
Hi and welcome to lecture eight of the deep learning 
course. I'm Michael Cochez, and today we will be talking 
about learning with graphs.
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So, this will basically be split into four or five parts. The 
first part has two subparts. The first one talks about why 
we care about graphs and what crafts actually are. The 
second part 1 cares about what embeddings are. Then, in 
part 2, we will talk about the craft embedding techniques, 
basically combining these two aspects from the first part. 
After that, we will talk about graphene networks, which is 
a different way of getting graphs into neural networks. In 
part 4, we will talk about applications on query 
embedding. So now we have part one a; we first talk about 
what graphs are and why we care about them.



|section|Introduction - Graphs (1A)|

|video|https://www.youtube.com/embed/y87PNsQj9aM
?si=yL27Igg-sLbShUGm|

PART ONE - A: INTRODUCTION - GRAPHS



When was the last time you ...

 reconnected with a friend?

So in this context, I want you to think about when the last thing 
was when you reconnected with a friend. Now, chances are that 
you have been using what is called Facebook social graph. So 
what Facebook is keeping is a large graph within their friends, 
people who know each other, and what people do, and so on. 

animation: 1



When was the last time you ...

 reconnected with a friend?

Facebook Social Graph

animation: 2



When was the last time you ...

 reconnected with a friend?

http://www.businessinsider.com/explainer-
what-exactly-is-the-social-graph-2012-3

Facebook Social Graph

animation: 3



When was the last time you ...

 reconnected with a friend?

 visited a doctor?

Now, the last time when you visited a doctor, maybe not so 
much in Europe but at least in other countries like, for example, 
in the U.S., you would have tools like IBM Watson, which are 
very large knowledge systems. Internally, they also keep a graph 
for representing certain key concepts and relationships within 
the domain. So a doctor can use that knowledge graph, and you 
can use that system to, for example, search what the disease 
might be corresponding to certain symptoms.

animation: 1



When was the last time you ...

 reconnected with a friend?

 visited a doctor?

IBM Watson

animation: 2



When was the last time you ...

 reconnected with a friend?

 visited a doctor?

https://www.ibm.com/think/marketing/how-watson-learns/

IBM Watson

animation: 3



When was the last time you ...

 reconnected with a friend?

 visited a doctor?

 browsed through products in a webshop?

Another example is you might have been visiting a webshop. So 
you might have gone, for example, to Amazon, and Amazon is 
keeping a very large product graph, meaning basically the 
relation between the different products they have. To give an 
example, they might give a relation between a washing machine 
which you might have bought and the washing liquid which you 
actually need for it.

animation: 1



When was the last time you ...

 reconnected with a friend?

 visited a doctor?

 browsed through products in a webshop?

Amazon Product Graph

animation: 2



When was the last time you ...

 reconnected with a friend?

 visited a doctor?

 browsed through products in a webshop?

 did a web search?

Or you might have been doing a web search; that's maybe the 
most famous example. So Google is keeping a very large 
knowledge graph of all kinds of concepts. That means, for 
example, painters, paintings which they have been painting, 
they keep cities, they keep the major of the cities, they keep the 
university where that major of the city has been studying, they 
keep other people in that university and so on.

animation: 1



When was the last time you ...

 reconnected with a friend?

 visited a doctor?

 browsed through products in a webshop?

 did a web search?

Google Knowledge Graph

animation: 2



When was the last time you ...

 reconnected with a friend?

 visited a doctor?

 browsed through products in a webshop?

 did a web search?

https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html

Google Knowledge Graph

animation: 3



When was the last time you ...

 browsed through products in a webshop?

 reconnected with a friend?

 visited a doctor?

 did a web search?

Knowledge graphs are all around us.

So, really, these knowledge crafts or these graphs are all around 
us, right? So there are a lot more examples. Some examples are 
very about very general domains like for the search engines and 
so on. Now we also find examples, things like, for example, 
Springer, which is mentioned here, or Elsevier. So they would 
keep knowledge graphs of research articles, so they can go from 
a very narrow domain to a very broad domain.

animation: 1



When was the last time you ...

 browsed through products in a webshop?

 reconnected with a friend?

 visited a doctor?

 did a web search?

Knowledge graphs are all around us.

Other examples: Cyc, Freebase, DBPedia, Wikidata, 
YAGO, Thomson Reuters, Microsoft Satori, Yahoo 
KG,  Springer, ...

animation: 2



Graphs - Undirected - Simple Graphs
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Now let's get back to basics on knowledge graphs. So our 
graphs, so the first, the very simple, the simplest thing 
which you can do is what is called a simple graph, right? So 
a simple graph, what does it mean? So we have nodes, 
also sometimes called vertices, and then we have edges or 
arcs connecting these together, right? So that means that, 
this could represent that the nodes here, the circles, they 
could be people, and the relation between them could be 
a friendship, a friendship relation. Then this whole graph 
would basically be a friendship network. Now what you 
can see in this graph is that we basically have sort of two 
parts. So there is the part of the graph that is connected, 
and then there is this separate part of the graph that is 
disconnected. We call this graph disconnected; it means 
we have two completely separate parts. A graph which is 
completely connected would be a connected graph.



Graphs - Undirected - Self loop
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One thing which cannot happen in a simple graph but 
which we can add is something called self-loops. So in this 
case, we have the node here, and basically, it has a 
connection to itself (the red line). So what could this graph 
now represent? Let's take another example. All of these 
nodes could be representing a network of atoms. Each 
atom has edges between them, which could bind to each 
other to form bigger molecules.



Graphs - Undirected - multigraph

19

Now one additional thing which we can have on graphs is 
what is called multi-edges or multi-graphs. So it basically 
means, um, between these two nodes, we don't have just 
one edge, but we have two. So now what could you do 
with this kind of graphs? Well, let's imagine we are now in 
this pandemic situation. So let's imagine that this graph 
represents which people have been meeting up with 
which other persons in the past month. So you have a 
person here, this person because there is this edge, we 
know that he has been meeting with that person over 
here. And now here, there are two edges, so that basically 
means that two meetings have happened between these 
two people. So each of the edges basically represents one 
of the meetings.



Graphs - Directed 
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Now, another enhancement we can make is to assign 
direction to the edges. Until now, concepts like friendships 
or meetings lacked a specific direction. In this case, we aim 
to introduce directionality, imbuing it with a specific 
meaning. For example, consider a network resembling 
Twitter, focusing on people following each other. Picture 
this: one person here is being followed by another person 
over there. In this context, the edge's meaning and 
direction signify that the person at the start of the edge is 
being followed by the person at the end.

It's important to note that while not illustrated in this 
example, reciprocal following can occur. This person 
follows that one, and reciprocally, the latter also follows 
the former. In such instances, two edges are necessary to 
indicate this bidirectional relationship. Another example 
fitting into this graph concept is links between web pages. 
If each node represents a web page, the edges could 



represent links from, say, this page to that page.



Graphs - Edge and node labels/types 
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Coffee 
cream

Milk

Double 
Cream

cheese

Bob

Likes

Dislikes

Likes

Similar to

Similar to

The next step in working with graphs involves assigning 
labels and types. For each edge and node, I've introduced 
descriptive words. For instance, this node is labeled Bob, 
another is labeled double cream, and one more is labeled 
cheese, and so forth. This allows us to express 
relationships, such as saying that "Bob likes cheese." I've 
extended this labeling to the edges, giving them distinct 
meanings.

In addition to labels, I've introduced types. In this context, 
Bob is classified as a type of person, while other entities 
like double cream, cheese, and milk are categorized as 
dairy products. This establishes different types for the 
nodes.

One more aspect of this graph is the inclusion of both 
directed and undirected edges. I've combined direct 
attachments with undirected ones, providing a mix of both 
in the graph structure.



http://exa
mple.com

/Bob

Graphs - Edge and node labels/types - RDF (simplified)
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48

http://exa
mple.com
/Fat_perc
entage

http://example.com/Similar_to

Taking another step forward, we can create what is known 
as an RDF (Resource Description Framework) graph, 
maintaining a somewhat simplified perspective. Notably, 
the labels, which were previously simple textual labels, 
now each represent a URL, serving as a unique identifier 
for the nodes. This approach carries tangible benefits, 
particularly when attempting to merge graphs. The 
presence of unique identifiers facilitates a seamless 
merging process.

Additionally, observe a change in the nature of the edges. 
This graph exclusively features directed edges, 
transitioning from the single edge in the previous 
representation. I've also corrected an oversight, ensuring 
that the indicated edge should be a double one.

Furthermore, I've introduced a distinct type of node—one 
that carries a literal value. In this case, it contains a 
numerical value representing the fat percentage of the 



double cream. This highlights a capability within RDF where 
nodes can directly contain literal values, expanding the 
expressive power of the graph.



Graphs - Edge and node labels/types + weights
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Coffee 
cream

Milk

Double 
Cream

cheese

Bob

Likes 0.9

Dislikes 0.7

Likes 0.8

Similar to 0.5

Similar to 0.8

In graphs, we can assign weights to edges. In this instance, 
we've reverted to standard labels and added weights such 
as 4.9, 0.8, and 0.5. The interpretation of these weights 
depends on how you analyze the graph. For instance, Bob 
prefers double cream with a weight of 0.8 and coffee 
cream with a weight of 4.9, indicating a stronger 
preference for the latter. The similarity score between 
these two preferences is 4.5, while another pair has a 
similarity score of 4.8.



Graphs - Edge and node labels/types + weights
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Coffee 
cream

Milk

Double 
Cream

cheese

Bob

Likes 
weight: 0.9
when: evening
with: Coffee

Dislikes 
weight: 0.7
when: always

Likes 
weight: 0.8
when: morning
with: 
strawberries

Similar to 
weight: 0.5

Similar to 
weight: 0.8

Beyond weights, we have additional possibilities. 
Properties can be added to edges, going beyond the 
basics. Consider Bob: he likes coffee cream, but with 
added temporal and contextual details. For instance, he 
prefers this cream only in the evenings and exclusively 
with coffee. Similarly, he enjoys double cream, but 
exclusively with strawberries in the morning. These 
additional details specified on the edge are known as 
qualifiers, providing more information about the edge 
itself.



● For a given graph, you should know whether it has:

○ Self loops or not

○ Multigraph or not

○ Directed/undirected/mix

○ Edge labels (unique?)

○ Node labels (unique?)

○ Properties on edges (also called qualifiers)

■ Edge weights

● Any combination of these is possible

Graphs - summary
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We've observed the progression from a basic graph to a 
more complex property graph. When someone mentions 
using a graph, it's crucial to inquire about its 
characteristics. Is it a simple graph or does it permit 
features like self-loops, multigraph elements, directional 
aspects, or a blend of both? Are there labels for edges or 
nodes, and are they unique? Does it support edge 
properties, such as qualifiers, or even edge weights? These 
elements can be combined in various ways, offering a wide 
range of possibilities.



What is now a knowledge graph?
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The term knowledge graph does not have a crisp 
definition. See also https://arxiv.org/abs/2003.02320 

most commonly, people would classify both Property 
graphs and RDF graphs as knowledge graphs. Note that 
they are equivalent in expressive power. We can remodel 
the attributes on edges in another form into an RDF graph. 

https://arxiv.org/abs/2003.02320


|section|Introduction - Embeddings (1B)

|video|https://www.youtube.com/embed/Q70zKCbfKyk?
si=_pu9Q75GE9hgEApT|

In part B, we'll delve into embeddings, which are 
low-dimensional representations of objects. To better 
understand, let's break down this concept.

PART ONE - B: INTRODUCTION - EMBEDDINGS 



Embeddings are low dimensional representations of objects

● Low dimension: Much lower as the original size

● Representation: There is some meaning to it, a representation 

corresponds to something

● Objects: Words, sentences, images, audio, graphs, ….

Embeddings

28

Low dimension, in the context of embeddings, means a 
representation much smaller than the original size. For 
instance, an image embedding shouldn't be as large as the 
number of pixels but significantly smaller. These 
representations hold meaning, corresponding to 
real-world objects, which can range from words and 
sentences to images, audio, or even graphs, as we'll 
explore later on.



Embedding of images
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These are 
embeddings!

image source: https://cs231n.github.io/convolutional-networks/#fc

You've encountered various examples of embeddings, 
even if we didn't always use that term. Consider the left 
example, where an input image passes through 
convolutional filters, resulting in a lower-dimensional 
output—a form of embedding. Similarly, generative 
models like variational autoencoders generate points in a 
distribution space, each point serving as an embedding 
corresponding to a real-world image.



Embedding of images - navigable space

https://arxiv.org/
abs/1911.05627

Some embedded spaces exhibit a valuable structure that 
allows navigation. Moving in specific directions within this 
space holds meaningful changes in certain features of the 
object. For example, in images, navigating could transition 
from a smiling person to a non-smiling one or from a 
female to a male gender along a certain direction. When 
features disentangle in this way, they separate and 
correspond to distinct semantic features in the objects 
within the embedding space.



Distributional hypothesis

○ “You shall know a word by the company it keeps” Firth 1957

○ “If units of text have similar vectors in a text frequency matrix, then 

they tend to have similar meaning” Turney and Pantel (2010)

For example, the word ‘cat’ occurs often in the context of the word 

‘animal’, and so do words like ‘dog’ and ‘fish’. 

But, the word ‘loudspeaker’ hardly ever co-occurs with ‘animal’

Embeddings of words

31

Beyond images, we can also create word embeddings. In a 
machine learning context, one-hot encoding is common, 
but it has limitations. To address this, we often rely on the 
distributional hypothesis, which suggests that 
understanding a word involves its contextual associations. 
As FortH put it, "You shall know a word by the company it 
keeps." In modern terms, if words or text units share 
similar vectors in a frequency matrix, they likely have 
similar meanings.

For instance, words like 'cat,' 'dog,' and 'fish' frequently 
co-occur with 'animal' but rarely with 'loudspeaker.' This 
implies that 'cat,' 'dog,' and 'fish' are semantically similar, 
while 'loudspeaker' is distinct. Leveraging such contextual 
information allows us to create embeddings for words.



Distributional hypothesis

=> We can use context information to define embeddings for words.

One vector representation for each word

Generally, we can train them (see lecture on word2vec)

Embeddings of words
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To achieve this, we generate vector representations for 
each word, incorporating information about co-occurrence 
with other words. Training these embeddings is a common 
approach, and I recommend watching the lecture on 
word2vec for a detailed understanding.



Embedding of words - navigation
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https://samyzaf.com/ML/nlp/nl
p.html

Just as with images, we can navigate through space with 
words. Though the example may not be realistic, it 
conveys the concept. For instance, starting with the 
concept 'king,' navigating in a certain direction in space 
could lead to the word 'man.' Similarly, starting from 
'queen' and following a similar direction could lead to the 
embedding for 'woman.' This approach can extend to 
relationships like capitals to countries or transforming 
grammatical forms of words.



Classification, Regression, Clustering of nodes/edges/whole graph

Recommender systems (who likes what)

Document modeling

Entity and Document similarity (Use concepts from a graph)

Alignment of graphs (which nodes are similar?)

Link prediction and error detection

Linking text and semi-structured knowledge to graphs

Graphs - why use them as input to machine learning?

34

Before diving into graph embeddings, let's explore why we 
use them in machine learning. The primary goals include 
classification, regression, or clustering of nodes, edges, or 
the entire graph. For instance, in an Amazon product 
graph with missing labels, we might want to classify nodes, 
such as determining whether a product is poisonous or 
not. Regression could quantify toxicity levels. Other 
applications include recommender systems for product 
suggestions based on connections in the knowledge graph, 
document modeling to find similar documents through 
graph links, and aligning graphs to identify similarities 
between nodes. Additionally, tasks like link prediction and 
error detection aim to refine and correct the knowledge 
graph by predicting missing links and rectifying 
inaccuracies.



|section|Graph Embedding Techniques|

|video|https://www.youtube.com/embed/kClCCEheI3o?si
=-06mVNRgPbZDw5dn|

In this segment, we'll discuss graph embedding 
techniques. We've covered the concept of graphs and 
explored embeddings for various entities represented as 
graphs. Now, let's delve into techniques for embedding 
graphs specifically for machine learning purposes.

PART TWO: Graph Embedding Techniques
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The Challenge 

When embedding graphs, we actually have one big 
challenge.



Graphs - model mismatch
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When working with embeddings before, say with text or 
images, it was relatively easy to integrate them into a 
neural network. We had a one or two-dimensional 
structure, a linear format that smoothly fed into the neural 
network on the right.

However, this scenario changes when dealing with graphs. 
Graphs pose a challenge as they don't have a 
straightforward linear structure. Unlike text or images, 
graphs can't be neatly represented in a linear fashion. 
Therefore, feeding them into our network becomes a 
non-trivial task.

animation: 1



Graphs - model mismatch
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animation: 2



● Traditional ML on graphs

○ Often have problems with scalability

○ Often need manual feature engineering

■ Task Specific

What we skip

39

Traditionally, some machine learning methods for graphs, 
which we'll skip in this lecture, involve manual feature 
engineering. These methods attempt to manually extract 
specific features from the nodes in the graph and then 
input them into a machine learning algorithm. However, 
such approaches often encounter scalability issues and are 
task-specific. Due to these limitations, we won't delve 
deeper into them in this discussion, but it's worth noting 
that they do exist.



Embedding Knowledge Graphs in Vector Spaces

What we'll focus on instead is embedding knowledge graphs in a 
vector space. More precisely, we'll discuss embedding nodes in 
an effective space. The approach involves taking each node in 
the graph and creating a vector in a vector space for each node. 
These vectors are designed to be easily integrated into a 
machine learning algorithm.



Embedding - propositionalization 

✘ One vector for each entity
✗ Compatible with traditional data mining algorithms 

and tools
✘ Preserve the information
✘ Unsupervised

✗ task and dataset independent
✘ Efficient computation
✘ Low dimensional representation

What we're essentially doing is akin to something called 
propositionalization. This involves creating one vector for each 
entity or node in the graph, making it compatible with 
traditional data mining algorithms, other machine learning 
tools, or machine learning networks.

The primary goal of this embedding is to preserve information 
from the original graph. Ideally, we prefer an unsupervised 
approach for now, meaning the embeddings obtained are task 
and dataset independent. They originate from a specific graph 
but should be universally applicable.

As mentioned earlier, efficiency in computation is crucial. 
Whether dealing with a graph of 5 million or 10 million nodes, 
the embedding process should remain feasible. Additionally, we 
aim for a low-dimensional representation compared to the 
original graphs. While representing a graph with millions of 
nodes and connections in a standard vector format is possible, it 



consumes a significant amount of space. Our objective is to 
achieve a more compact, low-dimensional representation of the 
same information.



Two Major Visions

Preserve Topology
● Keep neighbours close 

together

● Europe - Germany
● Africa - Algeria

Preserve Similarity
● Keep similar nodes 

close together

● Europe - Africa
● Germany - Algeria

In methods to accomplish this, there are two major visions on 
how it should be done. In one approach, the focus is on 
preserving topology. The goal here is to maintain the proximity 
of neighbors in the graph. For instance, if you have neighbors 
like Europe and Germany connected by an edge in the graph, 
you'd want their embeddings to be close to each other in the 
embedded space. Similarly, Africa and Algeria, being connected, 
would also have close embeddings in that space.

On the other hand, a completely different view emphasizes 
preserving similarity in the embedded space. This means that 
similar nodes should be close together. In this scenario, you 
might have separate embeddings for Europe and Africa, and 
because they are both continents, they would be close together 
in the embedded space. Likewise, Germany and Algeria, both 
being large countries, would also have close embeddings in the 
same space.



These are the two major visions that exist for achieving graph 
embeddings.



Two Major Targets

Improve original data
● Knowledge Graph 

Completion
● Link Prediction
● Anomaly Detection

Downstream ML Tasks
● Classification/Regressio

n/Clustering/K-NN

● Then used as part of a 
larger process
○ QA/dialog systems
○ Translation
○ Image segmentation

When creating these embeddings, there are two major targets, 
each related to the tasks we discussed earlier. One significant 
group of tasks involves improving the original data, as we 
previously mentioned in the context of graph completion, link 
prediction, and anomaly detection.

The second set of targets revolves around downstream machine 
learning tasks. In this case, the goal is not directly tied to the 
graph itself. Instead, the embeddings are utilized for tasks that 
may include classification, clustering, or as part of a larger 
process. For instance, embeddings can be integrated into 
question-answer systems, dialog systems, translation systems, 
or even image segmentation. In the latter case, information 
from a knowledge graph can be used to make informed 
decisions, like recognizing that if the entity is a "cow," the 
background is more likely to be land rather than the sea, as 
cows are typically not found in the sea but rather in other 



environments.



How ?



Translational
● Interpret 

relations as 
translations of 
concept in the 
embedded 
space

Three Major Approaches for Propositionalization

Tensor Factorization 
● Make a 3D 

matrix and 
factorize it

● Reconstructing 
the original hints 
which edges 
were missing

Random Walk Based
● Use the context 

of a concept to 
embed it

● Use the 
distributional 
hypothesis

There are essentially three major approaches. The first set of 
approaches relies on a translational property, meaning that any 
relation existing in the knowledge graph is directly mapped to 
its counterpart in the embedded space. Essentially, if there's a 
certain relation in the graph, the goal is to replicate that relation 
in the embedded space.

The second group of methods is based on tensor factorization. 
This involves creating a 3D matrix of all the relations in the 
graph. The process includes starting at a particular node and 
navigating its context for embedding. This method incorporates 
the distributional hypothesis, which we previously discussed in 
the context of words and context.



Translational



XTransX - translational embedding
(Bordes et al. NIPS 2013 , Lin et al., AAAI'15)

✘ TransE
✘ TransH
✘ TransR
✘ CTransR
✘ PTransE 
✘ ...

New approaches continue to emerge, and essentially, they all 
come down to similar principles. Let's focus on the very first 
one, TransE, as the subsequent ones are essentially more 
complex versions of it.



TransE - translational embedding
(Bordes et al. NIPS 2013)

Source: Structured query construction via knowledge graph 
embedding,  2019, Ruijie Wang et al.

ll

The core idea of TransE is to consider each edge in a knowledge 
graph. In a large knowledge graph, nodes are connected by 
typed edges. Each edge is associated with a type 'e'.

The approach involves ensuring that if a certain type of edge 
exists in the knowledge graph, corresponding embeddings are 
created for the connected nodes. Additionally, an embedding is 
generated for the edge, representing a vector that serves as a 
translation from one node to another. If there are multiple 
triples with the same type, the same edge embedding is used.

The optimization goal is to align the head ('h') of the 
relationship, the edge, and the tail. Specifically, the aim is to 
minimize the distance between the sum of the embeddings of 
the head and the edge and the tail ('t'). The objective is to 
reduce the distance between these elements for all edges in the 
knowledge graph, making the sum of the head and edge 
embeddings as close as possible to the tail.



animation: 1



TransE - translational embedding
(Bordes et al. NIPS 2013)

Source: Structured query construction via knowledge graph 
embedding,  2019, Ruijie Wang et al.

ll

animation: 2



TransE - translational embedding
(Bordes et al. NIPS 2013)

Source: Structured query construction via knowledge graph 
embedding,  2019, Ruijie Wang et al.

ll

animation: 3



TransE - translational embedding
(Bordes et al. NIPS 2013)

✘ TransE
✗ Get h+l close to t

■ If (h,l,t) is a good triple
✗ Get h+l far from t

■ If (h,l,t) is a bad triple

The current approach has some limitations, as it primarily relies 
on positive information, which can lead to over-optimization 
and nonsensical results. To address this, instead of solely 
minimizing the distance as described earlier, the model should 
also penalize instances where incorrect triples or relations in the 
graph are in close proximity.

To implement this, a loss function is proposed. It involves 
considering valid triples and corresponding negative triples. 
Negative triples are essentially corrupted versions of real triples. 
This corruption entails randomly removing either the tail or the 
head of an edge and replacing it with another random entity. In 
essence, this introduces randomness into the graph, and the 
objective is to minimize the distance for valid triples while 
maximizing it for the negative ones. Additionally, a margin is 
introduced as part of this margin-based loss function.



In summary, the loss function is designed to simultaneously 
minimize the distance for valid triples and maximize it for 
corrupted (negative) triples, ensuring a balance between 
positive and negative information in the training process.



XTransX - translational embedding
(Bordes et al. NIPS 2013 , Lin et al., AAAI'15)

Conceptually 
Easy

Embedding 
Quality
The better the 
model, the 
less scalable
One Hop

✘ TransE
✘ TransH
✘ TransR
✘ CTransR
✘ PTransE 
✘ ...

The existing approach has limitations; it seems to work, but it 
tends to over-optimize for positive information, leading to 
nonsensical results. To address this, instead of solely minimizing 
the established distance, we also aim to penalize instances 
where incorrect triples or wrong relations in the graph are in 
close proximity. The written loss function includes valid triples 
and a set of negative triples. These negative triples are 
essentially corrupted versions of real triples. For each valid 
triple, we randomly alter either the end or the beginning of the 
edge, replacing it with something else. This introduces 
randomness into the graph, and the objective is to minimize the 
distance for valid triples while maximizing it for negative ones. 
Additionally, a margin is incorporated into this margin-based 
loss.



Matrix Factorization



RESCAL - Tensor Factorization 
( Nickel and Tresp,  ECML PKDD 2013)

A group of methods focuses on matrix factorization. One 
canonical example is Rascal, and there are various approaches. 
In this case, we examine a 3D matrix, denoted as x, representing 
our graph. Along one axis, it indicates possible relations (e.g., 
person likes milk or dislikes). Another axis represents entities, 
forming a 2D matrix.

Inside this 3D matrix, a '1' is placed for the jade entity and 
identity if relation k holds. This results in a sparse matrix, more 
compactly represented. The factorization decomposes it into 
three matrices.

Decomposing implies having three smaller matrices that, when 
multiplied, recreate the original or something close. Notably, 
the matrices on the left and right are essentially the same, with 
one being a twisted version. So, there are only two matrices: 
one fixed for the k relations and another for entity embeddings.

After decomposition, these matrices contain embeddings for all 



entities and, when multiplied, restore the original matrix. This 
process is akin to how encoders work. The smaller 
representation in the middle discards noise, anomalies, and 
mistakes in the graph, but also generalizes, predicting missing 
edges not in the original graph.



Tensor Factorization

Conceptually 
Easy
Good for link 
prediction
Usually 
Scalable
Multi hop

Explainable

Numeric 
attributes can 
be included 
somehow

Embedding 
Quality for ML 
tasks
The better the 
model, the 
less scalable

Tensor factorization is indeed powerful, conceptually 
straightforward, and effective for link relation tasks. Recent 
works indicate that even the method presented on the slide is 
highly potent. These methods are often scalable, leveraging 
powerful linear algebra operations, and capable of encoding 
multi-hop information to some extent. They are explainable, 
allowing for the understanding of why certain edges are 
predicted, and can incorporate numeric attributes, a feature 
lacking in translation-based methods.

However, there is a drawback. While tensor factorization excels 
in link prediction, its embedding quality tends to be less 
effective for downstream machine learning tasks. Despite the 
existence of stronger matrix factorization techniques, the 
scalability of these models diminishes with increased 
complexity.



Random Walk Based



Random Walk based methods
(Cochez,  et al. , ISWC '17,  Cochez, et al. WIMS'17, Ristoski et 
al. ISWC '16, Grover, Leskovec KDD '16)

● Use random walks to extract a context for 
each node

● Use this context as input to word embedding 
techniques

Now moving on to the last class, which is random walk-based 
methods. These methods leverage random walks to capture the 
context around a specific node. By initiating a random walk 
around a node, the context is extracted for that node. 
Subsequently, this context serves as an input to a word 
embedding technique. In essence, similar to the example where 
a cat occurs in the context of an animal, these methods utilize 
distributional hypothesis information to embed nodes.



Random Walk based methods - RDF2Vec and Node2Vec
(Cochez, et al. WIMS'17, Ristoski et al. ISWC '16, Grover, 
Leskovec KDD '16)

● Use random walks to create sequences on 
the graph.

● Feed these to word2vec

● Biasing the walks helps for specific cases
● Also some other graph kernels have been 

used

One approach is to initiate a sequence by starting from a node 
and creating a sequence. Here, you begin with a node, note its 
label, take a random step to the next node, record the edge 
followed and the label of the next node. Repeat this process to 
form a sequence, essentially creating a text-like structure. This 
sequence might resemble a sentence, such as "This person likes 
milk. Milk is similar to cheese, and cheese contains a high 
amount of fat."

Subsequently, these sequences can be input into a language 
model, like the Word2Vec model, to obtain embeddings for the 
words. These word embeddings correspond to concepts in the 
graph, effectively creating an embedding for the entire graph. 
Additional strategies include biasing the walks by assigning extra 
weight to certain directions instead of randomly jumping to 
locations. Graph kernels, although not elaborated here, are also 
employed as alternative methods for navigating the graph.



Global Embeddings - KGloVe
(Cochez, Ristoski, et al. , ISWC '17)

● Create co-occurrence stats using 
Personalized PageRank
○ All pairs PPR

● Apply the GloVe model
○ Similar things will have similar contexts
○ Optimizes for preserving analogy 

■ King - Man + Woman ≃ Queen
■ Berlin - Germany + Austria ≃ Vienna

○ Complete context captured

Another technique that relies on a similar distributional 
hypothesis is personalized PageRank. In this method, you 
examine each node in the graph and consider its neighborhood. 
The information about the proximity of these nodes is then fed 
into another type of language model, such as GloVe. The 
underlying idea is to apply the distributional hypothesis, 
asserting that similar nodes should have similar context in the 
graph, encompassing both immediate neighbors and those 
further away.

This language model, GloVe, is designed to optimize for 
preserving analogies. An example of this is the well-known 
analogy: "king - man + woman = queen." The advantage of this 
model over the random walk method discussed earlier is that it 
captures the complete context comprehensively. Instead of 
randomly walking in the hope of discovering context, it 
systematically encompasses the entire context at once.



Random walk based methods 
(Cochez,  et al. , ISWC '17,  Cochez, et al. WIMS'17, Ristoski et 
al. ISWC '16, Grover, Leskovec KDD '16)

Deals with large 
Graphs
Good 
Embeddings
Good Training 
Time

Likely or 
partially 
Explainable
Larger 
Context Used

Link 
Prediction

These methods come with several advantages. They excel in 
handling very large graphs by leveraging local neighborhoods 
effectively. Even for relatively small graphs, they provide 
reasonably good embeddings that prove useful for downstream 
machine learning tasks. The training process is generally robust.

However, explainability is a challenge. While some methods, like 
the one capturing context, offer partial explainability, there is 
still ongoing research needed in this area. Scalable methods 
could potentially address the issue of handling larger contexts.

One notable drawback is in link prediction. These methods tend 
to prioritize semantic similarity based on the distributional 
hypothesis, potentially overlooking the original graph's 
structure. For instance, continents might be grouped together in 
the embedded space, even if they weren't connected in the 
original graph.



|section|Graph Neural Networks|

|video|https://www.youtube.com/embed/ckAjM9XIdQs?
si=VpQ8vgYiK-nNEJBo|

Part three focuses on graph neural networks, relatively 
new architectures with increasingly exciting applications. 
Let's delve right in.

PART THREE: Graph Neural Networks



Graph Convolutional Networks (GCN: Kipf and Welling, 
ICLR'17, RGCN: Schlichtkrull et al. ESWC'18)

● How can we directly incorporate graph 
information into a machine learning 
algorithm?
○ Especially for end-to-end learning

Graph neural networks is now three to four years old. The 
fundamental question addressed is how to seamlessly integrate 
graph information into a machine learning algorithm, 
particularly for an end-to-end learning set.



Embedding 

In the preceding section, we discussed the embedding of nodes, 
where a two-step process was employed. Initially, portions of 
the graph were taken, and in a subsequent step, these 
embeddings were utilized in a downstream machine learning 
task. This method falls short of true end-to-end learning, as 
there's an intermediate step involving saving to a file. In case 
this information isn't retained, it poses challenges for 
subsequent tasks. Essentially, the final task cannot influence the 
creation of these embeddings. This approach has its drawbacks, 
notably that certain information deemed unimportant during 
the embedding process might be discarded, potentially 
impacting the application.

Conversely, with end-to-end learning, a different challenge 
arises. The embeddings generated in such a system may lack 
generalizability, being too specific to the task at hand. Unlike the 
two-step approach, they may not be transferable to other tasks.



Graph Convolutional Network - Merge the two worlds 

This process essentially involves merging the two realms – the 
world of graphs and that of neural networks. Initially distinct, 
these two worlds are now being fused together, creating 
intriguing networks that bridge the gap between them.



GCN - Example Graph

A B

C

D

Let's delve into an example known as the graph convolutional 
network, starting with a directed graph featuring four nodes 
connected by directed edges. Our aim is to construct a neural 
network in a specific manner. Follow along step by step as we 
build this network.

Initially, we create four nodes, representing the four nodes in 
our graph, arranged consecutively. This process is repeated, 
forming a second set of nodes, aligning with the original graph.

The next step involves incorporating all the connections present 
in the graph. If there's a connection from node A to B, we 
replicate that connection in the network being constructed. 
Importantly, this isn't a one-time replication; it's done multiple 
times, introducing multiple layers to the graph. Each layer 
essentially repeats the paths defined by the original graph's 
connections.
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GCN - Example Graph - 1 Layer
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GCN - Example Graph - 2 Layer
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GCN - Example Graph - 2 Layer with Connections
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GCN - Example Graph - Multi Layer
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GCN - Example Graph - Weights

A B

C
DA

B

C

D

A

B

C

D W

Each Edge is a 
neural network!

...

B D

To transform this into a graph convolutional network, we 
replace each edge in the constructed network with a small 
Multi-Layer Perceptron (MLP), essentially a compact neural 
network. Imagine having input nodes represented by T and B, 
where a small MLP is situated. This dense network contains 
multiple input nodes, a hidden layer, and an output node (D in 
this case). Each edge in the network is substituted with such an 
MLP.

Importantly, this modification means that the input to each 
node isn't just a vector with dimensions corresponding to A, P, 
C, and D, but rather each node takes a vector as input. For 
instance, the input to each node is a vector of dimension three, 
corresponding to the input dimension of the MLP. 
Consequently, the output for each node is also a vector, in this 
case, with a dimension of 2.

Furthermore, the weight matrices associated with these MLPs 



are shared among different edges. Although each edge has its 
set of weights, they are shared. This sharing of weights 
consolidates gradient information flowing back through 
different edges, contributing to a unified weight matrix.

The term "graph convolutional network" stems from this sharing 
of weight matrices, resembling the way filters are shared in a 
convolutional neural network. In a convolutional neural 
network, a filter matrix is convolved over different parts of an 
image. Similarly, in a graph convolutional network, the weight 
matrix is convolved over the total input, focusing on connected 
elements from the original graph.

Additionally, these networks typically include self-loops. This 
involves adding connections from each node to itself, creating a 
forward MLP-like structure at the next level in the network.

animation: 1



GCN - Example Graph - Weights
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The input to EACH 
Node is a vector!

...

animation: 2



GCN - Example Graph - Weights
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The output for 
EACH Node is a 
vector!

...
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GCN - Example Graph - Weights Sharing
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matrix is shared!
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GCN - Example Graph - Self  Loops

A B

C
DA

B

C

D

A

B

C

D

… and self-loops 
are added

...

animation: 5



In practise what was presented does not scale well

○ (Except with clever engineering)

In practise more normalization is needed

GCN - A different view - sparse matrix multiplications

75

Conceptually, this idea is appealing. However, the practical 
challenge lies in scalability. Implementation works to a 
certain extent, but not exceptionally well. Neural libraries, 
like Python Geometric, offer a workaround. These 
libraries, when applied to relevant assignments, 
demonstrate effective scaling due to their sophisticated 
message passing system. This implementation allows them 
to handle even sizable systems quite efficiently.

In addition to scalability issues, another practical concern 
arises— the need for increased normalization. While no 
conversation normalization has been applied thus far, it 
becomes essential in practical scenarios.



Reformulation:

H(l) is the l-th layer in the unrolled network (the l-th time-step)

A is the adjacency matrix, Ã is the same with also the diagonal set to 1

W(l) is a learnable weight matrix for layer l

GCN - A different view - sparse matrix multiplications

85

In the original implementation of graph convolutional 
networks, a different formulation was employed. Instead 
of using MLPs as previously described, the approach 
involved a more concise representation using matrices.

The computation for the l-th layer in the control network is 
outlined here. The network may consist of multiple layers, 
as indicated by the example with two layers and another 
with three layers. The computation for the l-th layer 
addresses the state of all nodes simultaneously. To achieve 
this, a weight matrix is applied universally. This matrix is 
shared across all nodes. The computation involves taking 
the previous state, representing what occurred in the 
previous layer at layer l, and multiplying it by an adjacency 
matrix.

The adjacency matrix is a crucial component, representing 
connections between entities. If two entities are 
connected, a 1 is placed in the corresponding matrix entry. 



For a multi-graph, the entry may scale with the number of 
connections. To account for self-loops, the diagonal in the 
adjacency matrix is set to 1, denoted by the tilde (~).

Multiplying the node in question by this modified adjacency 
matrix involves a specific technique. This process serves to scale 
and counteract the impact of having numerous neighbors. 
Without such compensation, a node with many neighbors could 
accumulate excessive weight from incoming messages, 
potentially distorting its state. Therefore, the multiplication is 
carefully designed to manage the influence of incoming 
messages and prevent the undesired inflation of node values.
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Reformulation:

H(l) is the l-th layer in the unrolled network (the l-th time-step)

A is the adjacency matrix, Ã is the same with also the diagonal set to 1

W(l) is a learnable weight matrix for layer l

GCN - A different view - sparse matrix multiplications

77

Used for normalization

animation: 2



That's it, we can include this 
structure into a larger network.

We've deconstructed the graph, introduced weights, and now 
we can integrate this structure into a larger, differentiable 
network. This network, being informed by graph-related 
information, produces output that can be further utilized.

As for the input to the Graph Convolutional Network (GCN), we 
didn't delve into it earlier. The input to the GCN needs to be a 
vector. There are several options for what you can feed into it. In 
the original paper, a common choice is a one-hot encoded 
vector. In this scenario, the first layer, the MLP acting as an 
embedding layer, treats the input as a trained embedding.

Alternatively, you could feed specific features of the node 
directly into the network. For instance, if the node represents a 
person, you might input attributes like the person's height and 
gender. These properties become part of the initial input and 
are considered throughout the network's operations. The 
resulting output can then be applied to the intended use case or 



application.



Node classification

○ What is the type of a node?

Regression of attributes in the graph

○ What is the price of the product?

Regression/classification on the complete graph (by combining the output)

● What is the boiling point of a molecule?

● Is this molecule poisonous? 

Examples of tasks

79

You can use it for various tasks. For instance, traditional 
tasks like node classification to determine a certain node's 
type. Regression of graph attributes allows you to predict, 
for example, the price of a product based on its 
relationships with others in the graph. Beyond 
node-specific tasks, you can also apply the model to the 
entire graph. This includes regression or classification 
tasks, such as predicting the boiling point of a molecule. 
Represent the molecule as a graph, pass it through the 
network, collect outputs, and use them for regression. 
Similarly, for binary classification tasks like determining if a 
molecule is poisonous, follow the same process of a 
forward pass, collect information, and make a prediction.



What if the graph has typed edges?

One unaddressed question is the scenario where the graph has 
typed edges. In the Graph Convolutional Network (GCN) we 
examined, the graph was considered with assumed connections 
and a single edge type.



RGCN

A B

C
DA

B

C

D

A

B

C

D W

The weight 
matrix is shared 
per edge type!

...

If the graph has typed edges, a straightforward approach is to 
create one weight matrix per edge type. For instance, consider a 
graph with green and purple edges. Instead of sharing weights 
across all edges, you have distinct weight matrices for each edge 
type — one for green edges and another for purple edges. In 
your actual network, this translates to having one weight matrix 
per edge type.

Additionally, when constructing these networks, reverse edges 
are often added to the graph. This is done because the direction 
of edges, as in the example 'I live in Amsterdam,' may not 
always align with the desired meaning for the application. By 
adding inverse relations and ensuring they account for edge 
types, the network can be improved. For instance, instead of 
having the edge 'I live in Amsterdam,' it might be more useful to 
include the edge 'Amsterdam has inhabited me.' This flexibility 
in considering both directions and different edge types 



contributes to enhancing the network's performance.

animation: 1



RGCN - Reverse edges
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In matrix multiplication form, the R-GCN is computed as follows:

-> this formulation is per node in the graph, not for all at once, as was 

done in the GCN formulation!

RGCN - formally

83

The current formulation differs from the previous one in 
that it is designed for each node in the graph individually. 
In contrast to the previous formulation, which focused on 
the entire unrolled graph, this new approach addresses 
each node independently. Let's proceed step by step to 
understand how this formulation is constructed.



In matrix multiplication form, the R-GCN is computed as follows:

h
i
(l) is the i-th node, in the l-th layer (=l-th message passing step)

W
r
(l) is the weight matrix for relation r at layer l (R is the set of all relations)

W
0
 is the weight matrix for the self loop

N
i
r is the set of neighbours of node i with respect to relation r

RGCN - formally

96

The first step is to compute the vector for a specific node, 
let's call it the "height" node. We are computing the state 
for the next stage, denoted as L plus one. To introduce 
non-linearity, we look at all possible relation types in the 
graph. For each relation type, there may be multiple nodes 
connected to the node h_i, forming the neighborhood of 
node i according to relation r. We focus on a specific 
relation r and examine its incoming edges to identify 
neighboring nodes.

For each of these connected nodes, we apply a traditional 
Multi-Layer Perceptron (MLP). This involves multiplying 
the current state of the node with weights and applying a 
non-linearity, as seen in the basic MLP operation. This step 
is crucial for updating the state of the node based on its 
relations with others.

Additionally, the formulation explicitly addresses 
self-loops. A specific weight matrix is assigned for 



self-loops, where the node connects to itself. In this case, 
instead of considering any neighbors, we solely utilize the 
information from the node itself.

Similar to the conventional Graph Convolutional Network (GCN), 
a normalization constant is introduced. This constant, denoted 
as one over c_i^r, represents the size of the neighborhood — 
the number of incoming neighbors with that specific relation. 
The purpose of this normalization is to ensure that the impact of 
neighbors is appropriately scaled based on the size of the 
neighborhood.

animation: 1



In matrix multiplication form, the R-GCN is computed as follows:

h
i
(l) is the i-th node, in the l-th layer (=l-th message passing step)

W
r
(l) is the weight matrix for relation r at layer l (R is the set of all relations)

W
0
 is the weight matrix for the self loop

N
i
r is the set of neighbours of node i with respect to relation r

RGCN - formally

85
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In matrix multiplication form, the R-GCN is computed as follows:

h
i
(l) is the i-th node, in the l-th layer (=l-th message passing step)

W
r
(l) is the weight matrix for relation r at layer l (R is the set of all relations)

W
0
 is the weight matrix for the self loop

N
i
r is the set of neighbours of node i with respect to relation r

RGCN - formally
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In matrix multiplication form, the R-GCN is computed as follows:

h
i
(l) is the i-th node, in the l-th layer (=l-th message passing step)

W
r
(l) is the weight matrix for relation r at layer l (R is the set of all relations)

W
0
 is the weight matrix for the self loop

N
i
r is the set of neighbours of node i with respect to relation r

RGCN - formally
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In matrix multiplication form, the R-GCN is computed as follows:

h
i
(l) is the i-th node, in the l-th layer (=l-th message passing step)

W
r
(l) is the weight matrix for relation r at layer l (R is the set of all relations)

W
0
 is the weight matrix for the self loop

N
i
r is the set of neighbours of node i with respect to relation r

RGCN - formally
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c
i, r

 is a normalization constant. 
Usually c

i,r
 is |N

i
r|

animation: 5



In general, we can do whatever we 
want in the unrolled view…

Absolutely, when dealing with relational graph convolutional 
networks, the key observation is the flexibility they offer in the 
unrolled view. As you work with the unrolled network, you can 
adapt and modify it to suit your specific requirements. For 
instance, if you introduce typed edges, you can efficiently 
address this by appropriately sharing weight matrices.

The crucial aspect is the translation from the conceptual 
unrolled view to an implementable form. It's about finding a 
practical way to bring the theoretical framework into a concrete 
implementation. This adaptability allows for customization 
based on the specific characteristics and needs of the graph 
structure under consideration.

animation: 1



In general, we can do whatever we 
want in the unrolled view...

and see whether we can implement 
it somehow more efficiently...

animation: 2



GCN - We can do whatever we want
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This neural network can be 
whatever architecture you 
have seen in this course!!!

Absolutely, the flexibility in graph neural networks allows for 
experimentation with various network architectures. Instead of 
sticking to Multi-Layer Perceptrons (MLPs) for each edge, you 
can explore different network types. For instance, you could 
replace an MLP with an LSTM or any other type of recurrent 
network architecture. Taking it further, you could even 
introduce convolutional neural networks (CNNs) into the mix. 
This would mean that one node's input could be an image, and 
the transformation during the edge operation would involve 
processing that image through the CNN.

The possibilities are wide open, and researchers often try out 
different approaches to see what works best for a given 
scenario. Additionally, the notion of shared weight matrices can 
also be explored in various ways. Instead of having shared 
weights all the way, you might experiment with multiple weight 
matrices, akin to having multiple filters in convolutional layers. 



The sharing of weights can extend not only between edges but 
also deeper into the network, allowing for reuse of weights at 
different levels. Advanced techniques, such as tying weights in 
specific ways, are also possible.

For further exploration, you can refer to the paper you linked, 
which provides a general overview of graph neural networks 
and offers insights into the diverse possibilities and strategies 
available in this field.
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GCN - Example Graph - Weights Sharing
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matrix is shared!
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You can share wheights in 
whatever way seems to 
make sense. 

See also Scarselli, Franco, et al. 
"The graph neural network 
model." IEEE Transactions on 
Neural Networks 20.1 (2008): 
61-80.
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|section|Query embedding|

|video|https://www.youtube.com/embed/7m07Pr7NiV0?
si=Ej9ZiYxlYcwaTvak|

We're still discussing an application, specifically an English 
application - query embedding. Daniel Dasa, my PhD 
student, presented this. We collaborated on a project 
applying this relation to graph convolutional networks to 
tackle a challenging problem. For details, see 
https://arxiv.org/abs/2002.02406 

PART FOUR: Application - Query embedding

https://arxiv.org/abs/2002.02406 

https://arxiv.org/abs/2002.02406
https://arxiv.org/abs/2002.02406


Knowledge graphs

https://commons.wikimedia.org/wiki/File:Moreno_Sociogram_1st_Grade.png

● Can model interactions and properties

○ Medicine, biology, world facts, ...

● In general, useful for

○ Storing facts about entities and 
relations

○ Answering questions about them 

We've already covered noise graphs. I'll keep this brief. 
Essentially, we have a knowledge graph, a graphical 
representation of information, such as in medicine. It's valuable 
for storing data, and our goal now is to answer questions about 
elements within this graph.

https://commons.wikimedia.org/wiki/File:Moreno_Sociogram_1st_Grade.png


Queries on knowledge graphs

● SPARQL queries operate on existing edges

○ Select all Projects, related to ML, on 
which Alice works

○ Answer: Proj1

Alice

Bob

VU
Proj1

ML

Proj2

For instance, consider this graph. It features a university with 
two individuals employed there and two associated projects. 
These projects involve the mentioned individuals, with one 
project focusing on machine learning. Now, we can utilize a 
language called SPARQL to answer queries. For instance, you can 
request all projects related to machine learning in which Alice is 
involved. The response is project one, indicating her 
involvement in a machine learning-related project. The question 
arises whether this answer is comprehensive. By examining the 
graph, project one seems complete. However, project two could 
also be a valid answer since both Alice and Bob contribute to 
both projects. While project one is explicitly about machine 
learning, project two might also be associated with machine 
learning due to the shared involvement of Alice and Bob.
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Queries on knowledge graphs

● SPARQL queries operate on existing edges

○ Select all Projects, related to ML, on 
which Alice works

○ Answer: Proj1

● Is Proj2 a likely answer?

Alice

Bob

VU
Proj1

ML

Proj2
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Link prediction on knowledge graphs

● Assign a vector in         to every node: an 
embedding

● The score of an edge is a function of the 
embeddings of entities involved

● Optimize:

○ Maximize scores of existing edges

○ Minimize scores of random edges

● Examples: TransE, DistMult, ComplEx

Alice

Bob

VU
Proj1

ML

Proj2

It's possible that there's a missing link between project two and 
machine learning – an oversight, a forgotten connection in the 
graph. To address this, we can apply techniques discussed 
earlier, such as link prediction. We mentioned methods like 
TransE, which aims to maximize scores for existing edges and 
minimize scores for random or incorrect edges, essentially 
predicting these absent links.



Link prediction for complex queries?

● Select all topics T,

● where T is related to a project P,

● and Alice and Bob work on P.

● Link prediction requires enumerating all 
possible T and P

○ Grows exponentially!

Alice

Bob

VU
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Proj2

This approach is not ideal because it involves a substantial 
amount of work. Let's break down the query a bit. Essentially, 
we want to select all topics (T) related to a project (P) where 
both Alice and Bob work. The challenge arises when using link 
prediction, as we need to enumerate all possible pairs of T and 
P. We must examine all pairs of nodes to identify missing links, 
and the number of missing links grows exponentially. This would 
not be an issue with a small graph, but the graph on the left is a 
subset of a much larger graph, like Wikidata. Applying this 
method to such extensive graphs becomes impractical for link 
prediction systems.
animation: 1



Link prediction for complex queries?

● Select all topics T,

● where T is related to a project P,

● and Alice and Bob work on P.

● Link prediction requires enumerating all 
possible T and P

○ Grows exponentially!

A subset of Wikidata

animation: 2



Queries are graphs too

● In particular, Basic Graph Patterns1

1 Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 query language. W3C recommendation 21(10) (2013)

Another insight from this paper is that the queries we've written 
down, such as the one at the top, can themselves be 
represented as graphs. Specifically, if we consider the basic 
graph pattern, which is a simple type of query, we can create 
such structures. In this case, we have topics (T), our target node 
or variable, where P is related. Correcting quickly, these topics 
relate to project P, and both Alice and Bob work on project P. 
The goal is to find all these topics.
animation: 1



Queries are graphs too

● In particular, Basic Graph Patterns1

● Select all topics T where

○ T is related to project P

○ Alice works on P and Bob works on P

1 Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 query language. W3C recommendation 21(10) (2013)

P

Bob

Alice

T      (target node)

animation: 2



Embedding queries

ex:Author

“Bob”

?T

Alice

Bob

VU
Proj1

ML

Proj2

Query Encoder

rdf:type

ex:wrote

:S1 hasSubject :Bob .
:S1 hasPredictate rdf:type .
:S1 hasObject ex:author .



Embedding queries
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Query Encoder

In this study, our approach involves taking a graph-formatted 
query and passing it through a query encoder. While we'll 
explore the intricacies of its functioning shortly, you can 
envision it as a Graph Convolutional Network (GCN). As 
mentioned earlier, each node in this network corresponds to an 
embedding representing entities in the graph. These 
embeddings are trainable, starting with random initialization 
and then refined during training.
For instance, in the given query mentioning Alice and Bob, we 
input their embeddings directly into the graph convolutional 
network under construction. This process encodes the query, 
yielding an output within the same embedding space as the 
entities. Within this space, we conduct a nearest neighbor 
search using the embedded query. We identify the nearest 
entity in that space and designate it as the answer. The 
noteworthy aspect here is that these vectors serve both as the 



initial input to the network and as the space for searching for 
answers, showcasing a streamlined and efficient process.
animation: 1



Embedding queries
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Embedding queries
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Embedding queries
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Bob
● Graph Convolutional Networks operate on 

graphs, by applying message passing:
○ Messages are vectors

● Message-Passing Query Embedding:

○ Learnable parameters include both 
entity and variable node embeddings

○ Propagate messages across the BGP

PAlice

T      (target node)

The query encoder

The query encoder operates through Relational Graph 
Convolutional Networks (RGCNs). The edges in this network are 
typed, and they facilitate the passage of messages. In the 
approach termed "message-passing query embedding," we 
learn embeddings and weights on the edges within our RGCN. 
Both the entity embeddings and the weight matrices for the 
variable nodes (P and D) are trainable parameters. Although P 
and D aren't actual entities, we still learn embeddings for them.
After the initialization phase, illustrated on the right, the 
network is structured. It starts with embeddings for entities and 
variables. The propagation of the network then begins, akin to 
what we observed with Relational Graph Convolutional 
Networks. However, the result is embeddings for each node, not 
a single embedding, as our objective requires.
In this network, we obtain one encoded representation for each 
node, which deviates from our intended outcome, as indicated 



in the overview.



● Graph Convolutional Networks operate on 
graphs, by applying message passing:
○ Messages are vectors

● Message-Passing Query Embedding:

○ Learnable parameters include both 
entity and variable node embeddings

○ Propagate messages across the BGP

The query encoder

Bob

PAlice

T      (target node)

The consolidation into a smaller form involves propagating the 
embeddings and then combining them into a single query 
embedding. This is crucial because, currently, there's an 
embedding for each element instead of an overall query embed. 
The process includes mapping all these final states into one 
embedding for the query, adhering to certain criteria.
We aim for permutation invariance, implying that the graph's 
shape or the order of its nodes shouldn't impact the result. The 
order in which you take these nodes or whether you consider 
them all at once should be immaterial; they are essentially 
equivalent in their representation.
One straightforward approach is to select the target node's 
embedding as our query embed, effectively ignoring the 
embeddings of the other nodes. This simple method assumes 
that the target node's embedding alone is sufficient for our 
query representation, and we can consider the process 



complete at this point.
animation: 1



● Graph Convolutional Networks operate on 
graphs, by applying message passing:
○ Messages are vectors

● Message-Passing Query Embedding:

○ Learnable parameters include both 
entity and variable node embeddings

○ Propagate messages across the BGP
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Query embedding

● Graph Convolutional Networks operate on 
graphs, by applying message passing:
○ Messages are vectors

● Message-Passing Query Embedding:

○ Learnable parameters include both 
entity and variable node embeddings

○ Propagate messages across the BGP

○ After k steps of MP, map all node 
messages to a single query embedding

●

The query encoder

Bob

PAlice

T      (target node)

animation: 3



Graph aggregation functions

● Map node messages to query embedding

● Ideally permutation invariant

● Can contain learnable parameters for increased flexibility

● Simplest form: message at the target node

Query embedding

Bob

PAlice

T      (target node)

animation: 4



● Sum

● Max

● MLP

● CMLP

● TMLP

Graph aggregation functions

Now, we can perform more complex operations. We take these 
four embeddings - one, two, three, four. Although one color has 
changed, these remain the same entities. We aggregate them 
into a single vector using various methods. You can sum them, 
apply max pooling, use a large MLP on all four, compressing 
them into a unified representation. There are a few more 
variations of this process.



Why is this a good idea?

● Query encoded in embedding space before matching

● Answering is then O(n) instead of exponential

● MPQE encodes arbitrary queries

Query embedding

Bob

PAlice

T      (target node)

The nice thing is that our approach makes query answering 
highly scalable. We have an efficient query encoder, and its 
complexity is mainly tied to the size of the graph. The number of 
message passing steps depends on the graph's size, and the 
messages forwarded each step match the edges in the query. 
Since queries are typically small, it works well.
The most costly part is the nearest neighbor search, but it's 
linear as we don't use any approximation – just a linear search 
of our space. This is advantageous because in a standard query 
answering system, especially with link prediction, this step 
would be exponential. With our method, it's feasible in a 
reasonable time. Another cool aspect of MPQE is its ability to 
encode arbitrary queries, not just simple shapes or lines.



Evaluation

● Queries obtained from KG:

○ Sample subgraphs

○ Replace some entities by variables
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So, now onto the evaluation. We start with the original graph, 
and to assess its capabilities, we generate numerous queries. 
These queries cover a range of problem types, and our system 
demonstrates proficiency in solving them. Here's how we 
conduct the evaluation: we sample subgraphs from the main 
graph and replace some entities with variables. For instance, we 
have "PT" originating from a subgraph, and we replace it with a 
variable. The same goes for "Alice" and "Bob BT," each from 
their respective subgraphs.
It's crucial to note that during evaluation, when we extract 
these subgraphs, we go a step further in training the system by 
removing even more edges. For example, if the evaluation query 
involves a particular edge, say this one, we remove its 
corresponding edge in the graph before any learning takes 
place. This approach prevents potential issues, ensuring there's 
no leakage from the test set to the training set.



Evaluation

● Queries for training obtained after dropping some edges

● 4 knowledge graphs

Regarding variables, like "PT," we extract subgraphs and replace 
them with variables. For instance, we have "PT" from this 
subgraph, and we can perform a similar replacement within that 
variable. This process continues, allowing us to extract various 
subgroups.
It's important to note that during the extraction of these 
subgraphs for evaluation, we go a step further in training the 
system by removing even more edges. For example, if a query 
involves a specific edge, such as this one, we eliminate its 
corresponding edge in the graph before any learning occurs. 
This practice prevents potential issues, ensuring there's no 
leakage from the test set to the training set.
Now, onto training. After removing some edges, as mentioned 
earlier, we evaluate the system on four different graphs. They 
aren't extremely large, ranging from about 2,000 to 300,000 
entities and up to 8 million relations.



Evaluation

● Crucial question: how does a method generalize to unseen queries?

● Two scenarios:

○ Train on all 7 structures, evaluate on same structures

○ Train on 1-chain queries only, evaluate on all 7 structures

Essentially, what we did was select specific query structures, 
which have been used in previous literature and cover a broad 
range of cases. These structures encompass every scenario with 
up to three hops in the query, meaning three edges in the 
graph. A noteworthy aspect is our approach to training. Unlike 
previous methods that use all seven structures for training and 
evaluation, we took an exciting approach.
Instead of training on all seven structures, we trained on the 
simplest case – a single chain query with just one hop. The 
excitement lies in the prospect that if this approach proves 
effective, starting from training on very basic queries, we can 
then successfully evaluate and perform well on more complex 
query structures. This suggests the potential scalability of our 
method to handle all possible curve structures.



Results - all query types

● We obtain competitive performance with previous work.

● Message-passing alone(RGCN-TM) is an effective mechanism

We observe that our system performs reasonably well across all 
query types, either outperforming or at least matching the 
capabilities of existing systems.



Results - 1-chain queries

● By training for link prediction only, our method generalizes to other 6, more complex query structures 
that were not seen during training

Even more exciting is the aspect of one-chain queries, where we 
train on a single hop and then evaluate on all other structures. 
What stands out is our system's exceptional performance, 
consistently outperforming existing systems, except in specific 
types of graphs. This is particularly thrilling because it 
demonstrates that we can train our system on straightforward 
one-hop scenarios and still achieve high performance on queries 
that extend much further.



Learned representations

● Compared to previous methods (right), our method (left) learns embeddings that cluster according to 
the type of the entity.

● This points to future applications in learning better embeddings for KGs

Another noteworthy aspect of this method is the type of 
representations it learns. In comparison to a previous method 
addressing the same problem, if we visualize the embedded 
space with colored representations by type – for instance, 
purple denoting all the projects – you'll notice some clustering 
but not a clear separation.
In contrast, our method exhibits a more distinctive feature in 
the embedded space. You can observe clear separations – a 
distinct cluster for people, another for projects, and yet another 
for topics. This implies that our space captures more semantic 
information, making it more navigable, as we discussed in 
earlier sections.



Using R-GCN for Query embedding - Conclusion

● The proposed architecture is simple and learns entity and type embeddings useful for solving the 

task

● Our method allows encoding a general set of queries defined in terms of BGPs, by learning entity 

and variable embeddings and not constraining the query structure

● The message passing mechanism across the BGP exhibits superior generalization than previous 

methods

● Embeddings successfully capture the notion of entity types without supervision

In conclusion, our architecture, based on RGCNs, is remarkably 
simple yet effective. It learns embeddings for entities and types, 
proving valuable in addressing the query answering task. The 
versatility of our approach allows it to handle questions for any 
Property Graph Pattern (PGP). The graph-shaped queries, 
coupled with the message-passing algorithm, exhibit superior 
generalization. Notably, it can be trained on one-hop queries 
and seamlessly extend its capabilities to handle much larger 
ones.
As illustrated in the visualizations, our method can capture the 
notion of entity types without relying on specific supervision, 
apart from the signal derived from the original queries. This 
highlights the effectiveness and adaptability of our approach in 
learning meaningful representations from the data.
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Okay, so this concludes the example or application of 
RGCN. Throughout this series of lectures, we started with 
an introduction, exploring the reasons behind working 
with graphs and understanding what embeddings entail. 
Subsequently, we delved into graph embedding 
techniques, both traditional approaches that involve 
embedding nodes for downstream machine learning tasks 
and modern graph neural networks designed for 
end-to-end learning systems. Finally, we examined the 
practical application of relational graph convolutional 
networks, specifically in the context of query embedding. 
Thank you for your attention.


