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Hello, everyone. Let's begin the lecture of today.  I'm Shujian Yu, a 
professor in the Department of Computer Science, and in the Deep 
Learning course. I will be responsible for the introduction of the 
generative models, recognition learning, as well as the last two 
lectures about generalization and adaptability. So, let's begin our 
first lecture, which is about unsupervised representation learning 
and generative models.

These slides are based on earlier lectures from Jakub Tomczak.

https://www.tue.nl/en/research/researchers/jakub-tomczak/


part 1: Why generative modeling and unsupervised learning

part 2: Autoencoders

part 3: Variational autoencoders

THE PLAN
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This lecture consists of three parts. In the first, we will briefly 
introduce the motivation: why we need to do the generating 
modeling and what's the goal of unsupervised repetition learning. 
Then, we will briefly introduce a general idea about the auto 
encoder, the naive auto encoder, and show some of its limitations. 
Finally, in the last part, we move to the main content of this 
lecture. We will carefully introduce a very popular departure with 
the name Variational Auto Encoder.



|section|Why Generative Modeling|
|video|https://|

So, we first give two examples to show why generative models are 
important in modern AI applications and also in lots of the deep 
learning problems. I think in your last lecture, you have already 
learned some basic idea about discriminative models, especially 
the convolutional neural networks. 

PART ONE: WHY GENERATIVE MODELING AND UNSUPERVISED LEARNING



You have also learned the basic idea that if I give you the image, 
how to do the classification with concatenating different 
convolution layers. Sometimes, the deep layer, the convolution 
neural net, can be very, very deep inside the model. An example of 
this is the model: ResNet-50, which is a very popular pre-trained 
convolutional neural network consisting of 50 layers.

We learn a neural network to classify images (with ResNet-50) :

IS GENERATIVE MODELING IMPORTANT?
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He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer 
vision and pattern recognition. 2016. https://arxiv.org/abs/1512.03385 

https://arxiv.org/abs/1512.03385


Now suppose I give you the image of a hog (this is a type of pig) that will be 
used for prediction. First we will train a ResNet-50 algorithm on a dataset of 
images of pigs, which after training performs really well. This network predicts 
that this image of a pig belongs to the class hog with 99% confidence. At first it 
might seem that the model is very precise in its prediction, however the 
algorithm does not have a clear understanding of what a pig is.

animation: 1

We learn a neural network to classify images (with ResNet-50):

IS GENERATIVE MODELING IMPORTANT?
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Example from: https://adversarial-ml-tutorial.org/introduction/ 

https://adversarial-ml-tutorial.org/introduction/


animation: 2

We learn a neural network to classify images (with ResNet-50):

IS GENERATIVE MODELING IMPORTANT?
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p(hog|x)=0.99
...



We can test this idea by adding noise to the image of the hog, this will trick 
the network into making a different prediction. The algorithm will a different 
class since the noise activates different neurons. From a human perspective 
this is just a noisy image of a hog, while the ResNet-50 does not understand 
this semantic difference. 

animation: 1

We learn a neural network to classify images (with ResNet-50):

IS GENERATIVE MODELING IMPORTANT?
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animation: 2

We learn a neural network to classify images (with ResNet-50):

IS GENERATIVE MODELING IMPORTANT?
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p(hog|x)=0.01
…
p(airliner|x)=0.97

=+

noise
p(hog|x)=0.99
...



animation: 3

We learn a neural network to classify images (with ResNet-50):

IS GENERATIVE MODELING IMPORTANT?
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p(hog|x)=0.01
…
p(airliner|x)=0.97

=+

noise
p(hog|x)=0.99
...

There is no semantic understanding of images.



This example shows us that it can be a good discriminative model, but the 
network does not actually have a semantic understanding of the content of 
the image. These models require some form of understanding of uncertainty, 
the noise example. In short, a model would need to understand basic parts of 
reality to make proper predictions. A possible solution for this problem would 
be generative modelling.

animation: 1

This simple example shows that:

• A discriminative model is (probably) not enough.

• We need a notion of uncertainty.

• We need to understand the reality.

IS GENERATIVE MODELING IMPORTANT?
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animation: 2

This simple example shows that:

• A discriminative model is (probably) not enough.

• We need a notion of uncertainty.

• We need to understand the reality.

A possible solution is generative modeling.

IS GENERATIVE MODELING IMPORTANT?
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To further dive into generative modelling, let's look at this example. Suppose 
we have another model that has the task to discriminate between a horse and 
a cat. In order to do this, we need a lot of samples from a cat and a horse. 
Now after training this model it will classify all images on the top right of the 
hyperplane as a cat and the bottom left as a horse. In contrast to generative 
models aim to model the entire distribution of the input data, including the 
relationship between the input data and their labels. By estimating the joint 
distribution of input samples (X) and their labels (Y), generative models can 
potentially provide a more comprehensive understanding of the data. If the 
generative model can accurately capture the distribution of input data and the 
generative probability of the input samples (PX), it could be used to identify 
outlying data that doesn't belong to any of the trained classes. 

Now if we were to introduce a new type of data, a panda for example, the 
discriminative model would classify this somewhere on the hyperplane. In our 
case it would fall under the classification of horses and would thus be 
classified as such. In contrast generative models by their use of joint 
probabilities have a good estimation of classifying the panda as an outlier, 
thus giving it a low classification for a cat and low for a horse.

animation: 1

IS GENERATIVE MODELING IMPORTANT?
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animation: 2

IS GENERATIVE MODELING IMPORTANT?
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animation: 3

IS GENERATIVE MODELING IMPORTANT?
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animation: 4

IS GENERATIVE MODELING IMPORTANT?
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new data



animation: 5

IS GENERATIVE MODELING IMPORTANT?
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High probability 
of a horse.
=
Highly probable 
decision!

new data
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Generative modelling is not only limited to images. It can be used to 
synthesize or generate different kinds of videos or audios. Good generative 
models can generate different types of audios for example speech or music.

WHERE DO WE USE DEEP GENERATIVE MODELING?

Generate images

Child, Rewon. "Very deep vaes generalize autoregressive models and can outperform them on images." arXiv preprint 
arXiv:2011.10650 (2020). https://github.com/openai/vdvae 

https://github.com/openai/vdvae


Not only is generative modelling applicable in these more audio visual forms, 
also it can be used in chemistry. For example using the encoder decoder 
structure to generate new molecule sequences.

WHERE DO WE USE DEEP GENERATIVE MODELING?

Generate molecules

Lim, Jaechang, et al. "Molecular generative model based on conditional variational autoencoder for de novo molecular 
design." Journal of cheminformatics 10.1 (2018): 1-9. 
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0286-7 

https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0286-7


Another example from the medical domain, fMRI signals. This is especially 
useful to generate synthetic dataset for further medical research. Medical 
data is very privacy sensitive and are difficult to use, while if we were able to 
use synthetic data that closely resembles the real data we can do much more 
extensive research without breaching privacy.

WHERE DO WE USE DEEP GENERATIVE MODELING?

Generate medical data (e.g., fMRI signals)

real fMRI signal generated fMRI signal

Li, Hongming, Shujian Yu, and Jose Principe. "Causal recurrent variational autoencoder for medical time series 
generation." arXiv preprint arXiv:2301.06574 (2023). https://github.com/hongmingli1995/CR-VAE 

https://github.com/hongmingli1995/CR-VAE


We've discussed the significance of generative models and provided examples 
illustrating why they are essential. The primary goal is to model the input and 
estimate P(X). X, representing inputs like images or signals, typically exists in a 
high-dimensional space. Modeling in such a space is inherently difficult, 
posing challenges related to the curse of dimensionality. In machine learning, 
as the dimensionality of input data increases, the difficulty in modeling X also 
significantly increases. This poses a fundamental challenge in effectively 
capturing and understanding high-dimensional data. Consider two images of 
cats, where the only difference is a black dot on one of them. Even for 
humans, discerning this difference requires careful observation. Asking 
machine learning models to perform this seemingly simple task highlights the 
challenges. Emphasize that a single pixel, like the black dot in the example, 
may not provide sufficient information. This limitation contributes to the 
complexity of modeling high-dimensional spaces.

animation: 1

Modeling in high-dimensional spaces is difficult.

GENERATIVE MODELING IN HIGH-DIM
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animation: 2

Modeling in high-dimensional spaces is difficult.

GENERATIVE MODELING IN HIGH-DIM
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To effectively capture information provided by single pixels, it's crucial to 
model the dependencies between each pixel and its neighboring pixels. The 
example of the black dot illustrates the need for understanding how pixels 
interact with one another. Suppose we have n pixels, denoted as X1, X2, ..., Xn. 
In datasets like MNIST, each image has a high dimension, for instance, 784 
pixels. The goal is to model the joint probability P(X1 to Xn) to distinguish 
between images. Different pixels exhibit various forms of dependency. For 
instance, X1 and X2 may be related, and X1 and X7 may have a different type 
of relationship. All pixels collectively form a dependence graph, where 
modeling the dependencies is crucial for accurate joint probability estimation. 
Despite the general idea making sense in theory, practical implementation is 
highly challenging. Evaluating precise dependencies between different pixels is 
difficult. The sheer number of pixels (e.g., hundreds of thousands) implies the 
need to model an extensive set of dependence relationships, presenting a 
formidable challenge. Evaluating precise dependencies is challenging. 
Hundreds of thousands of pixels complicate the task of modeling and 
integrating all these dependencies into a joint probability model. While the 
general concept is sound, its practical implementation remains a significant 
hurdle.

animation: 1

Modeling in high-dimensional spaces is difficult.

Modeling all dependencies among pixels:

GENERATIVE MODELING IN HIGH-DIM
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Markov random field. https://ermongroup.github.io/cs228-notes/representation/undirected/ 

 

 
   

   

 
 

https://ermongroup.github.io/cs228-notes/representation/undirected/


animation: 2

Modeling in high-dimensional spaces is difficult.

Modeling all dependencies among pixels:

GENERATIVE MODELING IN HIGH-DIM
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animation: 3

Modeling in high-dimensional spaces is difficult.

Modeling all dependencies among pixels:

A possible solution: Latent Variable Models or Latent 

Representation Learning

GENERATIVE MODELING IN HIGH-DIM
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To simplify modeling P(X), a central topic introduced is latent variable models, 
also known as latent representations. Instead of explicitly modeling P(X), the 
idea is to learn hidden factors (latent variables, Z) that generate the observed 
variable X (e.g., an image). The assumption is that X is generated by a few 
independent hidden factors (latent variables). For instance, in an image of a 
face, latent factors could control gender, eye color, glasses, and pose. Although 
more latent factors can be assumed for improved modeling capacity, the key is 
not to explicitly model P(X) but to assume it's generated by independent 
latent factors (Z1, Z2, Z3, Z4). Latent variable models define a joint distribution 
of P(X) and Z. By Bayes' rule, P(X, Z) equals the conditional probability of P(X) 
given Z multiplied by the marginal distribution of P(Z). Learning both P(Z) and 
P(X|Z) allows effective modeling of P(X). While latent variable models simplify 
the problem, a new challenge arises: how to learn the hidden factors (Z) when 
only the input (X) is known. The inference of latent factors becomes a key 
question in latent variable models.

 

LATENT VARIATIONAL MODELS: DEFINITION
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|section|Autoencoders|
|video|https://www.youtube.com/embed/0HfQ_OYlCjw?si=20-jvmOzNa

1h792A|

The first architecture we want to introduce is the autoencoder. The general 
idea is prevalent in modern applications and deep learning architectures. 
However, the autoencoder differs significantly from conventional structures 
like convolutional neural networks or multilayer perceptrons taught in 
previous lectures.

PART TWO: AUTOENCODERS



The autoencoder, an unsupervised learning architecture, differs from previous 
models like convolutional neural networks and multilayer perceptrons that 
require labeled data. In autoencoders, the absence of label information for 
samples is a defining feature.

The architecture comprises two networks: the encoder and the decoder. The 
encoder learns hidden factors (latent variables, Z) from input data, projecting 
observations from a high-dimensional space to a low-dimensional space using 
a neural network with parameters phi. Mathematically, Z equals G phi of X.

Conversely, the decoder aims to reconstruct the input data, minimizing 
distortion. It operates in the bottleneck layer, using the low-dimensional 
representation (Z) to reconstruct the original data (X). The goal is to achieve 
precise reconstruction, minimizing the Reconstruction Error.

For instance, in cell image processing, where the original image may be in a 
high-dimensional space (D Big D), the autoencoder projects it into a 
lower-dimensional space (e.g., one, two, or four dimensions). The aim is to 
reconstruct the image accurately using the reduced-dimensional 
representation, despite inevitable information loss in the reconstruction 
process. This unsupervised approach allows for neural network design without 
the need for labeled data.

Learn a compressed representation of the input data x.

We have two functions (usually neural networks)

Train using a reconstruction loss

AUTOENCODER AND COMPRESSION
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The fundamental concept is to have both an encoder and a decoder. We 
project high-dimensional observations into a low-dimensional space and aim 
to reconstruct the input using this low-dimensional code. Instead of using 
complex neural networks, we can simplify by employing linear mappings. For 
instance, assuming Z equals W transpose of X and reconstructing X hat as W 
times V.

By minimizing the Reconstruction Error with a linear encoder and decoder, it 
can be proven that the solution aligns with Principal Component Analysis 
(PCA). PCA is a widely used method for dimensionality reduction. Hence, 
autoencoders with linear mappings, in essence, encompass PCA as a special 
case. However, the strength of autoencoders lies in introducing non-linearity, 
offering a more potent method for learning effective codes compared to PCA.

 

AUTOENCODER AND COMPRESSION
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Utilizing the MNIST dataset, we trained the naive autoencoder and visualized 
the latent code in a two-dimensional space. Each point corresponds to the 
latent code of an image, with colors representing different classes (digits zero 
to nine). While the autoencoder seems to capture useful patterns, there are 
limitations.

Latent representations exhibit gaps, making it challenging to infer their 
physical meaning. Additionally, separability issues arise, particularly in certain 
regions where images from different digit categories may project into the 
same space. Although the autoencoder provides some separability, it's not 
perfect.

Interpreting the latent space proves difficult. Learning only two dimensions 
(Z1 and Z2), we struggle to discern the physical meaning of these dimensions. 
For instance, Z1 may encode information about rotation, but it's challenging to 
verify.

Crucially, the naive autoencoder is not a generative model; it excels in 
reconstruction but cannot generate new data. It can precisely reconstruct 
training examples but lacks the capability to generate novel content, such as 
new faces or music.

While the general idea motivates modern AI architectures, the naive 
autoencoder has limitations, especially regarding interpretability, separability, 
and generative capabilities. These challenges led to the development of more 
advanced generative models.

 

AUTOENCODER AND COMPRESSION
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The naive autoencoder or principal component analysis falls short as a 
generative model. To precisely achieve generative capabilities, we need to 
probabilistically model at least two distributions: the marginal distribution P(Z) 
and the conditional distribution P(X|Z). Understanding these distributions 
constitutes a generative model.

Suppose we know the shape of P(Z) and the probability of P(X|Z). In that case, 
we can randomly sample a new Z from P(Z) and generate new data by 
mapping Z into the observation space. This process allows us to generate an 
arbitrary number of new data points. Typically, Z resides in a low-dimensional 
space, and the real data X is in a higher-dimensional space. By modeling both 
distributions, we can generate an abundance of new data.

A popular approach in neural network learning is maximizing the 
log-likelihood. The objective is to make the generated data (P(X)) as realistic as 
possible compared to real data. By applying Bayes' rule, we know that P(X) 
equals the integral of P(X|Z) and P(Z), requiring integration over Z.

Inspired by this, modern generative models parameterize and train both 
distributions. The challenge lies in modeling and training these distributions 
effectively and handling the integration involved in the generative process. 
Various approaches have been developed to address this, leading to the 
creation of diverse modern generative models. The key challenge remains in 
modeling and training these distributions while effectively capturing the 
complexities present in the data.

Generative process:

Log of marginal distribution:

How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES
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Z: 2D
X: 3D
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Generative process:

Log of marginal distribution:

How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES
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Generative process:

Log of marginal distribution:

How to train such model efficiently?
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Generative process:

Log of marginal distribution:

How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES
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Generative process:

Log of marginal distribution:

How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES
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Generative process:

Log of marginal distribution:

How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES
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animation: 7

Generative process:

The log-likelihood function:

GENERATIVE MODELING WITH LATENT VARIABLES
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animation: 8

Generative process:

The log-likelihood function:

How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES
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Let's simplify and assume that the marginal distribution P(Z) follows a 
standard Gaussian distribution, and the conditional distribution P(X|Z) is 
parameterized by a linear transformation. The linear mapping assumes Z is in 
a dimensional space, and X is in a big D-dimensional space. The goal is to 
model both P(Z) and P(X|Z) to ultimately understand how to model P(X).

Under these assumptions, modeling P(Z) is straightforward since it follows a 
standard Gaussian distribution. For P(X|Z), we assume a linear transformation 
with potential biases and noise following a Gaussian distribution with 
standard deviation Sigma.

Given these assumptions, we can derive that the conditional distribution 
P(X|Z) also follows a Gaussian distribution due to the linearity of the 
transformation. The illustration is as follows: P(Z) follows a standard Gaussian 
distribution, and by sampling a random point Z hat from this distribution and 
using the linear mapping, we can map Z hat into the space of X. The resulting 
P(X|Z) follows a Gaussian distribution centered at WZ + mu, with variance 
controlled by the parameter Sigma.

In essence, each point in the latent space can be projected into the input 
space, resulting in an X that follows a distribution in the input space. The 
decoder, parameterized by the row of the decoder, plays the role of PX given 
Z, aiming to generate or reconstruct X from the latent space.

animation: 1

 

LINEAR LATENT VARIABLE MODELS
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LINEAR LATENT VARIABLE MODELS
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LINEAR LATENT VARIABLE MODELS

44 Generative process

 



Due to the assumption of a linear mapping ( T ) and the fact that the marginal 
distribution P(Z)  follows a Gaussian distribution, we can expect that P(X) is 
also Gaussian. The sum of the transformation of Gaussians results in a 
Gaussian distribution. Through mathematical derivations, particularly 
leveraging techniques from materials such as Bishop's paper, we can show 
that the integral of these two Gaussians indeed leads to a Gaussian 
distribution.

The final form of  P(X) is indeed Gaussian, but it is more intricate than a 
standard Gaussian. It is characterized by a mean mu  and a variance given by  
WW^T + sigma^2 .

This elegant solution is achievable due to the assumption of a linear mapping, 
simplifying the decoder. The linearity ensures that the integral over the two 
Gaussians can still be expressed as a Gaussian, leading to the final form of 
P(X).

animation: 1

 

LINEAR LATENT VARIABLE MODELS
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animation: 3

 

LINEAR LATENT VARIABLE MODELS
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Bishop, “Pattern Recognition and Machine Learning”

Gaussian Gaussian
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The integral is tractable, and
it is again Gaussian!

 

Gaussian Gaussian



animation: 5
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Given our knowledge of both P(X) and P(X|Z), we can theoretically infer the 
posterior distribution P(Z|X). This can be viewed as an encoding process, 
analogous to an encoder. Our initial assumptions include P(Z) following a 
Gaussian distribution, and P(X|Z) acting as a decoder to reconstruct or 
generate data from the latent space. With the Gaussian assumption and linear 
mapping, we can express these distributions as Gaussians. By knowing the 
joint distribution of P(X,Z), we can also infer the posterior distribution P(Z|X). 
The role of P(Z|X), akin to an encoder, is to utilize the input to learn the latent 
codes. Both distributions, P(X|Z) and P(Z|X), can be modeled as Gaussians, 
although their mean and covariance matrix may differ.

animation: 1

 

LINEAR LATENT VARIABLE MODELS
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Suppose P(Z) is a standard Gaussian, and all the components can be modeled 
as Gaussian. To maximize the log likelihood of PX, we can use maximum 
likelihood estimation. Assuming we have N independent and identically 
distributed training samples, we can set the gradient of the log likelihood with 
respect to W, mu, and sigma equal to zero. This allows us to obtain analytical 
solutions for the unknown parameters of W, mu, and sigma. However, this 
simplifies the model significantly, assuming a linear model to project Z into the 
observation space. In practice, many datasets do not follow a Gaussian 
distribution, and the model capacity is limited. After the break, we will explore 
how to make the model more complex beyond linear models and how 
autoencoders can address these limitations.

 

LINEAR LATENT VARIABLE MODELS
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|section|Variational Autoencoders|
|video|https://www.youtube.com/embed/icOK6hwttCA?si=4VN49KpHcE

-obNzq|

PART THREE: VARIATIONAL AUTOENCODERS



We introduced the general idea of autoencoders. Building an effective 
generative model involves capturing the distribution of P(X). The 
practical implementation of this concept involves a two-step generative 
process. Initially, we establish a prior distribution for P(Z) and randomly 
select a point from P(Z). Simultaneously, we aim to learn the 
distribution of P(X|Z), which serves as the decoder. This decoder 
facilitates the transformation of latent space representations into our 
input space, allowing the generation of diverse input data.

Generative process:

The log-likelihood function:

How to train such model efficiently?

GENERATIVE MODELING WITH LATENT VARIABLES
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Now we consider non-linear transformations.



We highlighted the assumption of a linear model, where P(X|Z) is 
represented as X given Z through a linear transformation Wz plus Mu. 
Both P(X|Z) and the prior distribution P(Z|X) are assumed to follow 
Gaussian distributions. This simplification proves advantageous as the 
integrals of Gaussian distributions are also Gaussian. While this 
approach provides a solution, it might fall short of our modeling 
expectations due to potential limitations in modeling capacity.
The challenge arises when considering that P(X|Z) may not be 
adequately represented by a linear mapping, deviating from the simple 
expression of WZ plus mu. Suppose W represents the parameters of the 
decoder or any machine learning model. Instead of relying on the linear 
mapping, we observe a non-linear relationship between X and Z, where 
X equals the function of Z, with W as a parameter of this non-linear 
transformation.
While we appreciate the advantage that D is a Gaussian distribution, 
even after undergoing complex non-linear transformations, there's 
another hurdle. It becomes challenging to model or express P(X|Z), 
which is the integral of P(X|Z) and P(Z). This introduces a layer of 
complexity in our efforts.
Expressing P(X) becomes extremely challenging due to the intricate 
nature of the problem. We currently lack a suitable method to generalize 
the model in this context. While we assume that the marginal follows a 
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normal distribution, and theoretically, even after undergoing non-linear 
transformations, it should still adhere to the principles of P(X|Z), the actual 
challenge lies in expressing the mean and variance elegantly. The non-linear 
transformation adds complexity, making it difficult to articulate the mean and 
variance in a straightforward manner.
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This is an infinite mixture of Gaussians.
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This is an infinite mixture of Gaussians.

BUT we can use variational inference!
(Chapter 10 in Bishop’s book 😉)



We now delve into what could be considered the most crucial aspect of 
today's lecture. Despite its initial complexity, we aim to provide a 
step-by-step derivation to facilitate a clearer understanding. Essentially, 
we embark on setting the parameters of our neural networks with the 
primary goal of maximizing the log-likelihood, denoted as log(P(X)). 
Employing the base rule, we express P(X) as an integral involving P(X|Z) 
and P(Z). Subsequently, we introduce a variational posterior distribution, 
denoted as Q(Z|X), with the unique property that it equals P(Z|X) divided 
by P(Z|X), yielding a ratio of one. This introduction allows us to 
transition from the initial expression to the subsequent one. The 
variational posterior's role lies in servinag as an approximation to the 
genuine posterior distribution, P(Z|X).

VARIATIONAL INFERENCE FOR LATENT VARIABLE MODELS

59

 

 

 

 

 



So the idea is that we first assume that we have a marginal distribution, P. The 
Z is the latent code. And then we use a decoder. The decoder is of the 
parameter theta. We can obtain the distribution of the P(X|Z). And then if in 
some way we can learn both the P(X|Z) and the P(Z), maybe we can also get 
the P(X). And then we can also get the posterior distribution of the P(Z|X). 
P(Z|X) can be understood as how to learn the latent codes given different 
input samples. However, in order to obtain the P-Theta(Z|X), we still need to 
get the P(X) first. But in principle, it's very, very difficult or even impossible. So 
our general idea is that instead of explicitly modelling the inverse of the 
mapping, the  P-Theta(X|Z) provides the mapping from the latent code to the 
input space. Ideally, we want to have a way to model the inverse of the 
mapping from the X to the Z, to go back to the Z. But we may have some 
mathematical problems when performing the precise inverse. The general 
idea is that instead of directly using a neuron, we let the neuron model the 
inverse, P(Z|X), we assume that we have another mapping. We call this 
mapping as Q. It's parameterized by some parameter, another neural network 
with the parameter phi. And we assume that the Q-phi (Z) given X plays the 
same role as the Q-theta(Z|X).

So we assume that they are as close as possible or almost indifferent, even 
though it is a new model, a new neural network, with a new distribution. This 
is why we introduce the variational posterior distribution to mimic or to play 
the role of the P-Theta(Z|X). We assume that now we have a variational 
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posterior distribution Q-Phi(Z|X) , and the ratio of the Q-Phi(Z|X) by the Q-Phi(Z|X) is 
equal to one. This leads us from the first line of the equation to the second line.



Now we move to the third line, the log likelihood. Actually, this derivation is a 
bit more complicated because we use a very well-known inequality in 
statistics called the Jensen's inequality. In principle, it expresses that the log of 
the expectation over distribution Q should be larger or equal to the 
expectation of the log of some function over the distribution Q. So by just 
using the Jensen's inequality, we can arrive from the second step to the third 
step. It means that the log of this quantity is larger or equal to the integral of 
the Q-Phi. Q-Phi is our posterior distribution or variational posterior 
distribution that we want to mimic or that we want to play the role of the 
P-Theta(X). And it should be larger or equal to the Q-Phi(Z|X) log of this 
quantity. 
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We all know that the log of AB can be formulated as the log A plus log B. This 
means that the log of the P-Theta(X|Z) and the P(Z) by Q-Phi(Z|X), will be 
equal to the log of the P-Theta(X|Z) plus the log of the P(Z) by Q-Phi. This is a 
property of the logarithm. Then we can have two integral terms. And finally, 
we obtain the last equation. And the first one can be expressed as the 
expectation of the log of the P-Theta(X|Z), which is the expectation over the 
distribution of the Q-Phi(Z|X). On the other hand, the last term, it equals to 
the integral of the Q-Phi with the log of Q-Phi by the P-Lambda. This last term 
is called the KL Divergence. So the divergence means that we want to, in some 
way, quantify the distance of these two distributions. Let us see how this can 
be used to quantify this. 
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We've just discussed two pivotal terms in our equation. The first term is 
essentially the expectation of the logarithm of P Theta(X|Z), with the 
expectation taken over Z. On the other hand, the second term can be 
expressed as the expectation of the logarithm of P-Lambda divided by 
Q-Phi(Z|X). In machine learning, this second term is commonly referred 
to as KL Divergence.

Now, let's delve into why the KL Divergence is widely used in various 
machine learning and deep learning applications. It serves as a 
measure to quantify the divergence between two distributions. The 
rationale behind using expectation as the KL Divergence between two 
distributions, P and Q, lies in its ability to gauge the closeness of the 
two. When we assume that P equals Q, the logarithm inside becomes 
log one, and since log one is always zero, the integral over zero still 
yields a very small value. This explains the utility of the expectation as 
the KL Divergence.

While a more in-depth exploration of divergence measures is reserved 
for our next lecture, for now, grasp this as an intuitive method to 
quantify the difference between two distributions by modeling the ratio 
P over Q, where log P over Q's expectation equals the KL Divergence 
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between Q-Phi and P, the prior distribution of P-Theta.

In the realm of variational autoencoders, the final line of our equation is 
referred to as the evidence lower bound. This quantity consists of two terms. 
The first term, the expectation of the log of P Theta(X|Z), can be intuitively 
understood as a measure of reconstruction performance. Imagine sampling Z 
from the latent space, generated by Q-Phi(Z|X), and then reconstructing new 
data using the mapping function P-Theta(X|Z). This explains the first term's 
significance in quantifying the quality of reconstruction. Meanwhile, the 
second term is often dubbed the regularization term, serving to measure the 
distance between the marginal distribution of Z and the posterior distribution 
Q-Phi(Z|X). It's crucial to note that these terms collectively form what we call 
the evidence lower bound.



In the architecture of an autoencoder, each term plays a crucial role. 
The term P-Theta(X|Z) functions as our encoder, delineating the 
mapping from X to Z. On the other hand, P-Theta(X|Z) acts as a 
decoder, detailing the process of generating X from the latent Z. 
Additionally, lambda represents a marginal distribution, often referred to 
as a prior distribution.

Conceptually, this unfolds as a flow from X to Z and then to X hat. 
Simultaneously, we introduce an assumption that there exists a prior 
distribution governing the marginal distribution of Z. In practice, we may 
make the assumption that our latent code adheres to a Gaussian 
distribution. This choice is driven by the notable simplification it brings 
to the training of our model.
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The loss function, or the objective, of a variational encoder serves a dual 

purpose. Firstly, it endeavors to maximize the fidelity of the reconstruction, 

striving for perfection. Secondly, it aims to concurrently regulate or minimize 

the divergence-induced distance between the prior distribution and the 

posterior distribution of P Theta(Z|X).
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So now, we approach the question posed earlier: How close is the gap 
between the maximized log P-Theta and the evidence lower bound? To 
address this, we employ another method of derivation.
Initially, we recognize that the log likelihood, log of the P(X), can be 
expressed as the expectation of P(X) over Z, leveraging the 
independence of D and P-Theta as variables, as dictated by 
mathematical properties.
Subsequently, we multiply the term in P-Theta(X) by a factor of one. 
However, this one is now represented as the ratio of P-Theta(Z|X) to 
P-Theta(Z|X). Following the base rule, we establish the equivalence of 
P-Theta(Z|X) and P(X) to the joint distribution of P(X) and Z.
Proceeding with further derivation, we multiply both the numerator and 
denominator of this ratio by Q-Phi(Z|X). This manipulation results in the 
formulation presented in the third line of the equation.
animation: 1
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The derivation process may seem complex initially, but let's break it 
down step by step for a clearer understanding.

Initially, we recognize that the evidence lower bound, specifically the 
second and third terms, informs us about the gap—how closely the 
lower bound aligns with the ground truth. This gap is expressed as a KL 
Divergence, another measure of divergence, between our posterior 
distribution Q-Phi(Z|X) and P-Theta given X.

To grasp the logic, consider our initial objective: maximizing the log 
likelihood of PX in the second line of the equation. The challenge arises 
when we aim to intuitively learn the encoder function and effectively 
learn the genuine posterior distribution of P-Theta given X. However, 
this proves to be a formidable task.

The ingenious approach is to introduce a new distribution—a variational 
approximation. This new distribution is denoted as Q-Phi(Z|X), with the 
assumption that Q-Phi(Z|X) should closely resemble P-Theta(Z|X).

By introducing this variational approximation, Q-Phi(ZX), we derive our 
evidence lower bound. The crucial idea is to ensure that Q-Phi given X 
closely approximates the real posterior distribution P-Theta(Z|X). The 
final derivation reveals that the gap between our lower bound and the 
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real P-Theta given X is determined by how closely our approximation aligns 
with the true posterior distributions of P-Theta(Z|X).

This elucidates why we introduce a variational approximation, denoted as 
Q-Phi(X). The ultimate derivation indicates that if our approximation is 
exceptionally close to the two posterior distributions P(Z|X), then the lower 
bound is synonymous with our ideal objective, the log of the P(X). 
Consequently, by maximizing the evidence lower bound, we not only aim to 
close the gap but also ensure the realization of our objective. The key 
takeaway is that these objectives are synergistic, meaning that by closing the 
gap, we achieve our goal of maximizing the lower bound. In essence, the 
intuition lies in the fact that if Q-Phi(Z|X) is close to the two posterior 
distributions P-Theta(Z|X), the gap is minimized, explaining why maximizing 
the lower bound is a viable strategy.
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import torch.nn as nn
 
class VAE(nn.Module):
    def __init__(self, D, M):
        super(LinearVAE, self).__init__()
        self.D = D
        self.M = M
 
        self.enc1 = nn.Linear(in_features=self. D, out_features=300)
        self.enc2 = nn.Linear(in_features=300, 
out_features=self. M*2)

        self.dec1 = nn.Linear(in_features=self. M, out_features=300)
        self.dec2 = nn.Linear(in_features=300, out_features=self. D)

    def reparameterize(self, mu, log_std ):
        std = torch. exp(log_std) 
        eps = torch. randn_like(std)
        Z = mu + (eps * std)
        return z
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    def forward(self, x):
        # encoder
        x = nn.functional. relu(self.enc1(x))
        x = self. enc2(x).view(-1, 2, self.M)

        # get mean and log-std
        mu = x[:, 0, :]
        log_var = x [:, 1, :]

        # reparameterization
        z = self. reparameterize(mu, log_std)
 
        # decoder
        x_hat = 
nn.functional.relu(self.dec1(z))
        x_hat = self. dec2(x)
        return x_hat, mu, log_std
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    def elbo(self, x, x_hat, z, mu, log_std ):
        # reconstruction error
        RE = nn.loss. mse(x, x_hat)

        # kl-regularization
        # We assume here that log_normal is implemented
        KL = log_normal(z, mu, log_std) - log_normal(z, 0, 1)

        # REMEMBER! We maximize ELBO, but optimizers 
minimize.
        # Therefore, we need to take the negative sign!
        return -(RE - KL)
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Advantages

✓ Non-linear transformations.

✓ Stable training.

✓ Allows compression.

✓ Allows to generation.

✓ The likelihood could be 

approximated.
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Disadvantages

- No analytical solutions.

- No exact likelihood.

- Potential mismatch between true 

posterior and variational 

posterior

- Blurry images
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In the upcoming lecture, we'll delve into the practical implementation of 
variational autoencoders. However, the crucial aspect lies in 
comprehending the derivations underlying these two approaches. It's 
imperative to not only grasp the derivation in this equation but also 
discern the connections between the distributions associated with the 
encoder and the decoder. Understanding the significance of the prior 
distribution is equally crucial. All these elements together constitute the 
objective of the variational autoencoder, given its encoder structure and 
the introduction of the variational approximation.

The nomenclature "autoencoder" gains clarity when you realize that, by 
maximizing the evidence lower bound, our primary objective is clear. We 
aim to maximize the closeness of the gap to the true value we intend to 
optimize. This gap, in essence, represents the expectation of the 
approximation being as close as possible to the true posterior 
distribution, despite the inherent challenges in modeling the true 
posterior distribution. The overarching goal is to ensure that the 
variational autoencoder's objectives are aligned with minimizing this 
gap and, by extension, optimizing the model.

Thank you!


