
Shujian Yu, Jakub Tomczak
Deep Learning

 Lecture 6: Unsupervised Representation
 Learning and Generative Models

dlvu.github.io

Hello, everyone. Let's begin the lecture of today. I'm Shujian Yu, a
professor in the Department of Computer Science, and in the Deep
Learning course. I will be responsible for the introduction of the
generative models, recognition learning, as well as the last two
lectures about generalization and adaptability. So, let's begin our
first lecture, which is about unsupervised representation learning
and generative models.

These slides are based on earlier lectures from Jakub Tomczak.

https://www.tue.nl/en/research/researchers/jakub-tomczak/

part 1: Why generative modeling and unsupervised learning

part 2: Autoencoders

part 3: Variational autoencoders

THE PLAN

2

This lecture consists of three parts. In the first, we will briefly
introduce the motivation: why we need to do the generating
modeling and what's the goal of unsupervised repetition learning.
Then, we will briefly introduce a general idea about the auto
encoder, the naive auto encoder, and show some of its limitations.
Finally, in the last part, we move to the main content of this
lecture. We will carefully introduce a very popular departure with
the name Variational Auto Encoder.

|section|Why Generative Modeling|
|video|https://|

So, we first give two examples to show why generative models are
important in modern AI applications and also in lots of the deep
learning problems. I think in your last lecture, you have already
learned some basic idea about discriminative models, especially
the convolutional neural networks.

PART ONE: WHY GENERATIVE MODELING AND UNSUPERVISED LEARNING

You have also learned the basic idea that if I give you the image,
how to do the classification with concatenating different
convolution layers. Sometimes, the deep layer, the convolution
neural net, can be very, very deep inside the model. An example of
this is the model: ResNet-50, which is a very popular pre-trained
convolutional neural network consisting of 50 layers.

We learn a neural network to classify images (with ResNet-50) :

IS GENERATIVE MODELING IMPORTANT?

4

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016. https://arxiv.org/abs/1512.03385

https://arxiv.org/abs/1512.03385

Now suppose I give you the image of a hog (this is a type of pig) that will be
used for prediction. First we will train a ResNet-50 algorithm on a dataset of
images of pigs, which after training performs really well. This network predicts
that this image of a pig belongs to the class hog with 99% confidence. At first it
might seem that the model is very precise in its prediction, however the
algorithm does not have a clear understanding of what a pig is.

animation: 1

We learn a neural network to classify images (with ResNet-50):

IS GENERATIVE MODELING IMPORTANT?

5

Example from: https://adversarial-ml-tutorial.org/introduction/

https://adversarial-ml-tutorial.org/introduction/

animation: 2

We learn a neural network to classify images (with ResNet-50):

IS GENERATIVE MODELING IMPORTANT?

6

p(hog|x)=0.99
...

We can test this idea by adding noise to the image of the hog, this will trick
the network into making a different prediction. The algorithm will a different
class since the noise activates different neurons. From a human perspective
this is just a noisy image of a hog, while the ResNet-50 does not understand
this semantic difference.

animation: 1

We learn a neural network to classify images (with ResNet-50):

IS GENERATIVE MODELING IMPORTANT?

7

+

p(hog|x)=0.99
...

=

noise

animation: 2

We learn a neural network to classify images (with ResNet-50):

IS GENERATIVE MODELING IMPORTANT?

8

p(hog|x)=0.01
…
p(airliner|x)=0.97

=+

noise
p(hog|x)=0.99
...

animation: 3

We learn a neural network to classify images (with ResNet-50):

IS GENERATIVE MODELING IMPORTANT?

9

p(hog|x)=0.01
…
p(airliner|x)=0.97

=+

noise
p(hog|x)=0.99
...

There is no semantic understanding of images.

This example shows us that it can be a good discriminative model, but the
network does not actually have a semantic understanding of the content of
the image. These models require some form of understanding of uncertainty,
the noise example. In short, a model would need to understand basic parts of
reality to make proper predictions. A possible solution for this problem would
be generative modelling.

animation: 1

This simple example shows that:

• A discriminative model is (probably) not enough.

• We need a notion of uncertainty.

• We need to understand the reality.

IS GENERATIVE MODELING IMPORTANT?

1
0

animation: 2

This simple example shows that:

• A discriminative model is (probably) not enough.

• We need a notion of uncertainty.

• We need to understand the reality.

A possible solution is generative modeling.

IS GENERATIVE MODELING IMPORTANT?

11

To further dive into generative modelling, let's look at this example. Suppose
we have another model that has the task to discriminate between a horse and
a cat. In order to do this, we need a lot of samples from a cat and a horse.
Now after training this model it will classify all images on the top right of the
hyperplane as a cat and the bottom left as a horse. In contrast to generative
models aim to model the entire distribution of the input data, including the
relationship between the input data and their labels. By estimating the joint
distribution of input samples (X) and their labels (Y), generative models can
potentially provide a more comprehensive understanding of the data. If the
generative model can accurately capture the distribution of input data and the
generative probability of the input samples (PX), it could be used to identify
outlying data that doesn't belong to any of the trained classes.

Now if we were to introduce a new type of data, a panda for example, the
discriminative model would classify this somewhere on the hyperplane. In our
case it would fall under the classification of horses and would thus be
classified as such. In contrast generative models by their use of joint
probabilities have a good estimation of classifying the panda as an outlier,
thus giving it a low classification for a cat and low for a horse.

animation: 1

IS GENERATIVE MODELING IMPORTANT?

12

animation: 2

IS GENERATIVE MODELING IMPORTANT?

13

animation: 3

IS GENERATIVE MODELING IMPORTANT?

14

animation: 4

IS GENERATIVE MODELING IMPORTANT?

15

new data

animation: 5

IS GENERATIVE MODELING IMPORTANT?

16

High probability
of a horse.
=
Highly probable
decision!

new data

animation: 6

IS GENERATIVE MODELING IMPORTANT?

17

High probability
of a horse.
=
Highly probable
decision!

High probability of
a horse.
x
Low probability of
the object
=
Uncertain
decision!

new data

animation: 7

IS GENERATIVE MODELING IMPORTANT?

18

High probability
of a horse.
=
Highly probable
decision!

High probability of
a horse.
x
Low probability of
the object
=
Uncertain
decision!

new data

Generative modelling is not only limited to images. It can be used to
synthesize or generate different kinds of videos or audios. Good generative
models can generate different types of audios for example speech or music.

WHERE DO WE USE DEEP GENERATIVE MODELING?

Generate images

Child, Rewon. "Very deep vaes generalize autoregressive models and can outperform them on images." arXiv preprint
arXiv:2011.10650 (2020). https://github.com/openai/vdvae

https://github.com/openai/vdvae

Not only is generative modelling applicable in these more audio visual forms,
also it can be used in chemistry. For example using the encoder decoder
structure to generate new molecule sequences.

WHERE DO WE USE DEEP GENERATIVE MODELING?

Generate molecules

Lim, Jaechang, et al. "Molecular generative model based on conditional variational autoencoder for de novo molecular
design." Journal of cheminformatics 10.1 (2018): 1-9.
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0286-7

https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0286-7

Another example from the medical domain, fMRI signals. This is especially
useful to generate synthetic dataset for further medical research. Medical
data is very privacy sensitive and are difficult to use, while if we were able to
use synthetic data that closely resembles the real data we can do much more
extensive research without breaching privacy.

WHERE DO WE USE DEEP GENERATIVE MODELING?

Generate medical data (e.g., fMRI signals)

real fMRI signal generated fMRI signal

Li, Hongming, Shujian Yu, and Jose Principe. "Causal recurrent variational autoencoder for medical time series
generation." arXiv preprint arXiv:2301.06574 (2023). https://github.com/hongmingli1995/CR-VAE

https://github.com/hongmingli1995/CR-VAE

We've discussed the significance of generative models and provided examples
illustrating why they are essential. The primary goal is to model the input and
estimate P(X). X, representing inputs like images or signals, typically exists in a
high-dimensional space. Modeling in such a space is inherently difficult,
posing challenges related to the curse of dimensionality. In machine learning,
as the dimensionality of input data increases, the difficulty in modeling X also
significantly increases. This poses a fundamental challenge in effectively
capturing and understanding high-dimensional data. Consider two images of
cats, where the only difference is a black dot on one of them. Even for
humans, discerning this difference requires careful observation. Asking
machine learning models to perform this seemingly simple task highlights the
challenges. Emphasize that a single pixel, like the black dot in the example,
may not provide sufficient information. This limitation contributes to the
complexity of modeling high-dimensional spaces.

animation: 1

Modeling in high-dimensional spaces is difficult.

GENERATIVE MODELING IN HIGH-DIM

22

animation: 2

Modeling in high-dimensional spaces is difficult.

GENERATIVE MODELING IN HIGH-DIM

23

To effectively capture information provided by single pixels, it's crucial to
model the dependencies between each pixel and its neighboring pixels. The
example of the black dot illustrates the need for understanding how pixels
interact with one another. Suppose we have n pixels, denoted as X1, X2, ..., Xn.
In datasets like MNIST, each image has a high dimension, for instance, 784
pixels. The goal is to model the joint probability P(X1 to Xn) to distinguish
between images. Different pixels exhibit various forms of dependency. For
instance, X1 and X2 may be related, and X1 and X7 may have a different type
of relationship. All pixels collectively form a dependence graph, where
modeling the dependencies is crucial for accurate joint probability estimation.
Despite the general idea making sense in theory, practical implementation is
highly challenging. Evaluating precise dependencies between different pixels is
difficult. The sheer number of pixels (e.g., hundreds of thousands) implies the
need to model an extensive set of dependence relationships, presenting a
formidable challenge. Evaluating precise dependencies is challenging.
Hundreds of thousands of pixels complicate the task of modeling and
integrating all these dependencies into a joint probability model. While the
general concept is sound, its practical implementation remains a significant
hurdle.

animation: 1

Modeling in high-dimensional spaces is difficult.

Modeling all dependencies among pixels:

GENERATIVE MODELING IN HIGH-DIM

24

Markov random field. https://ermongroup.github.io/cs228-notes/representation/undirected/

https://ermongroup.github.io/cs228-notes/representation/undirected/

animation: 2

Modeling in high-dimensional spaces is difficult.

Modeling all dependencies among pixels:

GENERATIVE MODELING IN HIGH-DIM

25

problematic

animation: 3

Modeling in high-dimensional spaces is difficult.

Modeling all dependencies among pixels:

A possible solution: Latent Variable Models or Latent

Representation Learning

GENERATIVE MODELING IN HIGH-DIM

26

problematic

To simplify modeling P(X), a central topic introduced is latent variable models,
also known as latent representations. Instead of explicitly modeling P(X), the
idea is to learn hidden factors (latent variables, Z) that generate the observed
variable X (e.g., an image). The assumption is that X is generated by a few
independent hidden factors (latent variables). For instance, in an image of a
face, latent factors could control gender, eye color, glasses, and pose. Although
more latent factors can be assumed for improved modeling capacity, the key is
not to explicitly model P(X) but to assume it's generated by independent
latent factors (Z1, Z2, Z3, Z4). Latent variable models define a joint distribution
of P(X) and Z. By Bayes' rule, P(X, Z) equals the conditional probability of P(X)
given Z multiplied by the marginal distribution of P(Z). Learning both P(Z) and
P(X|Z) allows effective modeling of P(X). While latent variable models simplify
the problem, a new challenge arises: how to learn the hidden factors (Z) when
only the input (X) is known. The inference of latent factors becomes a key
question in latent variable models.

LATENT VARIATIONAL MODELS: DEFINITION

27

animation: 1

animation: 2

LATENT VARIATIONAL MODELS: DEFINITION

28

gender eye

color
glass pose

|section|Autoencoders|
|video|https://www.youtube.com/embed/0HfQ_OYlCjw?si=20-jvmOzNa

1h792A|

The first architecture we want to introduce is the autoencoder. The general
idea is prevalent in modern applications and deep learning architectures.
However, the autoencoder differs significantly from conventional structures
like convolutional neural networks or multilayer perceptrons taught in
previous lectures.

PART TWO: AUTOENCODERS

The autoencoder, an unsupervised learning architecture, differs from previous
models like convolutional neural networks and multilayer perceptrons that
require labeled data. In autoencoders, the absence of label information for
samples is a defining feature.

The architecture comprises two networks: the encoder and the decoder. The
encoder learns hidden factors (latent variables, Z) from input data, projecting
observations from a high-dimensional space to a low-dimensional space using
a neural network with parameters phi. Mathematically, Z equals G phi of X.

Conversely, the decoder aims to reconstruct the input data, minimizing
distortion. It operates in the bottleneck layer, using the low-dimensional
representation (Z) to reconstruct the original data (X). The goal is to achieve
precise reconstruction, minimizing the Reconstruction Error.

For instance, in cell image processing, where the original image may be in a
high-dimensional space (D Big D), the autoencoder projects it into a
lower-dimensional space (e.g., one, two, or four dimensions). The aim is to
reconstruct the image accurately using the reduced-dimensional
representation, despite inevitable information loss in the reconstruction
process. This unsupervised approach allows for neural network design without
the need for labeled data.

Learn a compressed representation of the input data x.

We have two functions (usually neural networks)

Train using a reconstruction loss

AUTOENCODER AND COMPRESSION

30

decoder net
latent
codeencoder net

x

The fundamental concept is to have both an encoder and a decoder. We
project high-dimensional observations into a low-dimensional space and aim
to reconstruct the input using this low-dimensional code. Instead of using
complex neural networks, we can simplify by employing linear mappings. For
instance, assuming Z equals W transpose of X and reconstructing X hat as W
times V.

By minimizing the Reconstruction Error with a linear encoder and decoder, it
can be proven that the solution aligns with Principal Component Analysis
(PCA). PCA is a widely used method for dimensionality reduction. Hence,
autoencoders with linear mappings, in essence, encompass PCA as a special
case. However, the strength of autoencoders lies in introducing non-linearity,
offering a more potent method for learning effective codes compared to PCA.

AUTOENCODER AND COMPRESSION

31

decoder net
latent
codeencoder net

x

Utilizing the MNIST dataset, we trained the naive autoencoder and visualized
the latent code in a two-dimensional space. Each point corresponds to the
latent code of an image, with colors representing different classes (digits zero
to nine). While the autoencoder seems to capture useful patterns, there are
limitations.

Latent representations exhibit gaps, making it challenging to infer their
physical meaning. Additionally, separability issues arise, particularly in certain
regions where images from different digit categories may project into the
same space. Although the autoencoder provides some separability, it's not
perfect.

Interpreting the latent space proves difficult. Learning only two dimensions
(Z1 and Z2), we struggle to discern the physical meaning of these dimensions.
For instance, Z1 may encode information about rotation, but it's challenging to
verify.

Crucially, the naive autoencoder is not a generative model; it excels in
reconstruction but cannot generate new data. It can precisely reconstruct
training examples but lacks the capability to generate novel content, such as
new faces or music.

While the general idea motivates modern AI architectures, the naive
autoencoder has limitations, especially regarding interpretability, separability,
and generative capabilities. These challenges led to the development of more
advanced generative models.

AUTOENCODER AND COMPRESSION

33 Image taken from A. Glassner, Deep Learning, Vol. 2: From Basics to Practice

The naive autoencoder or principal component analysis falls short as a
generative model. To precisely achieve generative capabilities, we need to
probabilistically model at least two distributions: the marginal distribution P(Z)
and the conditional distribution P(X|Z). Understanding these distributions
constitutes a generative model.

Suppose we know the shape of P(Z) and the probability of P(X|Z). In that case,
we can randomly sample a new Z from P(Z) and generate new data by
mapping Z into the observation space. This process allows us to generate an
arbitrary number of new data points. Typically, Z resides in a low-dimensional
space, and the real data X is in a higher-dimensional space. By modeling both
distributions, we can generate an abundance of new data.

A popular approach in neural network learning is maximizing the
log-likelihood. The objective is to make the generated data (P(X)) as realistic as
possible compared to real data. By applying Bayes' rule, we know that P(X)
equals the integral of P(X|Z) and P(Z), requiring integration over Z.

Inspired by this, modern generative models parameterize and train both
distributions. The challenge lies in modeling and training these distributions
effectively and handling the integration involved in the generative process.
Various approaches have been developed to address this, leading to the
creation of diverse modern generative models. The key challenge remains in
modeling and training these distributions while effectively capturing the
complexities present in the data.

Generative process:

Log of marginal distribution:

How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES

35

Z: 2D
X: 3D

animation: 1

animation: 2

Generative process:

Log of marginal distribution:

How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES

34

Z: 2D
X: 3D

animation: 3

Generative process:

Log of marginal distribution:

How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES

35

animation: 4

Generative process:

Log of marginal distribution:

How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES

36

animation: 5

Generative process:

Log of marginal distribution:

How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES

37

animation: 6

Generative process:

Log of marginal distribution:

How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES

38

animation: 7

Generative process:

The log-likelihood function:

GENERATIVE MODELING WITH LATENT VARIABLES

39

animation: 8

Generative process:

The log-likelihood function:

How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES

40

Let's simplify and assume that the marginal distribution P(Z) follows a
standard Gaussian distribution, and the conditional distribution P(X|Z) is
parameterized by a linear transformation. The linear mapping assumes Z is in
a dimensional space, and X is in a big D-dimensional space. The goal is to
model both P(Z) and P(X|Z) to ultimately understand how to model P(X).

Under these assumptions, modeling P(Z) is straightforward since it follows a
standard Gaussian distribution. For P(X|Z), we assume a linear transformation
with potential biases and noise following a Gaussian distribution with
standard deviation Sigma.

Given these assumptions, we can derive that the conditional distribution
P(X|Z) also follows a Gaussian distribution due to the linearity of the
transformation. The illustration is as follows: P(Z) follows a standard Gaussian
distribution, and by sampling a random point Z hat from this distribution and
using the linear mapping, we can map Z hat into the space of X. The resulting
P(X|Z) follows a Gaussian distribution centered at WZ + mu, with variance
controlled by the parameter Sigma.

In essence, each point in the latent space can be projected into the input
space, resulting in an X that follows a distribution in the input space. The
decoder, parameterized by the row of the decoder, plays the role of PX given
Z, aiming to generate or reconstruct X from the latent space.

animation: 1

LINEAR LATENT VARIABLE MODELS

41

animation: 2

LINEAR LATENT VARIABLE MODELS

42

animation: 3

LINEAR LATENT VARIABLE MODELS

43

animation: 4

LINEAR LATENT VARIABLE MODELS

44 Generative process

Due to the assumption of a linear mapping (T) and the fact that the marginal
distribution P(Z) follows a Gaussian distribution, we can expect that P(X) is
also Gaussian. The sum of the transformation of Gaussians results in a
Gaussian distribution. Through mathematical derivations, particularly
leveraging techniques from materials such as Bishop's paper, we can show
that the integral of these two Gaussians indeed leads to a Gaussian
distribution.

The final form of P(X) is indeed Gaussian, but it is more intricate than a
standard Gaussian. It is characterized by a mean mu and a variance given by
WW^T + sigma^2 .

This elegant solution is achievable due to the assumption of a linear mapping,
simplifying the decoder. The linearity ensures that the integral over the two
Gaussians can still be expressed as a Gaussian, leading to the final form of
P(X).

animation: 1

LINEAR LATENT VARIABLE MODELS

45

animation: 2

LINEAR LATENT VARIABLE MODELS

46

Gaussian Gaussian

animation: 3

LINEAR LATENT VARIABLE MODELS

47

Bishop, “Pattern Recognition and Machine Learning”

Gaussian Gaussian

animation: 4

LINEAR LATENT VARIABLE MODELS

48

The integral is tractable, and
it is again Gaussian!

Gaussian Gaussian

animation: 5

LINEAR LATENT VARIABLE MODELS

49

Gaussian Gaussian

Given our knowledge of both P(X) and P(X|Z), we can theoretically infer the
posterior distribution P(Z|X). This can be viewed as an encoding process,
analogous to an encoder. Our initial assumptions include P(Z) following a
Gaussian distribution, and P(X|Z) acting as a decoder to reconstruct or
generate data from the latent space. With the Gaussian assumption and linear
mapping, we can express these distributions as Gaussians. By knowing the
joint distribution of P(X,Z), we can also infer the posterior distribution P(Z|X).
The role of P(Z|X), akin to an encoder, is to utilize the input to learn the latent
codes. Both distributions, P(X|Z) and P(Z|X), can be modeled as Gaussians,
although their mean and covariance matrix may differ.

animation: 1

LINEAR LATENT VARIABLE MODELS

50

animation: 2

LINEAR LATENT VARIABLE MODELS

51

Suppose P(Z) is a standard Gaussian, and all the components can be modeled
as Gaussian. To maximize the log likelihood of PX, we can use maximum
likelihood estimation. Assuming we have N independent and identically
distributed training samples, we can set the gradient of the log likelihood with
respect to W, mu, and sigma equal to zero. This allows us to obtain analytical
solutions for the unknown parameters of W, mu, and sigma. However, this
simplifies the model significantly, assuming a linear model to project Z into the
observation space. In practice, many datasets do not follow a Gaussian
distribution, and the model capacity is limited. After the break, we will explore
how to make the model more complex beyond linear models and how
autoencoders can address these limitations.

LINEAR LATENT VARIABLE MODELS

52

|section|Variational Autoencoders|
|video|https://www.youtube.com/embed/icOK6hwttCA?si=4VN49KpHcE

-obNzq|

PART THREE: VARIATIONAL AUTOENCODERS

We introduced the general idea of autoencoders. Building an effective
generative model involves capturing the distribution of P(X). The
practical implementation of this concept involves a two-step generative
process. Initially, we establish a prior distribution for P(Z) and randomly
select a point from P(Z). Simultaneously, we aim to learn the
distribution of P(X|Z), which serves as the decoder. This decoder
facilitates the transformation of latent space representations into our
input space, allowing the generation of diverse input data.

Generative process:

The log-likelihood function:

How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES

54

Now we consider non-linear transformations.

We highlighted the assumption of a linear model, where P(X|Z) is
represented as X given Z through a linear transformation Wz plus Mu.
Both P(X|Z) and the prior distribution P(Z|X) are assumed to follow
Gaussian distributions. This simplification proves advantageous as the
integrals of Gaussian distributions are also Gaussian. While this
approach provides a solution, it might fall short of our modeling
expectations due to potential limitations in modeling capacity.
The challenge arises when considering that P(X|Z) may not be
adequately represented by a linear mapping, deviating from the simple
expression of WZ plus mu. Suppose W represents the parameters of the
decoder or any machine learning model. Instead of relying on the linear
mapping, we observe a non-linear relationship between X and Z, where
X equals the function of Z, with W as a parameter of this non-linear
transformation.
While we appreciate the advantage that D is a Gaussian distribution,
even after undergoing complex non-linear transformations, there's
another hurdle. It becomes challenging to model or express P(X|Z),
which is the integral of P(X|Z) and P(Z). This introduces a layer of
complexity in our efforts.
Expressing P(X) becomes extremely challenging due to the intricate
nature of the problem. We currently lack a suitable method to generalize
the model in this context. While we assume that the marginal follows a

LATENT-VARIABLE MODELS WITH NON-LINEAR TRANSFORMATIONS

58

normal distribution, and theoretically, even after undergoing non-linear
transformations, it should still adhere to the principles of P(X|Z), the actual
challenge lies in expressing the mean and variance elegantly. The non-linear
transformation adds complexity, making it difficult to articulate the mean and
variance in a straightforward manner.

animation: 1

animation: 2

LATENT-VARIABLE MODELS WITH NON-LINEAR TRANSFORMATIONS

56

animation: 3

LATENT-VARIABLE MODELS WITH NON-LINEAR TRANSFORMATIONS

57

This is an infinite mixture of Gaussians.

animation: 4

LATENT-VARIABLE MODELS WITH NON-LINEAR TRANSFORMATIONS

58

This is an infinite mixture of Gaussians.

BUT we can use variational inference!
(Chapter 10 in Bishop’s book 😉)

We now delve into what could be considered the most crucial aspect of
today's lecture. Despite its initial complexity, we aim to provide a
step-by-step derivation to facilitate a clearer understanding. Essentially,
we embark on setting the parameters of our neural networks with the
primary goal of maximizing the log-likelihood, denoted as log(P(X)).
Employing the base rule, we express P(X) as an integral involving P(X|Z)
and P(Z). Subsequently, we introduce a variational posterior distribution,
denoted as Q(Z|X), with the unique property that it equals P(Z|X) divided
by P(Z|X), yielding a ratio of one. This introduction allows us to
transition from the initial expression to the subsequent one. The
variational posterior's role lies in servinag as an approximation to the
genuine posterior distribution, P(Z|X).

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

59

So the idea is that we first assume that we have a marginal distribution, P. The
Z is the latent code. And then we use a decoder. The decoder is of the
parameter theta. We can obtain the distribution of the P(X|Z). And then if in
some way we can learn both the P(X|Z) and the P(Z), maybe we can also get
the P(X). And then we can also get the posterior distribution of the P(Z|X).
P(Z|X) can be understood as how to learn the latent codes given different
input samples. However, in order to obtain the P-Theta(Z|X), we still need to
get the P(X) first. But in principle, it's very, very difficult or even impossible. So
our general idea is that instead of explicitly modelling the inverse of the
mapping, the P-Theta(X|Z) provides the mapping from the latent code to the
input space. Ideally, we want to have a way to model the inverse of the
mapping from the X to the Z, to go back to the Z. But we may have some
mathematical problems when performing the precise inverse. The general
idea is that instead of directly using a neuron, we let the neuron model the
inverse, P(Z|X), we assume that we have another mapping. We call this
mapping as Q. It's parameterized by some parameter, another neural network
with the parameter phi. And we assume that the Q-phi (Z) given X plays the
same role as the Q-theta(Z|X).

So we assume that they are as close as possible or almost indifferent, even
though it is a new model, a new neural network, with a new distribution. This
is why we introduce the variational posterior distribution to mimic or to play
the role of the P-Theta(Z|X). We assume that now we have a variational

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

64

Variational posterior

posterior distribution Q-Phi(Z|X) , and the ratio of the Q-Phi(Z|X) by the Q-Phi(Z|X) is
equal to one. This leads us from the first line of the equation to the second line.

Now we move to the third line, the log likelihood. Actually, this derivation is a
bit more complicated because we use a very well-known inequality in
statistics called the Jensen's inequality. In principle, it expresses that the log of
the expectation over distribution Q should be larger or equal to the
expectation of the log of some function over the distribution Q. So by just
using the Jensen's inequality, we can arrive from the second step to the third
step. It means that the log of this quantity is larger or equal to the integral of
the Q-Phi. Q-Phi is our posterior distribution or variational posterior
distribution that we want to mimic or that we want to play the role of the
P-Theta(X). And it should be larger or equal to the Q-Phi(Z|X) log of this
quantity.

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

61

Jensen’s inequality

We all know that the log of AB can be formulated as the log A plus log B. This
means that the log of the P-Theta(X|Z) and the P(Z) by Q-Phi(Z|X), will be
equal to the log of the P-Theta(X|Z) plus the log of the P(Z) by Q-Phi. This is a
property of the logarithm. Then we can have two integral terms. And finally,
we obtain the last equation. And the first one can be expressed as the
expectation of the log of the P-Theta(X|Z), which is the expectation over the
distribution of the Q-Phi(Z|X). On the other hand, the last term, it equals to
the integral of the Q-Phi with the log of Q-Phi by the P-Lambda. This last term
is called the KL Divergence. So the divergence means that we want to, in some
way, quantify the distance of these two distributions. Let us see how this can
be used to quantify this.

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

62

Evidence Lower BOund (ELBO)

We've just discussed two pivotal terms in our equation. The first term is
essentially the expectation of the logarithm of P Theta(X|Z), with the
expectation taken over Z. On the other hand, the second term can be
expressed as the expectation of the logarithm of P-Lambda divided by
Q-Phi(Z|X). In machine learning, this second term is commonly referred
to as KL Divergence.

Now, let's delve into why the KL Divergence is widely used in various
machine learning and deep learning applications. It serves as a
measure to quantify the divergence between two distributions. The
rationale behind using expectation as the KL Divergence between two
distributions, P and Q, lies in its ability to gauge the closeness of the
two. When we assume that P equals Q, the logarithm inside becomes
log one, and since log one is always zero, the integral over zero still
yields a very small value. This explains the utility of the expectation as
the KL Divergence.

While a more in-depth exploration of divergence measures is reserved
for our next lecture, for now, grasp this as an intuitive method to
quantify the difference between two distributions by modeling the ratio
P over Q, where log P over Q's expectation equals the KL Divergence

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

68

Reconstruction error (RE) Regularization (KL)

between Q-Phi and P, the prior distribution of P-Theta.

In the realm of variational autoencoders, the final line of our equation is
referred to as the evidence lower bound. This quantity consists of two terms.
The first term, the expectation of the log of P Theta(X|Z), can be intuitively
understood as a measure of reconstruction performance. Imagine sampling Z
from the latent space, generated by Q-Phi(Z|X), and then reconstructing new
data using the mapping function P-Theta(X|Z). This explains the first term's
significance in quantifying the quality of reconstruction. Meanwhile, the
second term is often dubbed the regularization term, serving to measure the
distance between the marginal distribution of Z and the posterior distribution
Q-Phi(Z|X). It's crucial to note that these terms collectively form what we call
the evidence lower bound.

In the architecture of an autoencoder, each term plays a crucial role.
The term P-Theta(X|Z) functions as our encoder, delineating the
mapping from X to Z. On the other hand, P-Theta(X|Z) acts as a
decoder, detailing the process of generating X from the latent Z.
Additionally, lambda represents a marginal distribution, often referred to
as a prior distribution.

Conceptually, this unfolds as a flow from X to Z and then to X hat.
Simultaneously, we introduce an assumption that there exists a prior
distribution governing the marginal distribution of Z. In practice, we may
make the assumption that our latent code adheres to a Gaussian
distribution. This choice is driven by the notable simplification it brings
to the training of our model.

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

64

decoder

encoder

marginal
(prior)

The loss function, or the objective, of a variational encoder serves a dual

purpose. Firstly, it endeavors to maximize the fidelity of the reconstruction,

striving for perfection. Secondly, it aims to concurrently regulate or minimize

the divergence-induced distance between the prior distribution and the

posterior distribution of P Theta(Z|X).

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

65

decoder

encoder

marginal
(prior)

= Variational Auto-Encoder

So now, we approach the question posed earlier: How close is the gap
between the maximized log P-Theta and the evidence lower bound? To
address this, we employ another method of derivation.
Initially, we recognize that the log likelihood, log of the P(X), can be
expressed as the expectation of P(X) over Z, leveraging the
independence of D and P-Theta as variables, as dictated by
mathematical properties.
Subsequently, we multiply the term in P-Theta(X) by a factor of one.
However, this one is now represented as the ratio of P-Theta(Z|X) to
P-Theta(Z|X). Following the base rule, we establish the equivalence of
P-Theta(Z|X) and P(X) to the joint distribution of P(X) and Z.
Proceeding with further derivation, we multiply both the numerator and
denominator of this ratio by Q-Phi(Z|X). This manipulation results in the
formulation presented in the third line of the equation.
animation: 1

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS (A DIFFERENT DERIVATION)

66

animation: 2

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS (A DIFFERENT DERIVATION)

67

animation: 3

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS (A DIFFERENT DERIVATION)

68

 (Bayes’ rule)

animation: 4

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS (A DIFFERENT DERIVATION)

69

(Bayes’ rule)

animation: 5

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS (A DIFFERENT DERIVATION)

70

(Bayes’ rule)

animation: 6

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS (A DIFFERENT DERIVATION)

71

(Bayes’ rule)

animation: 7

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS (A DIFFERENT DERIVATION)

72

(Bayes’ rule)

animation: 8

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS (A DIFFERENT DERIVATION)

73

(Bayes’ rule)

animation: 9

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS (A DIFFERENT DERIVATION)

74

 evidence lower bound (ELBO)

The derivation process may seem complex initially, but let's break it
down step by step for a clearer understanding.

Initially, we recognize that the evidence lower bound, specifically the
second and third terms, informs us about the gap—how closely the
lower bound aligns with the ground truth. This gap is expressed as a KL
Divergence, another measure of divergence, between our posterior
distribution Q-Phi(Z|X) and P-Theta given X.

To grasp the logic, consider our initial objective: maximizing the log
likelihood of PX in the second line of the equation. The challenge arises
when we aim to intuitively learn the encoder function and effectively
learn the genuine posterior distribution of P-Theta given X. However,
this proves to be a formidable task.

The ingenious approach is to introduce a new distribution—a variational
approximation. This new distribution is denoted as Q-Phi(Z|X), with the
assumption that Q-Phi(Z|X) should closely resemble P-Theta(Z|X).

By introducing this variational approximation, Q-Phi(ZX), we derive our
evidence lower bound. The crucial idea is to ensure that Q-Phi given X
closely approximates the real posterior distribution P-Theta(Z|X). The
final derivation reveals that the gap between our lower bound and the

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS (A DIFFERENT DERIVATION)

81

 evidence lower bound (ELBO)

If variational posterior is
poorly chosen, then the
lower bound is very loose.

real P-Theta given X is determined by how closely our approximation aligns
with the true posterior distributions of P-Theta(Z|X).

This elucidates why we introduce a variational approximation, denoted as
Q-Phi(X). The ultimate derivation indicates that if our approximation is
exceptionally close to the two posterior distributions P(Z|X), then the lower
bound is synonymous with our ideal objective, the log of the P(X).
Consequently, by maximizing the evidence lower bound, we not only aim to
close the gap but also ensure the realization of our objective. The key
takeaway is that these objectives are synergistic, meaning that by closing the
gap, we achieve our goal of maximizing the lower bound. In essence, the
intuition lies in the fact that if Q-Phi(Z|X) is close to the two posterior
distributions P-Theta(Z|X), the gap is minimized, explaining why maximizing
the lower bound is a viable strategy.

VANILLA VAE

76

import torch.nn as nn

class VAE(nn.Module):
 def __init__(self, D, M):
 super(LinearVAE, self).__init__()
 self.D = D
 self.M = M

 self.enc1 = nn.Linear(in_features=self. D, out_features=300)
 self.enc2 = nn.Linear(in_features=300,
out_features=self. M*2)

 self.dec1 = nn.Linear(in_features=self. M, out_features=300)
 self.dec2 = nn.Linear(in_features=300, out_features=self. D)

 def reparameterize(self, mu, log_std):
 std = torch. exp(log_std)
 eps = torch. randn_like(std)
 Z = mu + (eps * std)
 return z

VANILLA VAE

77

 def forward(self, x):
 # encoder
 x = nn.functional. relu(self.enc1(x))
 x = self. enc2(x).view(-1, 2, self.M)

 # get mean and log-std
 mu = x[:, 0, :]
 log_var = x [:, 1, :]

 # reparameterization
 z = self. reparameterize(mu, log_std)

 # decoder
 x_hat =
nn.functional.relu(self.dec1(z))
 x_hat = self. dec2(x)
 return x_hat, mu, log_std

VANILLA VAE

78

 def elbo(self, x, x_hat, z, mu, log_std):
 # reconstruction error
 RE = nn.loss. mse(x, x_hat)

 # kl-regularization
 # We assume here that log_normal is implemented
 KL = log_normal(z, mu, log_std) - log_normal(z, 0, 1)

 # REMEMBER! We maximize ELBO, but optimizers
minimize.
 # Therefore, we need to take the negative sign!
 return -(RE - KL)

COMMON ISSUES WITH VAES

79

Advantages

✓ Non-linear transformations.

✓ Stable training.

✓ Allows compression.

✓ Allows to generation.

✓ The likelihood could be

approximated.

VARIATIONAL AUTO-ENCODERS

80

Disadvantages

- No analytical solutions.

- No exact likelihood.

- Potential mismatch between true

posterior and variational

posterior

- Blurry images

Advantages

✓ Non-linear transformations.

✓ Stable training.

✓ Allows compression.

✓ Allows to generation.

✓ The likelihood could be

approximated.

VARIATIONAL AUTO-ENCODERS

81

Disadvantages

- No analytical solutions.

- No exact likelihood.

- Potential mismatch between true

posterior and variational

posterior

- Blurry images

In the upcoming lecture, we'll delve into the practical implementation of
variational autoencoders. However, the crucial aspect lies in
comprehending the derivations underlying these two approaches. It's
imperative to not only grasp the derivation in this equation but also
discern the connections between the distributions associated with the
encoder and the decoder. Understanding the significance of the prior
distribution is equally crucial. All these elements together constitute the
objective of the variational autoencoder, given its encoder structure and
the introduction of the variational approximation.

The nomenclature "autoencoder" gains clarity when you realize that, by
maximizing the evidence lower bound, our primary objective is clear. We
aim to maximize the closeness of the gap to the true value we intend to
optimize. This gap, in essence, represents the expectation of the
approximation being as close as possible to the true posterior
distribution, despite the inherent challenges in modeling the true
posterior distribution. The overarching goal is to ensure that the
variational autoencoder's objectives are aligned with minimizing this
gap and, by extension, optimizing the model.

Thank you!

