Turney and Pantel (2010)

For example, the word ‘cat’ occurs often in the context of the word

‘animal’, and so do words like ‘dog’ and ‘fish’.

But, the word ‘loudspeaker’ hardly ever co-occurs with ‘animal’

Embeddings of words

31

Beyond images, we can also create word embeddings. In a
machine learning context, one-hot encoding is common,
but it has limitations. To address this, we often rely on the
distributional hypothesis, which suggests that
understanding a word involves its contextual associations.
As FortH put it, "You shall know a word by the company it
keeps." In modern terms, if words or text units share
similar vectors in a frequency matrix, they likely have
similar meanings.

For instance, words like 'cat,' 'dog,' and 'fish' frequently
co-occur with 'animal' but rarely with 'loudspeaker.' This
implies that 'cat,' 'dog,' and 'fish' are semantically similar,
while 'loudspeaker' is distinct. Leveraging such contextual
information allows us to create embeddings for words.

Distributional hypothesis

=> We can use context information to define embeddings for words.

One vector representation for each word

Generally, we can train them (see lecture on word2vec)

Embeddings of words

32

To achieve this, we generate vector representations for
each word, incorporating information about co-occurrence
with other words. Training these embeddings is a common
approach, and I recommend watching the lecture on
word2vec for a detailed understanding.

Embedding of words - navigation

33

https://samyzaf.com/ML/nlp/nl
p.html

Just as with images, we can navigate through space with
words. Though the example may not be realistic, it
conveys the concept. For instance, starting with the
concept 'king,' navigating in a certain direction in space
could lead to the word 'man.' Similarly, starting from
'queen' and following a similar direction could lead to the
embedding for 'woman.' This approach can extend to
relationships like capitals to countries or transforming
grammatical forms of words.

Classification, Regression, Clustering of nodes/edges/whole graph

Recommender systems (who likes what)

Document modeling

Entity and Document similarity (Use concepts from a graph)

Alignment of graphs (which nodes are similar?)

Link prediction and error detection

Linking text and semi-structured knowledge to graphs

Graphs - why use them as input to machine learning?

34

Before diving into graph embeddings, let's explore why we
use them in machine learning. The primary goals include
classification, regression, or clustering of nodes, edges, or
the entire graph. For instance, in an Amazon product
graph with missing labels, we might want to classify nodes,
such as determining whether a product is poisonous or
not. Regression could quantify toxicity levels. Other
applications include recommender systems for product
suggestions based on connections in the knowledge graph,
document modeling to find similar documents through
graph links, and aligning graphs to identify similarities
between nodes. Additionally, tasks like link prediction and
error detection aim to refine and correct the knowledge
graph by predicting missing links and rectifying
inaccuracies.

|section|Graph Embedding Techniques|

|video|https://www.youtube.com/embed/kClCCEheI3o?si
=-06mVNRgPbZDw5dn|

In this segment, we'll discuss graph embedding
techniques. We've covered the concept of graphs and
explored embeddings for various entities represented as
graphs. Now, let's delve into techniques for embedding
graphs specifically for machine learning purposes.

PART TWO: Graph Embedding Techniques

36

The Challenge

When embedding graphs, we actually have one big
challenge.

Graphs - model mismatch

37

When working with embeddings before, say with text or
images, it was relatively easy to integrate them into a
neural network. We had a one or two-dimensional
structure, a linear format that smoothly fed into the neural
network on the right.

However, this scenario changes when dealing with graphs.
Graphs pose a challenge as they don't have a
straightforward linear structure. Unlike text or images,
graphs can't be neatly represented in a linear fashion.
Therefore, feeding them into our network becomes a
non-trivial task.

animation: 1

Graphs - model mismatch

38

animation: 2

● Traditional ML on graphs

○ Often have problems with scalability

○ Often need manual feature engineering

■ Task Specific

What we skip

39

Traditionally, some machine learning methods for graphs,
which we'll skip in this lecture, involve manual feature
engineering. These methods attempt to manually extract
specific features from the nodes in the graph and then
input them into a machine learning algorithm. However,
such approaches often encounter scalability issues and are
task-specific. Due to these limitations, we won't delve
deeper into them in this discussion, but it's worth noting
that they do exist.

Embedding Knowledge Graphs in Vector Spaces

What we'll focus on instead is embedding knowledge graphs in a
vector space. More precisely, we'll discuss embedding nodes in
an effective space. The approach involves taking each node in
the graph and creating a vector in a vector space for each node.
These vectors are designed to be easily integrated into a
machine learning algorithm.

Embedding - propositionalization

✘ One vector for each entity
✗ Compatible with traditional data mining algorithms

and tools
✘ Preserve the information
✘ Unsupervised

✗ task and dataset independent
✘ Efficient computation
✘ Low dimensional representation

What we're essentially doing is akin to something called
propositionalization. This involves creating one vector for each
entity or node in the graph, making it compatible with
traditional data mining algorithms, other machine learning
tools, or machine learning networks.

The primary goal of this embedding is to preserve information
from the original graph. Ideally, we prefer an unsupervised
approach for now, meaning the embeddings obtained are task
and dataset independent. They originate from a specific graph
but should be universally applicable.

As mentioned earlier, efficiency in computation is crucial.
Whether dealing with a graph of 5 million or 10 million nodes,
the embedding process should remain feasible. Additionally, we
aim for a low-dimensional representation compared to the
original graphs. While representing a graph with millions of
nodes and connections in a standard vector format is possible, it

consumes a significant amount of space. Our objective is to
achieve a more compact, low-dimensional representation of the
same information.

Two Major Visions

Preserve Topology
● Keep neighbours close

together

● Europe - Germany
● Africa - Algeria

Preserve Similarity
● Keep similar nodes

close together

● Europe - Africa
● Germany - Algeria

In methods to accomplish this, there are two major visions on
how it should be done. In one approach, the focus is on
preserving topology. The goal here is to maintain the proximity
of neighbors in the graph. For instance, if you have neighbors
like Europe and Germany connected by an edge in the graph,
you'd want their embeddings to be close to each other in the
embedded space. Similarly, Africa and Algeria, being connected,
would also have close embeddings in that space.

On the other hand, a completely different view emphasizes
preserving similarity in the embedded space. This means that
similar nodes should be close together. In this scenario, you
might have separate embeddings for Europe and Africa, and
because they are both continents, they would be close together
in the embedded space. Likewise, Germany and Algeria, both
being large countries, would also have close embeddings in the
same space.

These are the two major visions that exist for achieving graph
embeddings.

Two Major Targets

Improve original data
● Knowledge Graph

Completion
● Link Prediction
● Anomaly Detection

Downstream ML Tasks
● Classification/Regressio

n/Clustering/K-NN

● Then used as part of a
larger process
○ QA/dialog systems
○ Translation
○ Image segmentation

When creating these embeddings, there are two major targets,
each related to the tasks we discussed earlier. One significant
group of tasks involves improving the original data, as we
previously mentioned in the context of graph completion, link
prediction, and anomaly detection.

The second set of targets revolves around downstream machine
learning tasks. In this case, the goal is not directly tied to the
graph itself. Instead, the embeddings are utilized for tasks that
may include classification, clustering, or as part of a larger
process. For instance, embeddings can be integrated into
question-answer systems, dialog systems, translation systems,
or even image segmentation. In the latter case, information
from a knowledge graph can be used to make informed
decisions, like recognizing that if the entity is a "cow," the
background is more likely to be land rather than the sea, as
cows are typically not found in the sea but rather in other

environments.

How ?

Translational
● Interpret

relations as
translations of
concept in the
embedded
space

Three Major Approaches for Propositionalization

Tensor Factorization
● Make a 3D

matrix and
factorize it

● Reconstructing
the original hints
which edges
were missing

Random Walk Based
● Use the context

of a concept to
embed it

● Use the
distributional
hypothesis

There are essentially three major approaches. The first set of
approaches relies on a translational property, meaning that any
relation existing in the knowledge graph is directly mapped to
its counterpart in the embedded space. Essentially, if there's a
certain relation in the graph, the goal is to replicate that relation
in the embedded space.

The second group of methods is based on tensor factorization.
This involves creating a 3D matrix of all the relations in the
graph. The process includes starting at a particular node and
navigating its context for embedding. This method incorporates
the distributional hypothesis, which we previously discussed in
the context of words and context.

Translational

XTransX - translational embedding
(Bordes et al. NIPS 2013 , Lin et al., AAAI'15)

✘ TransE
✘ TransH
✘ TransR
✘ CTransR
✘ PTransE
✘ ...

New approaches continue to emerge, and essentially, they all
come down to similar principles. Let's focus on the very first
one, TransE, as the subsequent ones are essentially more
complex versions of it.

TransE - translational embedding
(Bordes et al. NIPS 2013)

Source: Structured query construction via knowledge graph
embedding, 2019, Ruijie Wang et al.

ll

The core idea of TransE is to consider each edge in a knowledge
graph. In a large knowledge graph, nodes are connected by
typed edges. Each edge is associated with a type 'e'.

The approach involves ensuring that if a certain type of edge
exists in the knowledge graph, corresponding embeddings are
created for the connected nodes. Additionally, an embedding is
generated for the edge, representing a vector that serves as a
translation from one node to another. If there are multiple
triples with the same type, the same edge embedding is used.

The optimization goal is to align the head ('h') of the
relationship, the edge, and the tail. Specifically, the aim is to
minimize the distance between the sum of the embeddings of
the head and the edge and the tail ('t'). The objective is to
reduce the distance between these elements for all edges in the
knowledge graph, making the sum of the head and edge
embeddings as close as possible to the tail.

animation: 1

TransE - translational embedding
(Bordes et al. NIPS 2013)

Source: Structured query construction via knowledge graph
embedding, 2019, Ruijie Wang et al.

ll

animation: 2

TransE - translational embedding
(Bordes et al. NIPS 2013)

Source: Structured query construction via knowledge graph
embedding, 2019, Ruijie Wang et al.

ll

animation: 3

TransE - translational embedding
(Bordes et al. NIPS 2013)

✘ TransE
✗ Get h+l close to t

■ If (h,l,t) is a good triple
✗ Get h+l far from t

■ If (h,l,t) is a bad triple

The current approach has some limitations, as it primarily relies
on positive information, which can lead to over-optimization
and nonsensical results. To address this, instead of solely
minimizing the distance as described earlier, the model should
also penalize instances where incorrect triples or relations in the
graph are in close proximity.

To implement this, a loss function is proposed. It involves
considering valid triples and corresponding negative triples.
Negative triples are essentially corrupted versions of real triples.
This corruption entails randomly removing either the tail or the
head of an edge and replacing it with another random entity. In
essence, this introduces randomness into the graph, and the
objective is to minimize the distance for valid triples while
maximizing it for the negative ones. Additionally, a margin is
introduced as part of this margin-based loss function.

In summary, the loss function is designed to simultaneously
minimize the distance for valid triples and maximize it for
corrupted (negative) triples, ensuring a balance between
positive and negative information in the training process.

XTransX - translational embedding
(Bordes et al. NIPS 2013 , Lin et al., AAAI'15)

Conceptually
Easy

Embedding
Quality
The better the
model, the
less scalable
One Hop

✘ TransE
✘ TransH
✘ TransR
✘ CTransR
✘ PTransE
✘ ...

The existing approach has limitations; it seems to work, but it
tends to over-optimize for positive information, leading to
nonsensical results. To address this, instead of solely minimizing
the established distance, we also aim to penalize instances
where incorrect triples or wrong relations in the graph are in
close proximity. The written loss function includes valid triples
and a set of negative triples. These negative triples are
essentially corrupted versions of real triples. For each valid
triple, we randomly alter either the end or the beginning of the
edge, replacing it with something else. This introduces
randomness into the graph, and the objective is to minimize the
distance for valid triples while maximizing it for negative ones.
Additionally, a margin is incorporated into this margin-based
loss.

Matrix Factorization

RESCAL - Tensor Factorization
(Nickel and Tresp, ECML PKDD 2013)

A group of methods focuses on matrix factorization. One
canonical example is Rascal, and there are various approaches.
In this case, we examine a 3D matrix, denoted as x, representing
our graph. Along one axis, it indicates possible relations (e.g.,
person likes milk or dislikes). Another axis represents entities,
forming a 2D matrix.

Inside this 3D matrix, a '1' is placed for the jade entity and
identity if relation k holds. This results in a sparse matrix, more
compactly represented. The factorization decomposes it into
three matrices.

Decomposing implies having three smaller matrices that, when
multiplied, recreate the original or something close. Notably,
the matrices on the left and right are essentially the same, with
one being a twisted version. So, there are only two matrices:
one fixed for the k relations and another for entity embeddings.

After decomposition, these matrices contain embeddings for all

entities and, when multiplied, restore the original matrix. This
process is akin to how encoders work. The smaller
representation in the middle discards noise, anomalies, and
mistakes in the graph, but also generalizes, predicting missing
edges not in the original graph.

Tensor Factorization

Conceptually
Easy
Good for link
prediction
Usually
Scalable
Multi hop

Explainable

Numeric
attributes can
be included
somehow

Embedding
Quality for ML
tasks
The better the
model, the
less scalable

Tensor factorization is indeed powerful, conceptually
straightforward, and effective for link relation tasks. Recent
works indicate that even the method presented on the slide is
highly potent. These methods are often scalable, leveraging
powerful linear algebra operations, and capable of encoding
multi-hop information to some extent. They are explainable,
allowing for the understanding of why certain edges are
predicted, and can incorporate numeric attributes, a feature
lacking in translation-based methods.

However, there is a drawback. While tensor factorization excels
in link prediction, its embedding quality tends to be less
effective for downstream machine learning tasks. Despite the
existence of stronger matrix factorization techniques, the
scalability of these models diminishes with increased
complexity.

Random Walk Based

Random Walk based methods
(Cochez, et al. , ISWC '17, Cochez, et al. WIMS'17, Ristoski et
al. ISWC '16, Grover, Leskovec KDD '16)

● Use random walks to extract a context for
each node

● Use this context as input to word embedding
techniques

Now moving on to the last class, which is random walk-based
methods. These methods leverage random walks to capture the
context around a specific node. By initiating a random walk
around a node, the context is extracted for that node.
Subsequently, this context serves as an input to a word
embedding technique. In essence, similar to the example where
a cat occurs in the context of an animal, these methods utilize
distributional hypothesis information to embed nodes.

Random Walk based methods - RDF2Vec and Node2Vec
(Cochez, et al. WIMS'17, Ristoski et al. ISWC '16, Grover,
Leskovec KDD '16)

● Use random walks to create sequences on
the graph.

● Feed these to word2vec

● Biasing the walks helps for specific cases
● Also some other graph kernels have been

used

One approach is to initiate a sequence by starting from a node
and creating a sequence. Here, you begin with a node, note its
label, take a random step to the next node, record the edge
followed and the label of the next node. Repeat this process to
form a sequence, essentially creating a text-like structure. This
sequence might resemble a sentence, such as "This person likes
milk. Milk is similar to cheese, and cheese contains a high
amount of fat."

Subsequently, these sequences can be input into a language
model, like the Word2Vec model, to obtain embeddings for the
words. These word embeddings correspond to concepts in the
graph, effectively creating an embedding for the entire graph.
Additional strategies include biasing the walks by assigning extra
weight to certain directions instead of randomly jumping to
locations. Graph kernels, although not elaborated here, are also
employed as alternative methods for navigating the graph.

Global Embeddings - KGloVe
(Cochez, Ristoski, et al. , ISWC '17)

● Create co-occurrence stats using
Personalized PageRank
○ All pairs PPR

● Apply the GloVe model
○ Similar things will have similar contexts
○ Optimizes for preserving analogy

■ King - Man + Woman ≃ Queen
■ Berlin - Germany + Austria ≃ Vienna

○ Complete context captured

Another technique that relies on a similar distributional
hypothesis is personalized PageRank. In this method, you
examine each node in the graph and consider its neighborhood.
The information about the proximity of these nodes is then fed
into another type of language model, such as GloVe. The
underlying idea is to apply the distributional hypothesis,
asserting that similar nodes should have similar context in the
graph, encompassing both immediate neighbors and those
further away.

This language model, GloVe, is designed to optimize for
preserving analogies. An example of this is the well-known
analogy: "king - man + woman = queen." The advantage of this
model over the random walk method discussed earlier is that it
captures the complete context comprehensively. Instead of
randomly walking in the hope of discovering context, it
systematically encompasses the entire context at once.

Random walk based methods
(Cochez, et al. , ISWC '17, Cochez, et al. WIMS'17, Ristoski et
al. ISWC '16, Grover, Leskovec KDD '16)

Deals with large
Graphs
Good
Embeddings
Good Training
Time

Likely or
partially
Explainable
Larger
Context Used

Link
Prediction

These methods come with several advantages. They excel in
handling very large graphs by leveraging local neighborhoods
effectively. Even for relatively small graphs, they provide
reasonably good embeddings that prove useful for downstream
machine learning tasks. The training process is generally robust.

However, explainability is a challenge. While some methods, like
the one capturing context, offer partial explainability, there is
still ongoing research needed in this area. Scalable methods
could potentially address the issue of handling larger contexts.

One notable drawback is in link prediction. These methods tend
to prioritize semantic similarity based on the distributional
hypothesis, potentially overlooking the original graph's
structure. For instance, continents might be grouped together in
the embedded space, even if they weren't connected in the
original graph.

|section|Graph Neural Networks|

|video|https://www.youtube.com/embed/ckAjM9XIdQs?
si=VpQ8vgYiK-nNEJBo|

Part three focuses on graph neural networks, relatively
new architectures with increasingly exciting applications.
Let's delve right in.

PART THREE: Graph Neural Networks

Graph Convolutional Networks (GCN: Kipf and Welling,
ICLR'17, RGCN: Schlichtkrull et al. ESWC'18)

● How can we directly incorporate graph
information into a machine learning
algorithm?
○ Especially for end-to-end learning

Graph neural networks is now three to four years old. The
fundamental question addressed is how to seamlessly integrate
graph information into a machine learning algorithm,
particularly for an end-to-end learning set.

Embedding

In the preceding section, we discussed the embedding of nodes,
where a two-step process was employed. Initially, portions of
the graph were taken, and in a subsequent step, these
embeddings were utilized in a downstream machine learning
task. This method falls short of true end-to-end learning, as
there's an intermediate step involving saving to a file. In case
this information isn't retained, it poses challenges for
subsequent tasks. Essentially, the final task cannot influence the
creation of these embeddings. This approach has its drawbacks,
notably that certain information deemed unimportant during
the embedding process might be discarded, potentially
impacting the application.

Conversely, with end-to-end learning, a different challenge
arises. The embeddings generated in such a system may lack
generalizability, being too specific to the task at hand. Unlike the
two-step approach, they may not be transferable to other tasks.

Graph Convolutional Network - Merge the two worlds

This process essentially involves merging the two realms – the
world of graphs and that of neural networks. Initially distinct,
these two worlds are now being fused together, creating
intriguing networks that bridge the gap between them.

GCN - Example Graph

A B

C

D

Let's delve into an example known as the graph convolutional
network, starting with a directed graph featuring four nodes
connected by directed edges. Our aim is to construct a neural
network in a specific manner. Follow along step by step as we
build this network.

Initially, we create four nodes, representing the four nodes in
our graph, arranged consecutively. This process is repeated,
forming a second set of nodes, aligning with the original graph.

The next step involves incorporating all the connections present
in the graph. If there's a connection from node A to B, we
replicate that connection in the network being constructed.
Importantly, this isn't a one-time replication; it's done multiple
times, introducing multiple layers to the graph. Each layer
essentially repeats the paths defined by the original graph's
connections.

animation: 1

GCN - Example Graph - 1 Layer

A B

C
DA

B

C

D

animation: 2

GCN - Example Graph - 2 Layer

A B

C
DA

B

C

D

A

B

C

D

animation: 3

GCN - Example Graph - 2 Layer with Connections

A B

C
DA

B

C

D

A

B

C

D

animation: 4

GCN - Example Graph - Multi Layer

A B

C
D

A

B

C

D

A

B

C

D

A

B

C

D

...

animation: 5

GCN - Example Graph - Weights

A B

C
DA

B

C

D

A

B

C

D W

Each Edge is a
neural network!

...

B D

To transform this into a graph convolutional network, we
replace each edge in the constructed network with a small
Multi-Layer Perceptron (MLP), essentially a compact neural
network. Imagine having input nodes represented by T and B,
where a small MLP is situated. This dense network contains
multiple input nodes, a hidden layer, and an output node (D in
this case). Each edge in the network is substituted with such an
MLP.

Importantly, this modification means that the input to each
node isn't just a vector with dimensions corresponding to A, P,
C, and D, but rather each node takes a vector as input. For
instance, the input to each node is a vector of dimension three,
corresponding to the input dimension of the MLP.
Consequently, the output for each node is also a vector, in this
case, with a dimension of 2.

Furthermore, the weight matrices associated with these MLPs

are shared among different edges. Although each edge has its
set of weights, they are shared. This sharing of weights
consolidates gradient information flowing back through
different edges, contributing to a unified weight matrix.

The term "graph convolutional network" stems from this sharing
of weight matrices, resembling the way filters are shared in a
convolutional neural network. In a convolutional neural
network, a filter matrix is convolved over different parts of an
image. Similarly, in a graph convolutional network, the weight
matrix is convolved over the total input, focusing on connected
elements from the original graph.

Additionally, these networks typically include self-loops. This
involves adding connections from each node to itself, creating a
forward MLP-like structure at the next level in the network.

animation: 1

GCN - Example Graph - Weights

A B

C
DA

B

C

D

A

B

C

D W

The input to EACH
Node is a vector!

...

animation: 2

GCN - Example Graph - Weights

A B

C
DA

B

C

D

A

B

C

D W

The output for
EACH Node is a
vector!

...

animation: 3

GCN - Example Graph - Weights Sharing

A B

C
DA

B

C

D

A

B

C

D W

The weight
matrix is shared!

...

animation: 4

GCN - Example Graph - Self Loops

A B

C
DA

B

C

D

A

B

C

D

… and self-loops
are added

...

animation: 5

In practise what was presented does not scale well

○ (Except with clever engineering)

In practise more normalization is needed

GCN - A different view - sparse matrix multiplications

75

Conceptually, this idea is appealing. However, the practical
challenge lies in scalability. Implementation works to a
certain extent, but not exceptionally well. Neural libraries,
like Python Geometric, offer a workaround. These
libraries, when applied to relevant assignments,
demonstrate effective scaling due to their sophisticated
message passing system. This implementation allows them
to handle even sizable systems quite efficiently.

In addition to scalability issues, another practical concern
arises— the need for increased normalization. While no
conversation normalization has been applied thus far, it
becomes essential in practical scenarios.

Reformulation:

H(l) is the l-th layer in the unrolled network (the l-th time-step)

A is the adjacency matrix, Ã is the same with also the diagonal set to 1

W(l) is a learnable weight matrix for layer l

GCN - A different view - sparse matrix multiplications

85

In the original implementation of graph convolutional
networks, a different formulation was employed. Instead
of using MLPs as previously described, the approach
involved a more concise representation using matrices.

The computation for the l-th layer in the control network is
outlined here. The network may consist of multiple layers,
as indicated by the example with two layers and another
with three layers. The computation for the l-th layer
addresses the state of all nodes simultaneously. To achieve
this, a weight matrix is applied universally. This matrix is
shared across all nodes. The computation involves taking
the previous state, representing what occurred in the
previous layer at layer l, and multiplying it by an adjacency
matrix.

The adjacency matrix is a crucial component, representing
connections between entities. If two entities are
connected, a 1 is placed in the corresponding matrix entry.

For a multi-graph, the entry may scale with the number of
connections. To account for self-loops, the diagonal in the
adjacency matrix is set to 1, denoted by the tilde (~).

Multiplying the node in question by this modified adjacency
matrix involves a specific technique. This process serves to scale
and counteract the impact of having numerous neighbors.
Without such compensation, a node with many neighbors could
accumulate excessive weight from incoming messages,
potentially distorting its state. Therefore, the multiplication is
carefully designed to manage the influence of incoming
messages and prevent the undesired inflation of node values.

animation: 1

Reformulation:

H(l) is the l-th layer in the unrolled network (the l-th time-step)

A is the adjacency matrix, Ã is the same with also the diagonal set to 1

W(l) is a learnable weight matrix for layer l

GCN - A different view - sparse matrix multiplications

77

Used for normalization

animation: 2

That's it, we can include this
structure into a larger network.

We've deconstructed the graph, introduced weights, and now
we can integrate this structure into a larger, differentiable
network. This network, being informed by graph-related
information, produces output that can be further utilized.

As for the input to the Graph Convolutional Network (GCN), we
didn't delve into it earlier. The input to the GCN needs to be a
vector. There are several options for what you can feed into it. In
the original paper, a common choice is a one-hot encoded
vector. In this scenario, the first layer, the MLP acting as an
embedding layer, treats the input as a trained embedding.

Alternatively, you could feed specific features of the node
directly into the network. For instance, if the node represents a
person, you might input attributes like the person's height and
gender. These properties become part of the initial input and
are considered throughout the network's operations. The
resulting output can then be applied to the intended use case or

application.

Node classification

○ What is the type of a node?

Regression of attributes in the graph

○ What is the price of the product?

Regression/classification on the complete graph (by combining the output)

● What is the boiling point of a molecule?

● Is this molecule poisonous?

Examples of tasks

79

You can use it for various tasks. For instance, traditional
tasks like node classification to determine a certain node's
type. Regression of graph attributes allows you to predict,
for example, the price of a product based on its
relationships with others in the graph. Beyond
node-specific tasks, you can also apply the model to the
entire graph. This includes regression or classification
tasks, such as predicting the boiling point of a molecule.
Represent the molecule as a graph, pass it through the
network, collect outputs, and use them for regression.
Similarly, for binary classification tasks like determining if a
molecule is poisonous, follow the same process of a
forward pass, collect information, and make a prediction.

What if the graph has typed edges?

One unaddressed question is the scenario where the graph has
typed edges. In the Graph Convolutional Network (GCN) we
examined, the graph was considered with assumed connections
and a single edge type.

RGCN

A B

C
DA

B

C

D

A

B

C

D W

The weight
matrix is shared
per edge type!

...

If the graph has typed edges, a straightforward approach is to
create one weight matrix per edge type. For instance, consider a
graph with green and purple edges. Instead of sharing weights
across all edges, you have distinct weight matrices for each edge
type — one for green edges and another for purple edges. In
your actual network, this translates to having one weight matrix
per edge type.

Additionally, when constructing these networks, reverse edges
are often added to the graph. This is done because the direction
of edges, as in the example 'I live in Amsterdam,' may not
always align with the desired meaning for the application. By
adding inverse relations and ensuring they account for edge
types, the network can be improved. For instance, instead of
having the edge 'I live in Amsterdam,' it might be more useful to
include the edge 'Amsterdam has inhabited me.' This flexibility
in considering both directions and different edge types

contributes to enhancing the network's performance.

animation: 1

RGCN - Reverse edges

A B

C
DA

B

C

D

A

B

C

D

Also reverse edges
(inverse relations)
are added

...

animation: 2

In matrix multiplication form, the R-GCN is computed as follows:

-> this formulation is per node in the graph, not for all at once, as was

done in the GCN formulation!

RGCN - formally

83

The current formulation differs from the previous one in
that it is designed for each node in the graph individually.
In contrast to the previous formulation, which focused on
the entire unrolled graph, this new approach addresses
each node independently. Let's proceed step by step to
understand how this formulation is constructed.

In matrix multiplication form, the R-GCN is computed as follows:

h
i
(l) is the i-th node, in the l-th layer (=l-th message passing step)

W
r
(l) is the weight matrix for relation r at layer l (R is the set of all relations)

W
0
 is the weight matrix for the self loop

N
i
r is the set of neighbours of node i with respect to relation r

RGCN - formally

96

The first step is to compute the vector for a specific node,
let's call it the "height" node. We are computing the state
for the next stage, denoted as L plus one. To introduce
non-linearity, we look at all possible relation types in the
graph. For each relation type, there may be multiple nodes
connected to the node h_i, forming the neighborhood of
node i according to relation r. We focus on a specific
relation r and examine its incoming edges to identify
neighboring nodes.

For each of these connected nodes, we apply a traditional
Multi-Layer Perceptron (MLP). This involves multiplying
the current state of the node with weights and applying a
non-linearity, as seen in the basic MLP operation. This step
is crucial for updating the state of the node based on its
relations with others.

Additionally, the formulation explicitly addresses
self-loops. A specific weight matrix is assigned for

self-loops, where the node connects to itself. In this case,
instead of considering any neighbors, we solely utilize the
information from the node itself.

Similar to the conventional Graph Convolutional Network (GCN),
a normalization constant is introduced. This constant, denoted
as one over c_i^r, represents the size of the neighborhood —
the number of incoming neighbors with that specific relation.
The purpose of this normalization is to ensure that the impact of
neighbors is appropriately scaled based on the size of the
neighborhood.

animation: 1

In matrix multiplication form, the R-GCN is computed as follows:

h
i
(l) is the i-th node, in the l-th layer (=l-th message passing step)

W
r
(l) is the weight matrix for relation r at layer l (R is the set of all relations)

W
0
 is the weight matrix for the self loop

N
i
r is the set of neighbours of node i with respect to relation r

RGCN - formally

85

animation: 2

In matrix multiplication form, the R-GCN is computed as follows:

h
i
(l) is the i-th node, in the l-th layer (=l-th message passing step)

W
r
(l) is the weight matrix for relation r at layer l (R is the set of all relations)

W
0
 is the weight matrix for the self loop

N
i
r is the set of neighbours of node i with respect to relation r

RGCN - formally

86

animation: 3

In matrix multiplication form, the R-GCN is computed as follows:

h
i
(l) is the i-th node, in the l-th layer (=l-th message passing step)

W
r
(l) is the weight matrix for relation r at layer l (R is the set of all relations)

W
0
 is the weight matrix for the self loop

N
i
r is the set of neighbours of node i with respect to relation r

RGCN - formally

87

animation: 4

In matrix multiplication form, the R-GCN is computed as follows:

h
i
(l) is the i-th node, in the l-th layer (=l-th message passing step)

W
r
(l) is the weight matrix for relation r at layer l (R is the set of all relations)

W
0
 is the weight matrix for the self loop

N
i
r is the set of neighbours of node i with respect to relation r

RGCN - formally

88

c
i, r

 is a normalization constant.
Usually c

i,r
 is |N

i
r|

animation: 5

In general, we can do whatever we
want in the unrolled view…

Absolutely, when dealing with relational graph convolutional
networks, the key observation is the flexibility they offer in the
unrolled view. As you work with the unrolled network, you can
adapt and modify it to suit your specific requirements. For
instance, if you introduce typed edges, you can efficiently
address this by appropriately sharing weight matrices.

The crucial aspect is the translation from the conceptual
unrolled view to an implementable form. It's about finding a
practical way to bring the theoretical framework into a concrete
implementation. This adaptability allows for customization
based on the specific characteristics and needs of the graph
structure under consideration.

animation: 1

In general, we can do whatever we
want in the unrolled view...

and see whether we can implement
it somehow more efficiently...

animation: 2

GCN - We can do whatever we want

A B

C
DA

B

C

D

A

B

C

D W

Each Edge is a
neural network!

...

B D

This neural network can be
whatever architecture you
have seen in this course!!!

Absolutely, the flexibility in graph neural networks allows for
experimentation with various network architectures. Instead of
sticking to Multi-Layer Perceptrons (MLPs) for each edge, you
can explore different network types. For instance, you could
replace an MLP with an LSTM or any other type of recurrent
network architecture. Taking it further, you could even
introduce convolutional neural networks (CNNs) into the mix.
This would mean that one node's input could be an image, and
the transformation during the edge operation would involve
processing that image through the CNN.

The possibilities are wide open, and researchers often try out
different approaches to see what works best for a given
scenario. Additionally, the notion of shared weight matrices can
also be explored in various ways. Instead of having shared
weights all the way, you might experiment with multiple weight
matrices, akin to having multiple filters in convolutional layers.

The sharing of weights can extend not only between edges but
also deeper into the network, allowing for reuse of weights at
different levels. Advanced techniques, such as tying weights in
specific ways, are also possible.

For further exploration, you can refer to the paper you linked,
which provides a general overview of graph neural networks
and offers insights into the diverse possibilities and strategies
available in this field.

animation: 1

GCN - Example Graph - Weights Sharing

A B

C
DA

B

C

D

A

B

C

D W

The weight
matrix is shared!

...

You can share wheights in
whatever way seems to
make sense.

See also Scarselli, Franco, et al.
"The graph neural network
model." IEEE Transactions on
Neural Networks 20.1 (2008):
61-80.

animation: 2

|section|Query embedding|

|video|https://www.youtube.com/embed/7m07Pr7NiV0?
si=Ej9ZiYxlYcwaTvak|

We're still discussing an application, specifically an English
application - query embedding. Daniel Dasa, my PhD
student, presented this. We collaborated on a project
applying this relation to graph convolutional networks to
tackle a challenging problem. For details, see
https://arxiv.org/abs/2002.02406

PART FOUR: Application - Query embedding

https://arxiv.org/abs/2002.02406

https://arxiv.org/abs/2002.02406
https://arxiv.org/abs/2002.02406

Knowledge graphs

https://commons.wikimedia.org/wiki/File:Moreno_Sociogram_1st_Grade.png

● Can model interactions and properties

○ Medicine, biology, world facts, ...

● In general, useful for

○ Storing facts about entities and
relations

○ Answering questions about them

We've already covered noise graphs. I'll keep this brief.
Essentially, we have a knowledge graph, a graphical
representation of information, such as in medicine. It's valuable
for storing data, and our goal now is to answer questions about
elements within this graph.

https://commons.wikimedia.org/wiki/File:Moreno_Sociogram_1st_Grade.png

Queries on knowledge graphs

● SPARQL queries operate on existing edges

○ Select all Projects, related to ML, on
which Alice works

○ Answer: Proj1

Alice

Bob

VU
Proj1

ML

Proj2

For instance, consider this graph. It features a university with
two individuals employed there and two associated projects.
These projects involve the mentioned individuals, with one
project focusing on machine learning. Now, we can utilize a
language called SPARQL to answer queries. For instance, you can
request all projects related to machine learning in which Alice is
involved. The response is project one, indicating her
involvement in a machine learning-related project. The question
arises whether this answer is comprehensive. By examining the
graph, project one seems complete. However, project two could
also be a valid answer since both Alice and Bob contribute to
both projects. While project one is explicitly about machine
learning, project two might also be associated with machine
learning due to the shared involvement of Alice and Bob.

animation: 1

Queries on knowledge graphs

● SPARQL queries operate on existing edges

○ Select all Projects, related to ML, on
which Alice works

○ Answer: Proj1

● Is Proj2 a likely answer?

Alice

Bob

VU
Proj1

ML

Proj2

animation: 2

Link prediction on knowledge graphs

● Assign a vector in to every node: an
embedding

● The score of an edge is a function of the
embeddings of entities involved

● Optimize:

○ Maximize scores of existing edges

○ Minimize scores of random edges

● Examples: TransE, DistMult, ComplEx

Alice

Bob

VU
Proj1

ML

Proj2

It's possible that there's a missing link between project two and
machine learning – an oversight, a forgotten connection in the
graph. To address this, we can apply techniques discussed
earlier, such as link prediction. We mentioned methods like
TransE, which aims to maximize scores for existing edges and
minimize scores for random or incorrect edges, essentially
predicting these absent links.

Link prediction for complex queries?

● Select all topics T,

● where T is related to a project P,

● and Alice and Bob work on P.

● Link prediction requires enumerating all
possible T and P

○ Grows exponentially!

Alice

Bob

VU
Proj1

ML

Proj2

This approach is not ideal because it involves a substantial
amount of work. Let's break down the query a bit. Essentially,
we want to select all topics (T) related to a project (P) where
both Alice and Bob work. The challenge arises when using link
prediction, as we need to enumerate all possible pairs of T and
P. We must examine all pairs of nodes to identify missing links,
and the number of missing links grows exponentially. This would
not be an issue with a small graph, but the graph on the left is a
subset of a much larger graph, like Wikidata. Applying this
method to such extensive graphs becomes impractical for link
prediction systems.
animation: 1

Link prediction for complex queries?

● Select all topics T,

● where T is related to a project P,

● and Alice and Bob work on P.

● Link prediction requires enumerating all
possible T and P

○ Grows exponentially!

A subset of Wikidata

animation: 2

Queries are graphs too

● In particular, Basic Graph Patterns1

1 Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 query language. W3C recommendation 21(10) (2013)

Another insight from this paper is that the queries we've written
down, such as the one at the top, can themselves be
represented as graphs. Specifically, if we consider the basic
graph pattern, which is a simple type of query, we can create
such structures. In this case, we have topics (T), our target node
or variable, where P is related. Correcting quickly, these topics
relate to project P, and both Alice and Bob work on project P.
The goal is to find all these topics.
animation: 1

Queries are graphs too

● In particular, Basic Graph Patterns1

● Select all topics T where

○ T is related to project P

○ Alice works on P and Bob works on P

1 Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 query language. W3C recommendation 21(10) (2013)

P

Bob

Alice

T (target node)

animation: 2

Embedding queries

ex:Author

“Bob”

?T

Alice

Bob

VU
Proj1

ML

Proj2

Query Encoder

rdf:type

ex:wrote

:S1 hasSubject :Bob .
:S1 hasPredictate rdf:type .
:S1 hasObject ex:author .

Embedding queries

P

Bob

Alice

T

Alice

Bob

VU
Proj1

ML

Proj2

Query Encoder

In this study, our approach involves taking a graph-formatted
query and passing it through a query encoder. While we'll
explore the intricacies of its functioning shortly, you can
envision it as a Graph Convolutional Network (GCN). As
mentioned earlier, each node in this network corresponds to an
embedding representing entities in the graph. These
embeddings are trainable, starting with random initialization
and then refined during training.
For instance, in the given query mentioning Alice and Bob, we
input their embeddings directly into the graph convolutional
network under construction. This process encodes the query,
yielding an output within the same embedding space as the
entities. Within this space, we conduct a nearest neighbor
search using the embedded query. We identify the nearest
entity in that space and designate it as the answer. The
noteworthy aspect here is that these vectors serve both as the

initial input to the network and as the space for searching for
answers, showcasing a streamlined and efficient process.
animation: 1

Embedding queries

P

Bob

Alice

T

Alice

Bob

VU
Proj1

ML

Proj2

Query Encoder

animation: 2

Embedding queries

P

Bob

Alice

T

Alice

Bob

VU
Proj1

ML

Proj2

Query Encoder

animation: 3

Embedding queries

P

Bob

Alice

T

Alice

Bob

VU
Proj1

ML

Proj2

Query Encoder

animation: 4

Embedding queries

P

Bob

Alice

T

Alice

Bob

VU
Proj1

ML

Proj2

Query Encoder

Nearest Neighbor
Search

animation: 5

Embedding queries

P

Bob

Alice

T

Alice

Bob

VU
Proj1

ML

Proj2

Query Encoder

Nearest Neighbor
Search

Answer

animation: 6

Bob
● Graph Convolutional Networks operate on

graphs, by applying message passing:
○ Messages are vectors

● Message-Passing Query Embedding:

○ Learnable parameters include both
entity and variable node embeddings

○ Propagate messages across the BGP

PAlice

T (target node)

The query encoder

The query encoder operates through Relational Graph
Convolutional Networks (RGCNs). The edges in this network are
typed, and they facilitate the passage of messages. In the
approach termed "message-passing query embedding," we
learn embeddings and weights on the edges within our RGCN.
Both the entity embeddings and the weight matrices for the
variable nodes (P and D) are trainable parameters. Although P
and D aren't actual entities, we still learn embeddings for them.
After the initialization phase, illustrated on the right, the
network is structured. It starts with embeddings for entities and
variables. The propagation of the network then begins, akin to
what we observed with Relational Graph Convolutional
Networks. However, the result is embeddings for each node, not
a single embedding, as our objective requires.
In this network, we obtain one encoded representation for each
node, which deviates from our intended outcome, as indicated

in the overview.

● Graph Convolutional Networks operate on
graphs, by applying message passing:
○ Messages are vectors

● Message-Passing Query Embedding:

○ Learnable parameters include both
entity and variable node embeddings

○ Propagate messages across the BGP

The query encoder

Bob

PAlice

T (target node)

The consolidation into a smaller form involves propagating the
embeddings and then combining them into a single query
embedding. This is crucial because, currently, there's an
embedding for each element instead of an overall query embed.
The process includes mapping all these final states into one
embedding for the query, adhering to certain criteria.
We aim for permutation invariance, implying that the graph's
shape or the order of its nodes shouldn't impact the result. The
order in which you take these nodes or whether you consider
them all at once should be immaterial; they are essentially
equivalent in their representation.
One straightforward approach is to select the target node's
embedding as our query embed, effectively ignoring the
embeddings of the other nodes. This simple method assumes
that the target node's embedding alone is sufficient for our
query representation, and we can consider the process

complete at this point.
animation: 1

● Graph Convolutional Networks operate on
graphs, by applying message passing:
○ Messages are vectors

● Message-Passing Query Embedding:

○ Learnable parameters include both
entity and variable node embeddings

○ Propagate messages across the BGP

The query encoder

Bob

PAlice

T (target node)

animation: 2

Query embedding

● Graph Convolutional Networks operate on
graphs, by applying message passing:
○ Messages are vectors

● Message-Passing Query Embedding:

○ Learnable parameters include both
entity and variable node embeddings

○ Propagate messages across the BGP

○ After k steps of MP, map all node
messages to a single query embedding

●

The query encoder

Bob

PAlice

T (target node)

animation: 3

Graph aggregation functions

● Map node messages to query embedding

● Ideally permutation invariant

● Can contain learnable parameters for increased flexibility

● Simplest form: message at the target node

Query embedding

Bob

PAlice

T (target node)

animation: 4

● Sum

● Max

● MLP

● CMLP

● TMLP

Graph aggregation functions

Now, we can perform more complex operations. We take these
four embeddings - one, two, three, four. Although one color has
changed, these remain the same entities. We aggregate them
into a single vector using various methods. You can sum them,
apply max pooling, use a large MLP on all four, compressing
them into a unified representation. There are a few more
variations of this process.

Why is this a good idea?

● Query encoded in embedding space before matching

● Answering is then O(n) instead of exponential

● MPQE encodes arbitrary queries

Query embedding

Bob

PAlice

T (target node)

The nice thing is that our approach makes query answering
highly scalable. We have an efficient query encoder, and its
complexity is mainly tied to the size of the graph. The number of
message passing steps depends on the graph's size, and the
messages forwarded each step match the edges in the query.
Since queries are typically small, it works well.
The most costly part is the nearest neighbor search, but it's
linear as we don't use any approximation – just a linear search
of our space. This is advantageous because in a standard query
answering system, especially with link prediction, this step
would be exponential. With our method, it's feasible in a
reasonable time. Another cool aspect of MPQE is its ability to
encode arbitrary queries, not just simple shapes or lines.

Evaluation

● Queries obtained from KG:

○ Sample subgraphs

○ Replace some entities by variables

Alice

Bob

VU
Proj1

ML

Proj2

Alice

P

T

Alice

Bob

P

T

Alice

Bob

O

So, now onto the evaluation. We start with the original graph,
and to assess its capabilities, we generate numerous queries.
These queries cover a range of problem types, and our system
demonstrates proficiency in solving them. Here's how we
conduct the evaluation: we sample subgraphs from the main
graph and replace some entities with variables. For instance, we
have "PT" originating from a subgraph, and we replace it with a
variable. The same goes for "Alice" and "Bob BT," each from
their respective subgraphs.
It's crucial to note that during evaluation, when we extract
these subgraphs, we go a step further in training the system by
removing even more edges. For example, if the evaluation query
involves a particular edge, say this one, we remove its
corresponding edge in the graph before any learning takes
place. This approach prevents potential issues, ensuring there's
no leakage from the test set to the training set.

Evaluation

● Queries for training obtained after dropping some edges

● 4 knowledge graphs

Regarding variables, like "PT," we extract subgraphs and replace
them with variables. For instance, we have "PT" from this
subgraph, and we can perform a similar replacement within that
variable. This process continues, allowing us to extract various
subgroups.
It's important to note that during the extraction of these
subgraphs for evaluation, we go a step further in training the
system by removing even more edges. For example, if a query
involves a specific edge, such as this one, we eliminate its
corresponding edge in the graph before any learning occurs.
This practice prevents potential issues, ensuring there's no
leakage from the test set to the training set.
Now, onto training. After removing some edges, as mentioned
earlier, we evaluate the system on four different graphs. They
aren't extremely large, ranging from about 2,000 to 300,000
entities and up to 8 million relations.

Evaluation

● Crucial question: how does a method generalize to unseen queries?

● Two scenarios:

○ Train on all 7 structures, evaluate on same structures

○ Train on 1-chain queries only, evaluate on all 7 structures

Essentially, what we did was select specific query structures,
which have been used in previous literature and cover a broad
range of cases. These structures encompass every scenario with
up to three hops in the query, meaning three edges in the
graph. A noteworthy aspect is our approach to training. Unlike
previous methods that use all seven structures for training and
evaluation, we took an exciting approach.
Instead of training on all seven structures, we trained on the
simplest case – a single chain query with just one hop. The
excitement lies in the prospect that if this approach proves
effective, starting from training on very basic queries, we can
then successfully evaluate and perform well on more complex
query structures. This suggests the potential scalability of our
method to handle all possible curve structures.

Results - all query types

● We obtain competitive performance with previous work.

● Message-passing alone(RGCN-TM) is an effective mechanism

We observe that our system performs reasonably well across all
query types, either outperforming or at least matching the
capabilities of existing systems.

Results - 1-chain queries

● By training for link prediction only, our method generalizes to other 6, more complex query structures
that were not seen during training

Even more exciting is the aspect of one-chain queries, where we
train on a single hop and then evaluate on all other structures.
What stands out is our system's exceptional performance,
consistently outperforming existing systems, except in specific
types of graphs. This is particularly thrilling because it
demonstrates that we can train our system on straightforward
one-hop scenarios and still achieve high performance on queries
that extend much further.

Learned representations

● Compared to previous methods (right), our method (left) learns embeddings that cluster according to
the type of the entity.

● This points to future applications in learning better embeddings for KGs

Another noteworthy aspect of this method is the type of
representations it learns. In comparison to a previous method
addressing the same problem, if we visualize the embedded
space with colored representations by type – for instance,
purple denoting all the projects – you'll notice some clustering
but not a clear separation.
In contrast, our method exhibits a more distinctive feature in
the embedded space. You can observe clear separations – a
distinct cluster for people, another for projects, and yet another
for topics. This implies that our space captures more semantic
information, making it more navigable, as we discussed in
earlier sections.

Using R-GCN for Query embedding - Conclusion

● The proposed architecture is simple and learns entity and type embeddings useful for solving the

task

● Our method allows encoding a general set of queries defined in terms of BGPs, by learning entity

and variable embeddings and not constraining the query structure

● The message passing mechanism across the BGP exhibits superior generalization than previous

methods

● Embeddings successfully capture the notion of entity types without supervision

In conclusion, our architecture, based on RGCNs, is remarkably
simple yet effective. It learns embeddings for entities and types,
proving valuable in addressing the query answering task. The
versatility of our approach allows it to handle questions for any
Property Graph Pattern (PGP). The graph-shaped queries,
coupled with the message-passing algorithm, exhibit superior
generalization. Notably, it can be trained on one-hop queries
and seamlessly extend its capabilities to handle much larger
ones.
As illustrated in the visualizations, our method can capture the
notion of entity types without relying on specific supervision,
apart from the signal derived from the original queries. This
highlights the effectiveness and adaptability of our approach in
learning meaningful representations from the data.

part 1: Introduction - Why graphs? What are embeddings?

part 2: Graph Embedding Techniques

part 3: Graph Neural Networks

part 4: Application - Query embedding

THE PLAN

1
2
3

Okay, so this concludes the example or application of
RGCN. Throughout this series of lectures, we started with
an introduction, exploring the reasons behind working
with graphs and understanding what embeddings entail.
Subsequently, we delved into graph embedding
techniques, both traditional approaches that involve
embedding nodes for downstream machine learning tasks
and modern graph neural networks designed for
end-to-end learning systems. Finally, we examined the
practical application of relational graph convolutional
networks, specifically in the context of query embedding.
Thank you for your attention.

