Lecture 5: Sequential data

Peter Bloem, David Romero

Deep Learning

dlvu.github.io

VRIE
£ universTET
? AMSTERDAM

part one: Learning from sequences

part two: RNNs

part three: LSTMs

part four: CNNs for sequential data

part five: ELMo, a case study

2

VU

LEARNING FROM SEQUENCES

VU

In the first part we’ll look at the technical details of
setting up a sequence learning problem. How should
we prepare our data, represent it as a tensor, and what
do sequence-based models look like in deep learning
systems? We'll see that one model we've met already,
the convolutional layer, can be seen as a sequence
model.

| section | Learning from sequences|
| video| https://www.youtube.com/embed/
rK20XfDN1N4?si=wtMoWrtgR4ETaKp5 |

NUMERIC 1-DIMENSIONAL

200

. of sunspots

Vu¥

Before we start looking at different models to learn
from sequential data, it pays to think a little bit about
the different types of sequential datasets we might
encounter.

As with the traditional, tabular setting, we can divide
our features into numeric and discrete.

A single 1D sequence might look like this. We could
think of this as a stock price, traffic to a webserver, or
atmospheric pressure over Amsterdam. In this case,
the data shows the number of sunspots observed over
time.

Sequential numeric data can also be multidimensional.
In this case, we see the closing index of the AEX and
the FTSE100 over time. This data is a sequence of 2D
vectors.

NUMERIC N-DIMENSIONAL

FTSE100

000
timelefYs) 2000 00

3000

If the elements of our data are discrete (analogous to a
categorical feature), it becomes a sequence of
symbols. Language is a prime example. In fact, we can
model language as a sequence in two different ways:
as a sequence of words, or as a sequence of
characters.

SYMBOLIC (CATEGORICAL)

the, cat, sat, on, the, mat

tlhlel_lclaltl_lslaltl_lolnl_ltlhlel_lmlalt

VU

SINGLE SEQUENCE V/S SET OF SEQUENCES As a whole, our dataset can consist of a single long
< sequence, but it can also be a set of short sequences.
For instance, in a typical email spam classification
spam scenario, we could leave the text of the emails as-is

(instead of extracting features). The task is then to
map a sequence of words or or a sequence characters

spam

ham to the correct class.
spam Here, each sequence represents one instance in our
data.
ham
spam
: VU¥

m An entirely different setting is one where the dataset

as a whole is a sequence. In this case, each point in
the sequence is one instance. The dataset as a whole
is an ordered sequence of instances.

200 .. . , In such cases, the task is often to predict (part of) the
o ; 5 é‘ N .) : ’ ’ future values of the sequence based on what we’ve
Twl g ‘é%'i 55 $§ t;} ‘4%. seen in the past.

* %“}é%% %&ﬁﬁﬁ ‘:' .%"f‘w NB: If we really wa.nt to complicate things_, we can have

o ' both at the same time. For instance, emails are

’ ““mm actually timestamped, so the dataset as a whole is a
sequence of emails. This aspect of emails is usually
e vu¥ ignored to keep things simple (but it could carry

valuable information).

http://www.holprop-travel-directory.com
http://www.holprop-travel-directory/remove.asp
http://www.holidayrentals.org
http://self-catering.co.uk

WALK-FORWARD VALIDATION

time
training data test
train v 0.4
train v 0.1
train v 0.3
train v 0.4 o
. 0.3 i3

When your instances are ordered in time, it's
important to perform validation carefully. The easiest
way to understand this is that evaluation is a
simulation of the way you expect the model to be
used. If you train a model to predict the future, it
should only have access to instances from the past.
Therefore you usually train on instances before some
point and then evaluate on instances after that point.

If the model has access to instances "from the future'
you will probably get much higher performance in
evaluation than is actually realistic.

To still allow yourself to see how the model performs
on various amounts of data, you can use walk forward
validation. Keep your data aligned in time and test
your model at various points, training on the past only,
and using a small stretch afterwards as validation. This
simulates how well your model does if you had trained
it at a particular point in time.

You can average the different measurements for a
general impression of how well your model does, but
you can also look at the individual measurements to
see, for instance, if there are seasonal effects, how
well the model does with little data, what the overall
variance is in the performance, etc.

For the test set you can either use a single evaluation
or small steps with retraining in between. To decide,
it's usually best to reflect on how you expect the
model to be used and what evaluation is the most
accurate simulation of that use.

SUMMARY: SEQUENTIAL DATA

v

Sequences: consisting of numbers, vectors or symbols

Dataset: consisting of a sequence per instance, or a sequence of
instances.

For a sequence of instances, careful with your test and validation.

Vu¥

SEQUENCES IN DEEP LEARNING

Sequence models: operate on inputs of different lengths (using the same
weights).

input: raw sequence data

deep learning is end-to-end learning
output: classification, regression, token prediction, sequence-to-sequence

layers: sequence-to-sequence

. VU¥

Once we know what our data consists of, we need a
model that can consume sequences. In deep learning,
the whole point is not to remove information from our
input data, but to feed the model data is as raw a form
as possible (i.e. no feature extraction). For that reason
we want to build models that can consume sequences
natively.

Therefore, we define a sequence model as a model
that can consume sequences of variable length. For
instance, an email classification model can classify a
short email or a long email using the same set of
weights.

Our main building block for building sequence models
will be sequence-to-sequence layers.

SEQUENCE-TO-SEQUENCE LAYER

input: length t sequence of vectors

more generally, a sequence of tensors

output: length t sequence of vectors

input/output dimension may be different, but length t is the same

defining property: the same layer (same weights) can be applied to
sequences of different lengths.

. Vu¥

This layer takes a sequence of vectors, and outputs a
sequence of vectors.

Both sequences have the same number of vectors, but
the dimension of the vectors may change. The key
property here is that the layer is defined by a finite set
of weights, and with those same weights it should be
able to operate on inputs of different lengths t.

We can also generalize this to sequences of tensors
without much change (for instance, to analyse film
frames), but we’ll stick to vectors for this lecture.

FULLY CONNECTED VS REPEATED MLP

Fully connected layer: X

- 88688

20 x 20 connections,
400 weights
’ g g g g g

Vu¥

MLP applied to each input: v/

< 16 shared weights >

4x4 conn

Here is an example: we need a layer that consumes a
sequence of five vectors with four elements each and
produces another sequence of five vectors with four

elements each.

A fully connected layer would simply connect every
input with every output, giving us 400 connections
with a weight each. This is not a sequence-to-
sequence layer. Why not? Imagine that the next
instance has 6 vectors: we wouldn’t be able to feed it
to this layer without adding extra weights.

The version on the right also uses an MLP, but only
applies it to each vector in isolation: this gives us
4x4=16 connections per vector and 80 in total. These
80 connection share only 16 unique weights, which are
repeated at each step.

This is a sequence-to-sequence layer. If the next
instance has 6 vectors, we can simple repeat the same
MLP again, we don’t need any extra weights.

NB: We call the sequence dimension “time”, but it
doesn’t necessarily always represent time.

CONVOLUTIONAL SEQUENCE-TO-SEQUENCE LAYER

Y3

]

s2s layer

X1 X2 X3 X4 X5 X6
b VU¥

The simplest sequence-to-sequence layer that
propagates information over time is probably the
convolutional layer that we've already seen. In this
case with a size 3 kernel.

Note that the convolution satisfies the main property
of a sequence to sequence layer: if we see a longer
input sequence, we can simply apply the same kernel,
without having to add any weights.

SEQUENCE-TO-SEQUENCE LAYERS THAT PROPAGATE INFORMATION

Convolutions (lecture 3 and video 4)

Recurrent neural networks (video 2 and 3)
Elman networks, LSTMs, GRUs

Self-attention (lecture 12)

Of course, the per-element MLP is very simple. The
information in the n-th input vector can only influence
the information the n-th output vector, and not in any
of the other output vectors. It doesn't propagate
information along the time dimensions.

More useful sequence-to-sequence layers also have
connections between the different points in time.
There are three basic families of layers that offer this:
convolutions, recurrent layers, and self-attention.

: VU
LOOKING BACKWARD AND/OR FORWARD Some sequence-to-sequence layers can only look
. backward in the input sequence. That means that to
- coseS provide an output yn+1, the model can only use xi to xn
causal layers non-causal layers as inputs. This is a very natural assumption for online
y3 y3 learning tasks, since we usually want to make a
|:| |:| prediction about the next token in the sequence
before it has come in. They can either reference these
5 I 5 I inputs directly, or take the output of the previous
2 - S a RS computation as an additional input. But in either case,
’) information only ever flows from left to right, and the
D D future tokens in the sequence cannot be used to
compute the current token in the output.
X1 X2 X3 X1 X2 X3 Xa X5 X VU?
Layers like these are called causal. Models build up

exclusively of causal layers are called causal sequence
models. Note that the name causal is just a name:
there is no guarantee that these models will actually
help you prove causal relations (unless you use them
in a particular way). Don't confuse this with the kind of
a machine learnig that actually infers causal
properties.

In many other tasks (say, spam classification) we have
access to the whole of the sequence before we need
to make our prediction. In this case non-causal
sequence-to-sequence models are prefereable: these
can look at the whole sequence to produce their
output.

The convolution we saw earlier was not causal, but
convolutions can be made causal by changing the
wiring pattern. This will be explained in detail in a later
video.

PREPARING DATA

representing discrete inputs

one-hot vectors, embedding vectors

from a sequence of vectors to a single tensor
padding, packing, batching

. VU¥

We'll look at the other sequence-to-sequence layers
later. For now, let's see how we can build a basic
model, assuming that we have a sequence-to-
sequence layer we can stack.

The first thing we need to think about is how to
represent our data. If we have discrete data (like words
or characters), how do we represent this in the
continuous values that deep learning requires. And,
once we have our sequences of vectors, how do we
batch these into a single tensor?

REPRESENTING DISCRETE INPUTS: ONE-HOT VECTORS

. Vu¥

As we’ve seen, when we want to do deep learning, our
input should be represented as a tensor. Preferably in
a way that retains all information (i.e. we want to be
learning from the raw data, or something as close to it
as possible).

Here is simple example: to encode a simple
monophonic musical sequence, we just one-hot
encode the notes. We create a set of vectors each as
long as the vocabulary, filled with zeroes, except for a
1 at one position. We then assign element i the one-
hot vector with the 1 at the i-th position.

image source: https://violinsheetmusic.org

REPRESENTING DISCRETE INPUTS: EMBEDDINGS

b —
SES T o

ATITH I HTTHE

embeddings

. Vu¥

Another approach is to embed the discrete tokens in
our vocabulary. In this case, we have a vocabulary of
seven items (the notes a to g), and we simply assign
each a vector of randomly chosen values. Note the
difference in length: the one-hot vectors are
necessarily exactly as long as the vocabulary. The
embedding vectors can be any length.

The trick of embedding vectors is that we treat these
vectors as parameters. During training, we compute
gradients for them and update their values with
gradient descent, the same as all the other values in
the neural network.

This idea can take a while to wrap your head around. If
it's not immediately clear, watch/read the rest of the
lecture and come back to it when you have a clearer
intuition for what sequence-to-sequence models look
like. It should make more sense then.

EMBEDDINGS

Given a large set of objects {x} with no features:
« Model object x by embedding vector e,.
« If exand ey are “similar,” so are xand y

« Combine embeddings in some task, and learn e, by backprop.

. VU¥

The idea of embedding discrete objects is not specific
to sequences. We find it also in matrix decomposition
and graph neural networks. Here is the basic principle
defined in the most generic terms.

ONE-HOT VS EMBEDDINGS

In practice, there is often not much difference
between the two approaches. As soon as we multiply a
one-hot vector by a weight matrix, we are selecting a
column from that matrix, so that we can see the
columns of the weight matrix as a collection of
embeddings.

Practically, we rarely implement the one-hot vectors
explicitly, because we’d just be storing a large amount
of zeros, so the two approaches are likely to lead to
the same or very similar implementations.

‘;@{‘
-\«\

vocabulary

. Vu¥

Once we have each point in a sequence represented as
a vector of continuous values, we can easily represent
this sequence as a matrix.

If we have multiple sequences of different lengths, this
leads to a data set of matrices of different sizes. This
means that our dataset as a whole can’t be stored in a
single tensor.

That’s not a problem, we can simply maintain a list of
these matrices instead of concatenating them into a
single tensor. However, the single batch we feed to our
network does need to be a tensor, otherwise we don’t
get any parallelism across the batch dimension from
our tensor library.

PADDING

X
,§c‘\
°

A

original length padding

Vu¥

The simplest way to create batches of a uniform length
is to pad our sequences with zeros, or with a special
“<pad>" token that we add to our vocabulary (so that
it gets a one-hot or an embedding vector).

LENGTHWISE SORTING

variable batch size

paddin,
batch —— 2T
[—

<+— instances —»

(i

JN“

. VU¥

The lengths of sequences are often roughly powerlaw-
distributed with a few very long outliers. If we shuffled
the data, we would end up padding batches to the
length of the longest member of the batch, which
means we're filling a lot of our batch with zeros.

A common approach is to sort the data by sequence
length and then cut into batches. The first advantage is
that most elements in the batch have similar lengths,
which minimizes the amount of padding.

The second advantage is that we can increase the
batch size for the shorter sequences: it may be that we
only have enough memory to feed the long sequences
to the model one at a time, but for the short
sequences, we can still train on a large batch in one
pass.

Note that this does mean that our instances are no
longer i.i.d. This may confuse certain layers (like batch
norm) that assume i.i.d. batches.

padded batch

PACKING

packed batch

data:
[0 RO - Tt - R o Jilie] - [l - Tl

batich_sizes:

3,3,3, 3,11

more details: https://gist.github.com/HarshTrivedi/f4e7293e941b17d19058f6fb90ab0fec VU ‘f

In addition to padding your sequences, you can also
pack them. This is a neat trick that means that you
won’t use any memory for the zero-padding of your
sequences.

The data will be stored in a single sequence that
interleaves the different instances in the batch. This is
stored together with a count of, reading from left to
right, how many instances are still in the batch at that
point.

Using this information, a sequence layer can process
the batch by a sliding window, representing the
current “timestep”. The window contains all the tokens
that may be processed in parallel. As we move from
left to right, the window occasionally shrinks, when we
reach the end of one of the sequences.

Packing is primarily used for recurrent neural
networks, as these actually process sequences serially
(i.e. with a sliding window). For self-attention and
CNNs, as we shall see, we get a big boost from
processing all time steps in parallel, which requires us
to operate on padded batches.

MODEL CONFIGURATIONS

sequence-to-sequence

POS tagging, machine translation, robot
control, generation
sequence-to-label
classification, regression
label-to-sequence

generative models
label+seq-to-sequence

teacher forcing

input output

goooon — 0ooooo
poooon — 10
0 — 000000

1 _.
0000 fooooo

VUf

Now that we have our data prepared, we can start
building our model. First, we need to know what we
feed into the model and what we expect to get out.
One of these needs to be a sequence (or it wouldn't be
a sequence model) but the other can be a single
"label": either a categorical value like a class or a
(vector of) numerical values.

Here are the four most common options. We'll go
through each in order and see what the main
considerations are for building a model like this.

SEQUENCE-TO-SEQUENCE

targets O O O O

sequence-to-sequence layer

weerws 0 0 0 0 O O

sequence-to-sequence layer

~FE0 NN

loss

VU¥

A sequence-to-sequence task is probably the simplest
set-up. Our dataset consists of a set of input and
output sequences. We simply create a model by
stacking a bunch of sequence to sequence layers, and
our loss is the difference between the target sequence
and the output sequence.

<art> <noun> <verb> <prep> <art> <noun>

targets Q Q Q Q Q Q
sequence-to-sequence

000000
e TODL LD

token probablities

embedding layer

. 3 345 2345 324 3 2893
inputs
28 the cat sat on the mat

Vu¥

Here’s a simple example of a sequence-to-sequence
task: tag each word in a sentence with its grammatical
category (the "part of speech tag"). This is known as
part-of-speech tagging. All we need is a large
collection of sentences that have been tagged as
training data.

For the embedding layer, we convert our input
sequence to positive integers. We have to decide
beforehand what the size of our vocabulary is. If we
keep a vocabulary of 10 000 tokens, the embedding
layer will create 10 000 embedding vectors for us.

It then takes a sequence of positive integers and
translates this to a sequence of the corresponding
embedding vectors. These are fed to a stack of s2s
layers, which ultimately produce a sequence of vectors
with as many elements as output tokens (if we have 5
POS tags, these vectors have five elements each). After
applying a softmax activation to each vector in this
sequence, we get a sequence of probabilities over the
target tokens.

MASKING padding

" © © 8600

00000
OO0 000 O

o8 B B ninigl

padding

VU¥

If we have a padded batch, it’s a good idea to mask the
computation of the loss for the padded part of the
sequence. That is, we compute the loss only for the
non-masked tokens, since we don’t really care what
the model predicts for the pad tokens.

A simple way to do this is to make a binary tensor
indicating which elements are masked, and to
compute the loss per output in a tensor, and to
multiply the two, before summing/averaging the loss.

CAUSAL MODELS + PROCESSING REQUIRED

the kitchen

O OO0 0O OO0 O O

popoooboooog
Inigl

causal s2s model

SENRE NN

the fridge in the kitchen or the bathroom

VU¥

If we have a causal model, and there is likely some
processing required between the input and the
output, it’s common to let the network read the whole
input before it starts processing the output.

With a non-causal model, we can just add extra layers
to allow extra processing, but with a causal model, any
processing that takes into account the last word of the
input has to happen after that word, so we need to
lengthen the sequence as well.

Note that here, we’ve even given the model one
empty step between the end of the question and the
beginning of the answer, for extra processing (in
practice this maybe hundreds of steps of padded
tokens).

SEQUENCE-TO-SEQUENCE: AUTOREGRESSIVE MODELING

000000

causal s2s

OO 00O 8

causal s2s

targets

inputs h e | | o ! ‘f

One interesting trick we can use with a causal model,
is to feed it some sequence, and to set the target as
the same sequence, shifted one token to the left.

This effectively trains the model to predict the next
character in the sequence. Note that this only works
with causal models, because non-causal models can
just look ahead in the input sequence to see the next
character.

SEQUENTIAL SAMPLING

v

start with a small seed sequence s = [c1, ¢, c3] of tokens.
loop:
Sample next char c accordingto p(C=c|c, ¢, ...)

feed the whole seed to the network

appendctos

also known as an autoregressive model (more to come in lecture 10)

VU¥

After the network is trained in this way, we can use it
to generate text.

We start with a small seed sequence of tokens, and
sequentially sample a likely sequence. We'll see some
examples of this after we’ve explained LSTM networks.

In lecture 10, Jakub will go into autoregressive
modeling is much greater detail.

S2L: GLOBAL POOLING

global sum/avg/max pooling |;|
outpuseaenee |j |j |j |j |j |j
sequence-to-sequence layer

“hidden” units D D D D D D

sequence-to-sequence layer

BN N BN E——

\
P MA:?V

In a sequence-to-label setting, we get a sequence as
input, and we need to produce a single output. This
can be a softmaxed vector over classes, or simply an
output vector if we need multiple outputs (this vector
may also be passed through some further feedforward
layers, which we haven’t drawn here).

Here, we first stack one or more sequence to sequence
layers. At some point in the network, we need to
reduce in the time dimension. A global pooling layer
sums, averages or maxes across one whole dimension,
removing it from the output tensor. In this case, we
global pool over the time dimension, amd

Note that we can’t use a fully connected layer here: we
need an operation that can be applied to variable
input sequences.

GLOBAL UNIT |:|

output sequence |—1_|

sequence-to-sequence layer

“hidden” units |:| |:| |:| |:| |:| |:|

sequence-to-sequence layer

~FTRRRRD

Another approach is to simply take one of the vectors
in the output sequence, use that as the output vector
and ignore the rest.

If you have causal s2s layers, it’s important that you
use the last vector, since that’s the only one that gets
to see the whole sequence.

For some layers (like RNNs), this kind of approach puts
more weight on the end of the sequence, since the
early nodes have to propagate through more
intermediate steps in the s2s layer. For others (like self-
attention), all inputs in the sequence are treated
equally, and there is little difference between a global
unit and a pooling layer.

LABEL-TO-SEQUENCE |:| |:| |:| |:| |:| |:|

sequence-to-sequence layer

sequence-to-sequence layer

weerws 0] 0 0 0 0 O

TINIL

A
inputs (;beq((VU k

LABEL-TO-SEQUENCE

36

a dog on a skateboard

sequence to sequence

|———"\

VU

Here’s one example of a label to sequence task. Taking
a simple image, and generating a caption for it. The
“label”, here is the input image, which is transformed
to a single feature vector by a CNN

LABEL/SEQUENCE TO SEQUENCE

000000
PEERRD

—

VU

Our final configuration is the case where we have both
a label and a sequence as input. Some sequence-to-
sequence layers support a second vector input natively
(as we shall see later).

sum or concatenate

repeat

If there is no native way for the sequence model to
accept a second input, we can just repeat the label
into a sequence, and concatenate or sum it to the
input sequence.

— HDERRREER

J L LN

S

input o target

< B
& a &S S & P
<

Y g
& & Vu¥

. VU
BEL/SEQUENCE EQUENCE & What does this allow us to do? In the image captioning
LABEL/SEQUENCE TO SEQUENC f o ‘_,;,@o . task, we can now train our language model
® s °© ® ° - autoregressively. This can help a lot to make the
|:| |:| |:| |:| |:| output sentences look more natural.
D causal s2s
CNN
a 3 b°°° & 3 Q’@
(o)
&P
3
G
We can also apply this principle for complex sequence-
TEACHER FORCING ;
to-sequence tasks. Here we first use a non-causal
encoder dec"d”z . model to learn a global representation of the input
£ . . .« .
s £ Qf: o e sequence in a single vector. This is then used to

condition a causal model of the output sequence,
which is trained like the autoregressive model we saw
earlier. It looks complicated, but given a set of inputs
and targets, this model can be trained end-to-end by
backpropagation.

Once it’s trained, we first feed an input to the encoder
to get a global representation, and then perform
sequential sampling

Sequence to sequence models

fixed weights, variable-length inputs
RNNs, CNNs, Self-attention
Embeddings, padding, masking, packing

Very versatile: sequence-to-sequence, label-to-sequence, sequence-to
label, autoregressive training, teacher forcing.

more examples coming up VU !

41

dlvu.github.io

Lecture 5: Sequential data

Peter Bloem, David Romero

Deep Learning

VRIE
£ universTET
? AMSTERDAM

RECURRENT NEURAL NETWORKS

VU

A recurrent neural network is any neural network that
has a cycle in it.

| section|Recurrent neural networks |
| video| https://www.youtube.com/embed/
2)GImBhQedk?si=khTatO6UOf9WCsAW |

RECURRENT NEURAL NETWORK

o

h

.@—@—®—|

copy

previous hidden layer

Elwan networ™

Vu¥

This figure shows a popular configuration. It’s a basic
fully connected network, except that its input x is
extended by three nodes to which the hidden layer is
copied.

This particular configuration is sometimes called an
Elman network. These were popular in the 80s and
early 90s, so you'll usually see them with a sigmoid
activation.

VISUAL SHORTHAND

v h=o0(Wx+b)
y=Vh+c¢

Vu¥

To keep things clear we will adopt this visual
shorthand: a rectangle represents a vector of nodes,
and an arrow feeding into such a rectangle annotated
with a weight matrix represents a fully connected
transformation.

We will assume bias nodes are included without
drawing them.

This image shows a simple (nonrecurrent) feedforward
net in our new shorthand.

VISUAL SHORTHAND

Yyt =

VU

A line with no weight matrix represents a copy of the
input vector. When two lines flow into each other, we
concatenate their vectors.

Here, the added line copies h, concatenates it to x, and
applies weight matrix W.

RNNS ON SEQUENCES

Y1

3

[

VU

We can now apply this neural network to a sequence.
We feed it the first input, x1, result in a first value for
the hidden layer, h1, and retrieve the first output y1.

In the first iteration the recurrent inputs are set equal
to zero, so the network just behaves like an MLP.

The network provides an output y1, which is the first
element of our output sequence.

RNNS ON SEQUENCES

Y1 Y2

1

v, [

hy

VU

In the second step, we feed it the second element in
our sequence, concatenated with the hidden layer
from the previous sequence.

RNNS ON SEQUENCES

VU

And so on.

HOW TO TRAIN RRNS?

At time t the network of t-1 has disappeared.

Backpropagation Through Time (BPTT): remember the history as a
computation graph.

Vu¥

HOW TO TRAIN RNNS? UNROLLING

1 t t3 ta s 6

ViV Vs ¥a ¥ Vs

5 X1 X2 X3 X4 Xs X6 Vuk

Instead of visualising a single small network, applied at
every time step, we can unroll the network. Every step
in the sequence is applied in parallel to a copy of the
network, and the recurrent connection flows from the
previous copy to the next.

Now the whole network is just one big, complicated
feedforward net, that is, a network without cycles.
Note that we have a lot of shared weights, but we
know how to deal with those.

Y1 Y2 VE Ya Ys
E
5 X1 X2 X3 X4 Xs X6 Vuk

Now the whole network is just one big, complicated
feedforward net. Note that we have a lot of shared
weights, but we know how to deal with those.

Here, we’ve only drawn the loss for one output vector,
but in a sequence-to-sequence task, we’d get a loss for
every vector in the output sequence, which we would
then sum.

TRUNCATED BACKPROPAGATION THROUGH TIME

Lﬁ h m
no comp graph

. VU¥

In truncated backpropagation through time, we limit
how far back the backpropagation goes, to save
memory. The output is still entirely dependent on the
whole sequence, but the weights are only trained
based on the last few steps. Note that the weights are
still affected everywhere, because they are shared
between timesteps.

Before the truncation point, we do not need to
maintain a computation graph, so up to the
computation of hs, we do not need to store any
intermediate values.

Note the following:
» RNNs are sequence-to-sequence layers

shared weights, variable length.

RNNs are causal

only backwards connections

Potentially unbounded memory

VU

RNNs: SLOW, WITH A (POTENTIALLY) LONG MEMORY

RNN

h1 h, h3 ha|

sequential processing —»

CNN

< finite “memory” -

VU

SEQUENCE-TO-LABEL

sequence input

label output

VU

When training sequence-to-label, it’s quite common to
take the last hidden state as the label output of the
network (possible passed through an MLP to reshape
it).

Thos is broadly equivalent to the global unit shown in
the first video, so this does mean that the last part of
the sequence likely has more influence on the outptu
than the first part. Nevertheless, it is a common
configuration.

LABEL-TO-SEQUENCE

label input h4] h) h3 hy hs he

Vu¥

Similarly, in a label-to-sequence task, you can pass the
label vector as the first hidden state. This is a compact
way to do it, but do note that the last tokens in the
sequence are further way than the first (there are
more computations in between). For this reason a
repeat strategy as shown on layer 36, may be more
powerful (at the cost of a little more memory).

LABEL-TO-SEQUENCE AND SEQUENCE-TO-SEQUENCE

label input hql h2 h3| hy| hs he|

sequence input

VU

If you want to do teacher forcing, or something similar,
the hidden state is a neat way to combine the label
input and the sequence input.

RNNs AND VANISHING GRADIENTS

potentially infinite memory, practically short memory.

59

VU

In theory, RNNs are a wonderful model for sequences,
because they can remember things forever. In practice,
it turns out that these kinds of RNNs don’t. Why not?
consider the path taken by the backpropagation
algorithm: it passes many activation layers (and these
are sigmoids in the most common RNNs). At each step
the gradient is multiplied by at most 0.25. The problem
of vanishing gradients is very strong in RNNs like this.

We could of course initialize the weight matrices W
very carefully, use ReLU activations, and perhaps even
add an occasional batch-norm-style centering of the
activations. Unfortunately, in the 90s, none of these
tricks we known yet. Instead researchers am up with
something entirely different: the LSTM network.

Lecture 5: Sequential data

Peter Bloem, David Romero
Deep Learning

dlvu.github.io

VRIJE
= universET
AMSTERDAM

LSTMs and friends

adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vu¥

| section|LSTMs and friends|
| video| https://www.youtube.com/embed/
fbTCvvICk8M?si=lzXc2KfpCuuC_Mtu|

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

remember information for very long. Technically they

can, but the gradient vanished too quickly over the
timesteps.

I was born in France, as matter of fact in You can’t have a long term memory for everything. You

alittle village near Paris, it's famous for need to be selective, and you need to learn to select

its pain-au-chocolat, | lived there until |)

was 16, when | moved to Amsterdam, French words to be stored for the long term when you first

so I'm fluentin... Dutch see them.

Aquarium In order to remember things long term you need to
forget many other things.
. VU

have a complex mechanism, which we’ll go through step by
Long short-term memory step, but the main component is a gating mechanism.

Selective forgetting and remembering, controlled by learnable “gates”

Possibly the first successful deep neural network (CNNs a close second).

. Vu¥

orange square, which we’ll detail later). Between cells,

there are two recurrent connections, y, the current
Llj E E E E output, and C the cell state.
U C3 l Cs l Cs U Ce U

11, 1< L 10 10 i .
Y3 Ya Ys Ye

RAd AR Rallig 170 .

X3 X4 Xs X6 X7
VU

They’re a complicated bunch, so we’ll first represent

o = |:yt—1] fe =05 (Wexq +br) Ce=fi@ca+l®t what happens visually.
t Xt iy = 05 (Wix{ + b:) Yt = 0t ® o)
Cy = 0y (Wexy +be)
Oy =05 (WuX(+b,)
|;

LB L

L . .

4 4 |i|

concatenate

apply weights w

and corresponding bias

sigmoid activation —0 |

1
Ot
tanh activation —
Bl

Here is our visual notation.

element-wise operation (?
vu¥
v y Here is what happens inside the cell. It looks complicated,
t-1 t
|:| but we’ll go through all the elements step by step.
. = {
w; IW‘ we |
Xt Xt+1
The first is the “conveyor belt”. It passes the previous cell
state to the next cell. Along the way, the current input can
be used to manipulate it.
Ct+1 Gy
Y)
Tt 1t ®Ct Note that the connection from the previous cell to the next

has no activations. This means that along this path,
gradients do not decay: everything is purely linear. It’s also
very easy for an LSTM cell to ignore the current
information and just pass the information along the

conveyor belt.

——

s [yea] o (W
/= |V

fy = o5 (Wexg +by)

Here is the first manipulation of the conveyor belt. This is
called the forget gate.

It looks at the current input, concatenated with the
previous output, and applies an element-wise scaling to the
current value in the conveyor belt. Outputting all 1s will
keep the current value on the belt what it is, and outputting
all values near 0, will decay the values (forgetting what
we've seen so far, and allowing it to be replaces by our new

values in the next step).

iy =05 (Wix{ + by)
¢ = o (Wex{ +be)

in the next step, we pass the input through a generic gate, as
described earlier, and add the resulting vector to the value
on the conveyor belt.

sigmoid vector
to add

— 3

input

; Vu¥

The gate combines the sigmoid and tanh activations.
The sigmoid we’ve seen already. The tanh is just a the
sigmoid rescaled so that its outputs are between -1
and 1.

The gating mechanism takes two input vectors, and
combines them using a sigmoid and a tanh activation.
The gate is best understand as producing an additive
value: we want to figure out how much of the input to
add to some other vector (if it’s import, we want to
add most of if, otherwise, we want to forget it, and
keep the original value).

The input is first transformed by two weight metrics
and then passed though a sigmoid and a tanh. The
tanh should be though of as a mapping of the input to
the range [-1, 1]. This ensures that the effect of the
addition vector can’t be too much. The sigmoid acts as
a selection vector. For elements of the input that are
important, it outputs 1, retaining all the input in the
addition vector. For elements of the input that are not
important, it outputs 0, so that they are zeroed out.
The sigmoid and tanh vectors are element-wise
multiplied.

Note that if we initialise Wt and Ws to zero, the input
is entirely ignored.

0y =05 (Woxy +b,)

Finally, we need to decide what to output now. We take the
current value of the conveyor belt, tanh it to rescale, and
element-wise multiply it by another sigmoid activated layer.
This layer is sent out as the current output, and sent to the
next cell along the second recurrent connection.

Note that this is another gate construction: the current ¢
value is passed though a tanh and multiplied by a filter o.

Andrej Karpathy

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

The Unreasonable Effectiveness of Recurrent Neural Networks

VU

SEQUENCE-TO-SEQUENCE: AUTOREGRESSIVE MODELING

On interesting trick we can use on a causal model, is to
feed it some sequence, and to set the target as the

targets e 1 1 o ! ! same sequence, shifted one token to the left.
|:| |:| |:| |:| |:| |:| This effectively trains the model to predict the next
character in the sequence. Note that this only works
e 5 with causal models, because non-causal models can
just look ahead in the sequence to see the next
D D D D D D character.
causal s2s
inputs h e | | o !
i3
Remember, this is a character level language model.
SHAKESPEARE suag
PANDARUS :
Alas, I think he shall be come
approached and the day
When little srain would be
attain'd into being never fed,
And who is but a chain and
subjects of his death,
I should not sleep.
Second Senator:
They are away this miseries,
produced upon my soul,
Breaking and strongly should be
buried, when I perish
The earth and thoughts of many VU?
Note that not only is the language natural, the wikipedia
WIKIPEDIA y suag p

Naturalism and decision for the majority of Arab
countries' capitalide was grounded

by the Irish language by [[John Clair]], [[An
Imperial Japanese Revolt]], associated

with Guangzham's sovereignty. His generals were the
powerful ruler of the Portugal

in the [[Protestant Immineners]], which could be
said to be directly in Cantonese

Communication, which followed a ceremony and set
inspired prison, training. The

emperor travelled back to [[Antioch, Perth, October
25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the

[[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest
of India with the conflict.

Copyright was the succession of i in the

slop of Syrian influence that
was a famous German movement based on a more

Vu¥

markup is also correct (link brackets are closed properly,
and contain key concepts).

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Z5T2T]] to note, the Kingdom
of Costa Rica, unsuccessful fashioned the
[[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest
of India with the conflict.

Copyright was the succession of i in the
slop of Syrian influence that

was a famous German movement based on a more
popular servicious, non-doctrinal

and sexual power post. Many governments recognize
the military housing of the

[[Civil Liberalization and Infantry Resolution 265
National Party in Hungary]],

that is sympathetic to be to the [[Punjab
Resolution]]

(PJS) [http://www.humah.yahoo.com/guardian.
cfm/7754800786d17551963s89.htm Official economics
Adjoint for the Nazism, Montgomery

was swear to advance to the resources for those
Socialism's rule,

was starting to signing a major tripad of aid

exile.]] VUk

The network can even learn to generate valid (looking)
URLs for external links.

Sometimes wikipedia text contains bits of XML for

structured information. The model can generate these
<page>
<title>Antichrist</title> ﬂawlessly_
<id>865</id>
<revision>
<id>15900676</id>
<timestamp>2002-08-03T18:14:122</timestamp>
<contributor>
<username>Paris</username>
<id>23</id>
</contributor>
<minor />
<comment>Automated conversion</comment>
<text xml:space="preserve">#REDIRECT
[[Christianity]]</text>
</revision>
</page>

VU

LATEX

e (3) and (3) by the

5o || (b the formal open cover
Spec() aver U compatible with the o

Prof. Proo of (1), Tt o start wo gt
1= Spec(R) = U xx U xx U
prove the e
the

o s to check the fact tht the following
(1) 1 i lcall o i typ. Since § = Spoc(R) and ¥ m Spc(R)
sheaves on X, But given o scerne U and 0
Lot U0 = Ly s b the scheme X over
[o

posesof thi plcs that 7,
To prove sty wo s that ¥l b covringof 2, nd 7, b an abject of s for
{ of O modles on € s & F-modie

o ad

over 5, E m Ty

f Tuo Ay works.

operty we s that i the et functor (77). On the
o o that
D(Oy) =0xD)

Wo will e the pr
other hand, by Lesuma 77

where € i an F-algobra where dus I schimae over S, o

VU

VARIANT: PEEPHOLE CONNECTIONS

Xt Xi+1

VU

VARIANT: GRU

I L .- [Ua—l]

»7)
Xt
©)
zy =05 (Woxg 4+ b2)
o Ty =05 (Wix{ +b,) -
9= o0 (wy [9‘3‘“@“} +b.)

Y=(1-2) @Y1 +2. @

Xt Xt+1

VARIANT: Co

For high-dimensional data (like a sequence of images) the weight matrices
W get very big.
Solution: replace the linear operations with convolutions.

all the vectors becomes 3-tensors.
fo =05 (Wexxg+by)
s (Wl * X,l: + bl)
Cr = 0¢ (Wesxi+be)
(Wo *x; +b,)

4

N -

el we w_vﬁof
.

. " w0s® i3

|
q

iy =

Ot = 05

-

Long short-term memory

Hochreiter and Schmidhuber, 1997

Probably the first effective deep network

closely followed by the CNN

Maintains a linear “conveyor belt” over time which keeps gradients strong
manipulated by short-term non-linear operations

One of the most successful models in the past two decades

beginning to lose some limelight to self-attention but by no means irrelevant

Many variants, most perform broadly the same

The key features seem to be a linear conveyor belt, and sig/tan gates.

Vu¥

Lecture 5: Sequential data

Peter Bloem, David Romero
Deep Learning

% & v
} . UNIVERSITEIT
dlvu.github.io VU ® AMSTERDAM

| section| CNNs for sequential data|
|video| https://www.youtube.com/embed/
rT77I1BfAZm4?si=XzPOr-6eTglmsUgh |

CNNs FOR SEQUENTIAL DATA

VU

SUMMARY OF PREVIOUS TECHNIQUES

So far we have seen recurrent architectures, e.g.,, RNNs, LSTMs, ...
Properties:
+ Able to handle arbitrarily long sequences (via recurrence).

» BUT suffer from vanishing / exploding gradients problem.
(Difficult to train and to learn from the far past).

CNNss offer an interesting alternative for sequence modelling.

. Vu¥

CONVOLUTION FOR TIME SERIES

Recall from Lecture 3 (CNNs) that Conv1D can be used for time-series.
However, the standard convolution considers “future” values in the computation.

Unconvenient for several applications, e.g., sequential sampling, regression, ...

Standard Convolution

eI,

cosdbbliees

—_—
Past } Future
Present

. Vu¥

CAUSAL CONVOLUTION

Solved by providing a causal formulation to convolutions. That is, a formulation in
which the present value only depends on past and present input values.

Causal Convolution Standard Convolution

......,.%.W....

.......m. ;..M...

—_—
Past. 1 Past 1 Future
Present Present

s VU

L CON

ION

Causality is easily obtained by padding asymetrically.
For a convolutional kernel of size K add padding of K — 1 in the “past direction”.

For K = 3, pad as ‘o 0 x(0) x(1) x(2) x(3)‘

insteadof |0 x(0) x(1) x() x() o0 |

Causal Convolution

........%.

oooooo‘o_o/ovllo

As a result, the convolutional kernel
will only see present and past input
values only.

Past
Present

VUf

THE RECEPTIVE FIELD

For a convolutional kernel of size K, the output at position t can be dependent on
input values up to K - 1 steps in the past. The space it ‘sees’ is called receptive field.

Causal Convolution

........%.

0000000 @
Past]
Present

For filter of size 2, up to
1 step back in the past !

Option 1. Large filters -> A lot of weights!
(No parameter efficient).

is 22050 points per second of audio.

Is there any other option? YES!
Option 2. Dilate the convolutional filter.

How to deal with long range dependencies?

— sidenote — This is important because time-series are very
) long. A second of audio is often sampled at 22.05Khz. That

VUl

DILATED ONVOLUTIONS

Dilate the convolutional filter of size K by a dilation factor d. The output at position

t can be dependent on input values up to d(K - 1) steps in the past.

Causal Dilated Convolution

weights.

x(t-d)

With dilated convolutions, we can look back
far in time without increasing the number of

For filter of size 2 and dilation
factor of 4, up to 4 steps back

Issues? YES! -> Extreme sparsity. We cannot
see input values between x(t) and x(t - d).

in the past ! Solution: Stack convolutions with different
dilation factors.
: vu¥
TEMPORAL CON IONAL NETWOR

We can stack several convolutional layers to form Dilated Causal Convolutional
Networks, a.k.a., Temporal Convolutional Networks (TCNs).

209909029

5

——> Dilation factor = 8
~~|"- = Dilation factor = 4
|, —— Dilation factor = 2

/= Dilation factor = 1

With exponentially growing receptive fields, we can observe all the input values
within the receptive field of the entire network.

9

VU

IONAL NETWORKS

—— Dilation factor = 8
. — Dilation factor = 4

_ ——> Dilation factor = 2

/= Dilation factor = 1

With the shown dilation scheme, the receptive field R of a TCN with [layers and
convolutional kernels of size k is calculated as:

R=2(k—-1)
That is, the network can see all values up to R — 1 steps in the past.

. Vu¥

Gradient Flow
Direction

TCNs have a different gradient flow direction than recurrent nets. Since they do not
have recurrent connections, they do not use Back-Propagation Trough Time!. Hence:

1. They can be trained in parallel -> Much faster training + optimal GPU usage.

2. They do not exhibit exploding / vanishing gradient problems along the time axis
->They can learn from the far past without problems (for input values within
their receptive fields).

. Vu¥

NETWOR

In comparison with recurrent architectures, TCNs bring the following advantages:

1. They can be trained in parallel -> Much faster training + optimal GPU usage.

2. They do not exhibit exploding / vanishing gradient problems along the time
axis -> They can learn from the far past without problems (for input values
within their receptive fields).

However, they present the following disadvantages:

1. The receptive field of TCNs is fixed a priori. Input values outside cannot be
considered for the calculation of the output at a particular position.

2. TCNs cannot be unrolled for arbitrarily long inputs. Hence, they always see the
input part within their receptive field as input.

. Vu¥

TCNS IN PRACTICE

TCNs are broadly use in practice. Applications can be found for text, audio, time-
series, recognition, classification, generative modelling, etc.

Models

Sequence Modeling Task Model Size ()~
LSTM GRU RNN TCN
Seq. MNIST (accuracy") 70K 872 962 215 990
Permuted MNIST (accuracy) 70K 857 873 253 972
Adding problem T'=600 (loss") 70K 0164 53e5 0177 58e5
Copy memory T=1000 (loss) 16K 00204 00197 00202 355
Music JSB Chorales (loss) 300K 845 843 891 810
Music Nottingham (loss) ™M 320 346 405 307
Word-level PTB (perplexity”) 13M 7893 9248 11450 8868
Word-level Wiki-103 (perplexity) - 434 - - as1
Word-level LAMBADA (perplexity) - 4186 S s m
Char-level PTB (bpc”) M 136 137 148 131
Char-level text8 (bpe) EY 150 153 169 145

Baiet.al."18

TCNs outperform recurrent nets in their “home-turf”.

VU

TCNS IN PRACTICE

TCNs are broadly use in practice. Applications can be found for text, audio, time-
series, recognition, classification, generative modelling, etc.

In fact you know and probably some of you use one such networks ;) Each time you
say “Ok Google ...” who answers you is:

WAVENET: A GENERATIVE MODEL FOR RAW AUDIO ©.0.0.0.0.0.0.0.0.0.0.0.0.0.0.9 o
Aiiron van den Oord ‘Sander Dicleman ‘Hciga Zen' b = Z 3
e
[Pr— it Viyas Jr—
st Loy
AP — Jr— Koray Karakcuogla By
aenLoyr
i, fod
.

You can find several cool examples at:
https://deepmind.com/blog/article/wavenet-generative-model-raw-audio

. Vu¥

co

ING TEMPORAL CONVOLUTIONAL NETWO

Time-series have long dependencies. For example, a second of audio at 22.05KHz
corresponds to 22050 samples in a single second.

With the dilation scheme presented before and convolutional filters of size k = 7, we
require [layers in order to represent a single second of audio, where:

R=2'(k—1) - 22050 =2{(7 — 1) o [=10g,(3675)
[=11843
In other words, we need 12 layers to have a receptive field of 1 second. If receptive

fields of multiple seconds are required, we need even deeper networks.

However, neural networks can present vanishing gradients if they are too deep (see
video 4 of lecture 4). How can we train TCNs? -> We need some tricks!

Vu¥

CONS ING TEMPORAL CONVOLUTIONAL NETWORKS

In order to avoid vanishing gradients and improve learning, TCNs use batch
normalization, residual connections and (optionally) dropout. (see video 4
of lecture 4).

A single residual block looks as:
0= (0,5
‘Residual block (k, d)

i iResidual block (k=3, d=1) (1) :(1)
i oy o
5 1 — Convolutional Fitter
oLy H Identity Map (or 1x1 Conv)
Wagnom ; |
. ;
= /]
+ g /
Zo ©) ... Try Tr

. o VUt

co

ING TEMPOR

CONVOLUTIONAL NETWORKS

In order to avoid vanishing gradients and improve learning, TCNs use batch
normalization, residual connections and (optionally) dropout. (see video 4
of lecture 4).

A single residual block looks as:

200, 0)
Residual block (k, d) | {Residual block (k=3 d=1) (1 -(1)
ESN
¢ 1 Fitter
oty H Identity Map (or 1x1 Conv)|
Wognom i |
e ‘ /
+ oo | I
== optora) |
e 7
+ i
Wognom i /
= ‘
L @ To Ty - Tres Tr
3 e
:)
. Residua connection VU

CONSTRUCTING TEMPORAL CONVOLUTIONAL NETWORKS

In order to avoid vanishing gradients and improve learning, TCNs use batch
idual ions and (optionally) dropout . (see video 4

normalization, r
of lecture 4).

And the residual blocks can be stacked as before:

i B i)

Residual block (k, d)

Rasidual biook (k23 d=1) 101
#2, 5

o Gonuolutionai Fiter i’

- = dantty Map or 1x1 Cony) 7/

= g /|
T 7 DA o

- - P o I

~ -

~ ~
/
ANl

EE NS @raredze A =)

TCNs are an strong alternative to recurrent networks.
They present some important improvements and some important limitations.

They are often used in practice and have found a lot of important applications.

Selecting the current method is dependent on the task at hand. But TCNs have a lot of

potential in making recurrent nets “obsolete”.*

TCNs seem to be a lightweight contender of Transformer networks (Lecture 12).

* We are currently doing reserach in this direction. New paper at the QDA group to come out soon. If you are interested

and would like to write your master thesis in this topic, let us know ;)

19

VUl

ELMo, A CASE STUDY

| section | ELMo, a case study|
| video| https://www.youtube.com/embed/
csAIWIHmMwAQ?si=1GDZdwZ34YydsEvl |

WORD2VEC (2013, SKIPGRAM VERSION)

shall i compare thee to a summers day thou art more lovely ...
X

x y
compare shall
compare i
compare thee y
compare to 3 100000
thee i
thee compare
thee to E— 300
thee a
to compare
to thee
to a 1 100000
to summers
a thee X
a to
a summers
; day VU
cummare o

To place ELMo into context, let’s first look at one of it’s
predecessors: Word2Vec.

We slide a context window over the sequence. The
task is to predict the distribution p(y|x): that predict
which words are likely to occur in the context window
given the middle word.

We create a dataset of word pairs from the entire text
and feed this to a very simple two-layer network. This
is a bit like an autoencoder, except we're not

reconstructing the output, but predicting the context.

The softmax activation over 10k outputs is very
expensive to compute, and you need some clever
tricks to make this feasible (called hierarchical softmax
or negative sampling). We won’t go into them here.

AFTER TRAINING

€compare

1

compare

Vu¥

After training, we discard the second layer, and use
only the embeddings produced by the first layer.

embedding

linear

Jll compare

Ecompare

VU

Here, we can see a very direct example of the principle
noted at the start of the lecture: that multiplying by

Because the input layer is just a matrix multiplication,
and the input is just a one-hot vector, what we end up
doing when we compute the embedding for word i, is
just extracting the i-th column from W.

In other words, we’re not really training a function that
computes an embedding for each word, we are
actually learning the embeddings directly: every
element of every embedding vector is a separate
parameter.

€king T €woman -~ €man = €queen

“feminine” direction

WOMAN
AUNT QUEENS

MAN /
UNCLE KINGS \

QUEEN QUEEN

KING KING

(Mikolov et al., NAACL HLT, 2013)

VU¥

Famously, Word2Vec produces not just an informative
embedding, where similar words are close together, but for
many concepts, there seems to be a kind of algebraic
structure, similar to the smile vector example from the
autoencoder.

DATA BIAS

he (84) she (116)

Jp—

2 . 0001ct 5 oncooptt =
e !.m.z..m ‘ . ..,t,.g,tn'"sws'-" 4 ggl i
s By [1oy meror designer = — B e B

Tk ‘surgoon - !—— = @ nurses e g
2 280 ibrarian SefTs
R — = arender b & g
i T jEE B2 R gt nmrse =8-S,
_ © mechanic 238 . {orostiute * ES g aum=3 - husband .
§ nourologist " - s (110720151 !"i 1 E]
~ onwsicin H noarssurgeon housekeeper T 8" o FIT S e 2]
 chaplain =3 handyman 4 — = D BT O 2
F]] r— o oS S S AE e

}‘ S E nookkesper 7
e wio§ & pharnacis
8 e
& Tomsical m.....mé
e
108 source: wordbias.org VU*

Word2Vec was also one of the first systems that clearly
showed the way that machine learning models could
be biased.

As useful as word embeddings are, it’s very important
to be aware that they will reflect the bias in your data.
Any large collection of text, for instance, will reflect
gender biases that exist in society.

In itself, this is not a bad thing: it may even help to
map out those biases and study them better.

DATA BIAS

= Google Translate [+ = Google Translate 2

My friend is a doctor x My friend is a doctor x

Mi amigo es doctor Tt s gade spach: LEARM MORE

Mi amiga es doctora s
©

Mi amigo es doctor)
-

109 source: https://ai.googleblog.com/2020/04/a-scalable-approach-to-reducing-gender.html VU %“

However when you use these statistics in an
application, you need to turn your predictions into
actions, which will almost certainly end up reinforcing
the existing biases.

Shown here is google’s machine translation system. A
sentence which is gender-neutral in English, like “My
friend is a doctor” cannot be translated in a gender-
neutral way into Spanish. In the earlier versions of
Google Translate, a gender was chosen (implicitly),
mostly dictated by the statistics of the dataset. You
may argue that these statistics are in a sense reflective
of biases that exist in society, so that it is indeed more
likely that this sentence should be translated for a
male. However, that doesn’t mean that we’re certain
that the user wants the sentence translated in this
way. And by reducing uncertain predictions to discrete,
certain actions, we run the risk of not just reproducing
the bias in our data, but also amplifying it.

The solution (in this case) was not to reduce the
uncertainy by guessing more accurately, but to detect
it, and communicate it to the user. In this case, by
showing the two possible translations.

WORD2VEC SUMMARY

Word2Vec creates embedding vectors for words.
Standard W2V embeddings can be downloaded from Google.

Training task: for word x, predict p(ylx) that y occurs in the context of x.
In the embedding space distances and directions reflect semantic meaning.

Word2Vec embeddings are a great starting point for deep learning projects on natural
language.

VU¥

http://wordbias.org
https://ai.googleblog.com/2020/04/a-scalable-approach-to-reducing-gender.html

USING W2V EMBEDDINGS IN SEQUENCE-TO-SEQUENCE MODELS

— N

embedding layer ’ < use word2vec embeddings » ‘

3 345 2345 324 3 2893

Vu¥

W2V embeddings have many uses. For our current
purposes, the most interesting application is that if we
have a sequence-based model, with an embedding
layer, we can use word2vec embeddings instead of
embeddings learned from scratch. We can then fine
tune these by backpropagation, or just leave them as
is.

We find that adding W2V embeddings often improves
performance. This is because the s2s model is likely
trained on a relatively small datasets, since it needs to
be hand-annotated. W2V, in contrast, can easily be
trained on great volumes of data, since all we need is a
large corpus of high-quality un-annotated text. By
combining the two, we are adding some of the power
of that large volume of data, to our low-volume

THE POWER OF PRETRAINING

unsupervised pre-training supervised finetuning
large, unannotated data small hand-annotated data
simple task: complex task:

- next token prediction - entailment
- context prediction - question answering

- sentiment classification

Vu¥

This would prove to be a great breakthrough in natural
language processing: pre-training on an unsupervised
task, and finetuning on supervised data, could lead to
much greater performance than had been seen before.

CONTEXTUAL WORD EMBEDDINGS

He dusted the bookshelves with care.

She dusted the cake with icing sugar.

Vu¥

To take this principle, and build on it, the first thing we
must do is to learn contextual representations of
words. The same word can mean different things in
different contexts.

While Word2Vec uses the context of a word as a
training signal, it ultimately provides only a single
embedding vector for any given word. To get
contextual representations for our words we need to
pre-train a sequence to sequence model on a large
amount of unsupervised data.

CONTEXTUAL WORD REPRESENTATIONS

Pre-train a sequence-to-sequence model to produce words
representations in context.

Note that this requires transferring the model rather than the embeddings.

- CoVe (2017)

« ULMFit (2018)

+ ELMo (2018)

« BERT (2019), GPT-1 (2018), GPT-2 (2019), GPT-3 (2020)

more in lecture 12

VU¥

ELMo wasn’t the first model to do this, nor is it
currently the best option available, but it was the first
model that achieved state-of-the-art performance on a
wide range of fine tuning tasks, and it was the last
model that used RNNS (the later models all use only
self-attention), so it seems suitable to highlight it at
this point.

ELMo (2018)

1. Character-based word representations.

2. Bidirectional LSTM structure.

3. Pre-trained as a language model.

CHARACTER-AWARE HIGHWAY ENCODER

the cat sat the mat]
word representations 512 dim

highway

global maxpool

— " different kernel widths

il
character embeddings H

inputs t,h e cat s, at o,n t,h,e m,a,t 2048 char.

116 Character-Aware Neural Language Models, Kim et al AAAI 2016 VU 3

dimensions by a hidden layer applied token-wise(and

two multilayer LSTMs: forward and backward. then projected back up again to 512 for the next
LSTM).

poggpog ~- DOEEAE

‘LSTM ‘ dim 4096 |LSTM

poopgpog -~ OOO0AE

‘LSTM ‘ dim 4096 |LSTM |

FEOOED ~

vu¥

sequence up into its tokens (in this case the words of
the sentence) and model each as a random variable.

Note that these random variables are decidedly not
p(“congratulations you have won a prize”) independent.

This leaves us with a joint distribution over 6 variables,
which we would somehow like to model and fit to a
dataset.

= p(W,; —congratulations, W,—you, W3 —have,
W,=won, W5=a, Ws—prize)

P(Wi, Wa, W3, Wy, Wi, W)

Vu¥

p(x,y) =pxly)py)

Vu¥

If we have a joint distribution over more than two variables
on the left, we can apply this rule multiple times.

CHAIN RULE OF PROBABILITY

Wy, Wa, Wa, W)
= p(Wi, Wy, Ws | Wy)p(W1)
=p(Wy, Ws | Wy, Wy)p(Ws | Wi)p(W1)

=p(Wiy [W3, Wo, W1)p(W3 | Wa, Wi)p(Wo | Wi)p(W1)

p(prize | a, won, have, you, congratulations)

Vu¥

This gives us the chain rule of probability (not to be
confused with the chain rule of calculus, which is entirely
different), which is often used in modelling sequences.

The chain rule allows us to break a joint distribution on
many variables into a product of conditional distributions.
In sequences, we often apply it so that each word becomes
conditioned on the words before it.

This tells us that if we build a model that can estimate the
probability p(x|y, z) of a word x based on the words y, z that
precede it, we can then chain this estimator to give us the
joint probability of the whole sentence x, y, z.

log p(sentence) =

Z log p(word | all words before word)

word esentence

Vu¥

In other words, we can rewrite the probability of a
sentences as the product of the probability of each word,
conditioned on its history. If we use the log probability, this
becomes a sum.

Note that applying the chain rule in a different order would
allow us to condition any word on any other word, but
conditioning on the history fits well with the sequential
nature of the data, and will allow us to make some useful
simplifications later.

d)
s before wor
Jog p(word | all wgrd
targets cat sat on thg,."'.mat <>
00 00 O 0towme
|causaI525 |
O 0 0 0 0 O
|causa|sZs |
122 inputs the cat sat on the mat Uk

If we train our LSTM autoregressively, we are
essentially maximizing this language model loss, by
optimizing for a conditional probability at each token
in our sequence.

LANGUAGE MODEL

p(W | the, man, fell, out, of, the)

A perfect language model would encompass
everything we know about language: the grammar, the
idiom and the physical reality it describes. For
instance, it would give window a very high probability,
since that is a very reasonable way to complete the
sentence. Aquarium is less likely, but still physically
possible and grammatically correct. A very clever

-
forward LSTMs the cat sat the mat
backward LSTMs

CNN “embeddings” ‘ ‘

inputs the cat sat on the mat VU*

l . . .
g language model might know that falling out of a pool is
the man fell out of the ... window not physically possible (except under unusual
aquarium circumstances), so that should get a lower probability,
ol and finally cycling is ungrammatical, so that should get
. very low probability (perhaps even zero).
VU
@t st on the mat < tagets the on st et the < The residual connections are drawn only for one token
D D D D D D D D D D D D but they are applied to every token in the sequence.
Ultimately, this gives us 5 different representations for
‘LSTM ‘ ‘LSTM ‘ every input word. Which one should we use in our
D D D D D D D D D D D D downstream task?
‘LSTM ‘ ‘LSTM ‘

Take a weighted mixture of all word embeddings h.

Lis the LSTM depth, all purple values are trainable in finetuning.

Learn the weights, together with a downstream network.

L L
ex = Yih]k“lt + v Z f]- h{z‘;ward +v Z bjhiz?;:kward
j:O]':0

Vu¥

TASK | PREVIOUS SOTA Our ELMo +
BASELINE BASELINE

SQuAD | Liuet al. (2017) 84.4 || 81.1 85.8

SNLI Chen et al. (2017) 88.6 || 88.0 88.7 £0.17

SRL He et al. (2017) 81.7 || 81.4 84.6

Coref Lee et al. (2017) 67.2 || 67.2 70.4

NER Peters et al. (2017) 91.93 £0.19 || 90.15 92.22 +£0.10

SST-5 McCann et al. (2017) 53.7 || 514 54.7+0.5

VU¥

ELMo (2018):
Large unsupervised pretraining, small-scale supervised finetuning
BiLSTM structure

Elaborate finetuning architectures still required.

more on this when we get to self-attention

Vu¥

