Lecture 4: Tools of the trade

Peter Bloem

Deep Learning

dlvu.github.io

VRIE
£ universTET
? AMSTERDAM

In the previous lectures, we’ve seen how to build a
basic neural network, how to train it using
backpropagation and we’ve met our first specialized
layer: the Convolution. Putting all this together, you
can build some pretty powerful networks already, but
doing so is not a trivial process. Today, we’ll look at
some of the things you need to know about to actually
design, build and test deep neural nets that work well,
and work efficiently.

part one: Deep Learning in practice

part two: Why does any of this work at all?

part three: Understanding optimizers

part four: The bag of tricks

VU

WARNING:

This lecture is heavily overloaded. We've tried to strip
it down, but if you’re going to do deep learning there
are many concepts that you simply have to have seen,
however briefly, to make effective use of the methods.
We've crammed them all into one lecture, which is
why this one is a little long.

To get through all the material, we recommend

Skimming first so you’ve seen the names of all topics
discussed. You can then come back later when they
become relevant.

Skip the slides with grey headers in the first pass.
These provide useful insight, but they are less
crucial, and usually quite technical.

Skim the last part, and come back to it later. Most of
these techniques only make sense when you start
building larger networks. Make sure you get a
general sense of each topic and then come back to it
when it becomes relevant.

DEEP LEARNING IN PRACTICE

Let's start by looking at the practical business of
building deep learning models. Either for research
purposes, or for production settings. What does the
process look like, and what do you need to keep in
mind at each step?

| section|Deep learning in practice|
|video| https://www.youtube.com/embed/
EE5jTGP7wrM?si=RdsrimFZKcKNDk4! |

Pick a task, get some data
Debugging your model
Develop a model, tune hyperparameters

Publish model, or push to production

Vu¥

We’ll divide the generic deep learning development
pipeline into these four basic stages, and give some
general tips and pointers for each.

DATA, BEST PRACTICES

v

Withhold test data to gauge your model performance

Withhold validation data to develop your model and tune the
hyperparameters (learning rate, batch size, etc).

Whatever is left over is your training data.

Benchmarks come with canonical splits. If not, you’re responsible for
splitting.
. VU

Most of the standard practices of data handling are
carried over from basic machine learning, so we won’t
go into them here. If you haven’t taken a machine
learning course, please make sure to read up on
things like ROC curves, dataset splits, cross validation
and so on. We will only review briefly the most
important principle: the notion of a train, validation
and test set.

You measure the performance of your model on data
that it hasn't seen before: the test set. If you overuse
the test set during model development, you end up
tuning the model to the test set anyway, so the rule is
that in a given project you use the test set only once:
to measure the final performance of your model that
you will report. In order to make choices during model
development (which hyperparameters, how many
layers, etc) you check the performance on another set
of withheld data called the validation set. Whatever
data you have left over after withholding these two,
you can use as training data.

The MNIST data that you've seen in the first
assignment is an example of a benchmark that comes
with a canonical test/train split, but not with validation
data. That doesn’t mean you're free to use the test set
for validation, it means you have to split the training
data into a training and validation split yourself.

HOW MUCH DATA DO YOU NEED?

The size of the test set is more important than the size of the training set.

Deep learning has a reputation for being data hungry.
Don’t expect to get very far with a hugely deep model,
if you don’t have a decent amount of data. How much
exactly? The first consideration is not how much
training data you have, but how much test data (and,
by extension, how much validation data)

Having a small training set may mean that your model
doesn’t learn, but having a small test set means that
you can’t even tell whether your model is learning or
not.

CONFIDENCE INTERVALS

test/validation set size accuracy

100

1000

10000

. Vu¥

To understand the importance of test set size, let’s
look more closely at what we’re doing when we
compute the test set accuracy of a binary classifier. In
effect, we're estimating a statistic: the probability that
a randomly drawn instance will be classified
correctly. The size of the test set is our sample size for
this estimate. If we draw a confidence interval around
our estimate, we can see the impact of this sample
size.

The size of this confidence interval depends on two
factors: the true accuracy* and the size of the test set.
Here are some examples for different accuracies and
test set sizes. (NB:)

This tells us that if the true success probability
(accuracy) of a classifier is 0.5, and the test set
contains 100 examples, our confidence interval has
size 0.2. This means that even if we report 0.5 as the
accuracy, we may well be wrong by as much as 0.1
either side. We can't reliably tell the difference
between 40% and 60% accuracy.

Even if these confidence intervals are usually not
reported, you can easily work them out (or look them
up) yourself. So, if you see someone say that classifier
A is better than classifier B because A scored 60%
accuracy and and B scored 59%, on a test set of 100
instances, you have a good reason to be sceptical.

In practice, we usually end up trying to differentiate
between scores like 99.4% and 99.5%. Clearly, for
these kind of measurements to be meaningful, we
need test and validation sets with at least 10 000
instances, and often more.

*We don’t know the true accuracy, but it’s accepted
practice to substitute the estimate, since it is likely
close enough to get a reasonable estimate of the
confidence interval.

HOW MUCH DATA DO | NEED?

Split off a test set that allows for small confidence intervals

10 000 instances is a good aim

Split off a validation set of similar size

half the size of test is fine

The rest is your training data

If your dataset is just too small:
« Consider not using machine/deep learning
« Find lots of unlabeled data: self/semi-supervised learning

« For evaluation: combined 5x2 cross-validation F-testing (Alpaydin '99)

. Vu¥

Sometimes your dataset comes with a canonical split.
If it doesn't you'll need to make your own split.

For your final training run, you are allowed to train on
both your training data and your validation data.

DO NOT USE YOUR TEST SET MORE THAN ONCE.

Just to reiterate: this is a really important principle. We
can’t go deeply into why this is so important, your
bachelor ML course should have covered this*, but just
remember this as a rule.

This is something that goes wrong a lot in common
practice, and the tragic thing is that it’s a mistake you
cannot undo. Once you’ve developed your model and
chosen your hyperparameters based on the
performance on the test set, the only thing you can do
is fess up in your report.

The safest thing to do is to split the data into different
files and simply not look at the test file in any way.

* For a refresher, watch https://youtu.be/
hHLDDJJI2v4

Examples:

« Spam detection: emails shuffled in time dimension.
« Link prediction: graphs with inverse links.

« Preprocessing before splitting.

+ normalization, running averages o2 Mary

N>
John @&“

https://en.wikipedia.org/wiki/Leakage_| ine_learning)

. Vu¥

When you accidentally use information from your test
(or validation) set in a way that the model normally
shouldn't have access to, this is called a test set leak.
This is very common, and a deep learning practitioner
should be on the look out for mistakes like these.

For instance, if you're doing spam detection
(classification of emails into ham/spam), you may
shuffle your emails before making the train/val/test
split, instead of keeping them sorted by date. Now
imagine that at some time T, a particular account starts
sending spam emails that always have the same
subject. If these emails are in your training data, the
classifier will score all of them perfectly in the test
data. But that doesn't mean that if this system had
been deployed, it would have caught the first email
with this subject. A fairer test is to keep the emails
ordered by time stamp before splitting. Then, if the
first email from this spammer is after the split, the task
of recognizing this as spam is much more challenging.

Another example is link prediction. No need to worry
about the details yet: just take my word for it that this
is a common task on graphs. You are given a partial
graph with relational links like these, and the task is to
predict which links not included might also be true. To
test a model, we withhold some of the true links. and
see if the model predicts them. Some of these graphs
contain inverse links for every relation: like a "child_of"
link for every "parent_of" relation or a "works_for" for
every "employed_by". If we split randomly, then often
one of these will be in the test set and the other in the
training set, and the prediction task will be really easy.
Here, we need to make sure that both links in such a

https://en.wikipedia.org/wiki/Leakage_(machine_learning)

pair either end up in the test set together or in the
training set.

And finally, a very common mistake is to preprocess
your data before splitting. Let's say you compute the
average of your data and subtract it from all instances
in the dataset to make the data mean-centered. If you
do this before you split the data, you are leaking
information from your test set. If you do it properly (on
only the training data, after splitting), then the average
would be less accurate, so the slightly increased
accuracy of the average is because you're using
information from your test set. More importantly,
when you use your test set, each instance is an
independent measurement of the model performance,
which you average. You can't use an aggregate statistic
over your whole test set as part of your preprocessing.
Instead, you should use the average over your training
set, and use that to preprocess your test data.

There’s no fool-proof recipe for avoiding leakage and
other mistakes like these. This is one of those
problems you have to train yourself to recognize, and
be continually on the lookout for.

TEST SET LEAKAGE: GPT-3
v

Wikipedia 3 billion 3% 34

Table 2.2: Datasets used to train GPT-3. “Weight in training mix” refers to the fraction of examples during training
that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a
result, when we train for 300 billion tokens, some datascts are seen up to 3.4 times during training while other datasets
are seen less than once.

A major methodological concern with language models pretrained on a broad swath of internet data, particularly large
models with the capacity to memorize vast amounts of content, is potential contamination of downstream tasks by
having their test or sets seen during pre-training. To reduce such contamination, we searched
for and attempted to remove any overlaps with the pment and test sets of all studied in this paper.
Unfortunately, a bug in the filtering caused us to ignore some overlaps, and due to the cost of training it was not feasible
to retrain the model. In Section 4 we characterize the impact of the remaining overlaps, and in future work we will
more aggressively remove data contamination.

2.3 Training Process

As found in [KMH 20, MKAT 18], larger models can typically use a larger batch size, but require a smaller learning
rate. We measure the gradient noise scale during training and use it to guide our choice of batch size [MKAT18]. Table
2.1 shows the parameter settings we used. To train the larger models without running out of memory, we use a mixture
of model parallelism within each matrix multiply and model parallelism across the layers of the network. All models
were trained on V100 GPU’s on part of a high-bandwidth cluster provided by Microsoft. Details of the training process
and hyperparameter settings are described in Appendix B.

Just to show you that this happens to all of us, here is
a snippet from the paper for the GPT-3 model, a
famous large language model trained by OpenAl. Due
to a bug in their data collection code, some of the data
they intended to use to evaluate the model ended up
in in their training set.

Since the model itself cost about $10M to train and
they only found out about the bug after training, they
were stuck with the mistake and had to correct for it
afterwards as best they could.

source: “Language Models are Few-Shot Learners”
Brown et al 2020.

ek

A e data

Debugging your model
Develop a model, tune hyperparameters

Publish model, or push to production

VU¥

Next up, debugging. After you build a model, you are
bound to have some bugs. Deep learning models are
hard to debug, so it's good to know a few tricks.

WHY IS DEBUGGING DIFFICULT

Neural networks fail at runtime

e.g. shape errors

Neural networks fail silently

especially due to broadcasting

Neural networks may not fail at all

In normal programming, if your language supports
type checking, then a lot of the mistakes you make will
be noticed at compile time. That is, before you even
run the program. This is the best time to spot a bug.
You know immediately that somethings gone wrong,
and usually you get a very accurate pointer to where
you made the mistake.

In deep learning, things are more hairy. Python doesn't
have type checking, but even if it did, almost every
object in our program is usually a tensor. Type
information doesn't help us here. If our program fails,
it'll usually be at runtime. If we're lucky we will at least
get a pointer to where we made the mistake, but if we
are using lazy execution, or the mistake happens in the
backward pass, then the failure happens at a different
point in the program to where we made the mistake.

Even worse, if all your tensor shapes broadcast
together (more on this later), your neural network may
fail without telling you. You'll have to infer from your
loss becoming NaN or Inf that something is wrong.
Maybe your loss stays real-valued, but it simply
doesn’t go down. In this case you have to decide
whether your neural network is | (a) correctly
implemented, but not learning (b) has a bug that yo
haven’t spotted yet.

Finally, sometimes neural networks may not even fail
at all, despite the fact that you’ve made a mistake. You
may see the loss converge and the network train
despite the fact you’ve not implemented the model
you thought you'd implemented.

In short, deep learning programming is by nature more
treacherous than regular programming, so it pays to
be extra vigilant. The main way to learn this is to suffer
through it a few times, but we'll try to minimize the
amount you have to suffer by flagging up a couple of
common mistakes and by giving a few useful tricks.

assert my_tensor.size() == (b, ¢, h, w)
assert not x.isnan().any(), 'tensor x contains a NaN value.'
assert len(x) == n, f'tensor x has dim {len(x)}, expected {n}.'

NB: Expect asserts to be turned off in production code.

VU¥

The simplest way to stop a program from failing
silently is to check whether the program is in the state
you think it’s in, and to force it to fail if it isn’t

This is what the assert statement is for. It checks a
condition and raises an exception if the condition is
false. It may seem counterintuitive to make your own
code fail, but a program that fails fast, at the point
where the mistake happens, can save you days worth
of debugging time.

In deep learning you will commonly add asserts for the
dimensions of a particular tensor, or to check that a
tensor contains no NaN or infinity values.

These are asserts in python, but the keyword exists in
most languages. In python,the second (optional)

argument is a string that is shown as a part of the error
message when the assert fails. Using an f-string here
allows you to add some helpful information.

Don’t worry about the assert condition being
expensive to compute. It’s easy to run python in a way
that the asserts are skipped (once you’re convinced
there are no bugs). This does mean that you should
only use asserts for things you expect to be turned off
in production. So don’t use them for, for instance, for
validating user input.

X = np.ones(shape=(16,))

y = np.ones(shape=(16, 1)) [® H

zZ=xX%y (16,) (16, 1)

print(z.shape)
result: (16, 16) (1, 16) | |

(16, 1) H
(16, 16)

(16, 16)

Broadcasting is a mechanism that allows you to apply
element-wise operations to tensors of different
shapes.

It’s very helpful for smoothly implementing things like
scalar-by-matrix multiplication in an intuitive manner.
It’s also one of the more treacherous mechanisms in
numpy and pytorch, because it’s very easy to make
mistakes if you don’t fully understand it.

Here's an example of how it might go wrong. We have
two tensors both representing vectors with 16
elements each. The first has shape (16,) and the
second has shape (16, 1). Element-wise multiplying
these, we might expect to get another tensor with 16
values with shape either (16,) or (16, 1).

What actually happens is that we get a matrix of 16 x
16. The (16,) vector is given an extra dimension to
make the two match, and that extra dimension is
added on the left. We now have a (16, 1) matrix and a
(1, 16) matrix. Next, the singleton dimensions are
expanded (the values repeated) to give us two (16, 16)
matrices which are element-wise multiplied.

In short, don't expect broadcasting to always behave
the way you expect. Know the exact rules for the
mechanism, and be careful when you use it.

Applied to any element-wise operation on two or more tensors.
Sum, multiplication, division, even some slicing.

For example: A + B, with

shape(A) = (3, 4, 1)

shape(B) = (1, 3)

Align the shape tuples to the right: (

Add singletons to match # dimensions:

w
o S Y)
[

Expand singletons to match:

w

P danae®

These are the rules of the broadcasting algorithm: the
shapes are aligned on the right, extra singleton
dimensions are added to make them match, and the
singleton dimensions are expanded so that the shapes
match. Once the shapes match, the element-wise
operation is applied.

Here is the complete documentation: https://
numpy.org/doc/stable/user/basics.broadcasting.html
In pytorch, broadcasting works the same as it does in
numpy.

The alignment step is the dangerous one. Here, two
dimensions often get aligned with each other that you
did not expect to be matched.

Add the singleton dimensions yourself to be sure.
c=al:, :, :1 + bINone, : , :1

Keepdim

normalized = x / x.sum(dim=1, keepdim=True)

Open each method by getting the shapes of the inputs.
def forward(input):
b, ¢, h, w= input.size()

Add copious asserts, especially for tensor shapes.
assert rowsums.size() == (b, ¢, h, 1)

One of the best ways to ensure that broadcasting
works as expected is to manually add the singleton
dimensions, so that both tensors have the same
number of dimensions and you know how they will be
aligned.

The None inside a slice adds a singleton dimension.
Note that in the first example, “a[:, i, :]”isthe

same as just “@”. However, this notation
communicates to the reader what is happening.

Methods that eliminate a dimension (like summing out
a dimension, or taking the maximum) come with a

keepdim argument in pytorch (keepdims in

numpy). If you set this to True, the eliminated
dimension remains as a singleton dimension, which
ensures that broadcasting will behave reliably.

Opening a function with a line like the third one helps
to make your code more readable: it tells the reader
the dimensionality of the input tensor, and gives them
four explicit shape variables to keep track of. These
shape variables can then be used to easily assert stuff

. running_toss O O
for e in range(epochs): 1 T
running_loss = 0.0 1 Q <4Ir> L@ >

for x, t in dataset: /<>\ 10 |
opt.zero_grad() Yy ? Ot /<>\ 1 Q
y = model(x) <> yO Ot <> 1Q
Lovo ot
1 = loss(y, t) 6 <> X PN
Lb 1 yO
.backward() X <o
O X 1
opt.step() X o) ?
running_loss += 1 X O
print(f’epoch {e} total loss: {running_loss}’) X
Vu¥

Here's another common mistake to be aware of:
memory leaks from pointers to the computation
graph. This one only happens in eager execution
systems.

Remember that in eager execution, the computation
graph is cleared and rebuilt for every forward pass.
Usually, this clearing is done behind the scenes by the
garbage collector. Once python sees that there are no
references in the running code to any part of the
graph, it will collect and delete the whole thing from
memory.

This means that if you accidentally do have some
variable that is active outside the training loop which
references a node in the computation graph, the graph
doesn't get cleared. Instead, you end up adding nodes
to the same computation graph for every pass,
constructing a massive graph until your memory runs
out.

A common way this happens is if you keep a running
loss as shown in the code. The line running_loss +=
1 looks harmless, but remember what pytorch is doing
under water. It's not just computing values, it's also
adding nodes to the computation graph. Since
running_loss is referenced outside the training loop,
the graph never gets cleared, and just grows and
grows.

If your memory use balloons over several iterations
(instead of returning to near 0 after each batch), this is
probably what is happening. Check for any variables
that exist outside the training loop which might be
nodes in the computation graph.

running_loss += l.item()

-3

see also x.detach() and x.data VU‘;‘

In pytorch, the solution is to call . item(). This
function works on any scalar tensor, and returns a
simple float value of its data, unconnected to the
computation graph.

In other situations you may be better served by

the . detach() function, which creates a copy of
your tensor node, detached from the current

computation graph, and . data, which gives a view of
the data as a basic tensor.

In modern pytorch, every tensor is always a
computation graph node, so .detach() and .data do
pretty much the same thing. The difference is a
holdover from earlier versions, when Tensors needed to
be turned into a computation graph node by wrapping

Something somewhere has become NaN, Inf or -Inf.
Try an absurdly low learning rate and a 0 learning rate

Localize the problem:

assert not x.isnan().any()
assert not x.isinf().any()

. Vu¥

One of the most common problems is a loss that
becomes NaN. This just means that some value
somewhere in your network has become either NaN or
infinite. Once that happens, everything else quickly
fails as well, and everything in your network becomes
NaN. To emphasize: this is not usually a problem with
the loss, it's just that the loss is usually where you first
notice it.

One of the causes of NaN loss is that your learning rate
is too high. To eliminate this problem, try a run with a
learning rate of 0.0 and le-12. If these are also NaN it's
just a bug. If not, there are two options: (a) it's a bug
that shows only for some parameters (b) your network
works fine so long as you keep the learning rate
reasonable.

To localize where the values of your forward pass first
go wrong, you can add these kinds of asserts. Note
that these operations are linear in the size of the
tensor, so they have a non-negligable impact on
performance. However, you can always turn off the
asserts when you're sure the code is free of bugs (just
run python with the -0 flag)

Check a few learning rates.

Logarithmically: 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3, ...

Check your gradients.

x.retain_grad()

loss.backward()

print(x.grad.min(), x.grad.mean(), x.grad.max())

grad == None : backprop didn’t reach it.
grad == 0.0 :backprop visited, but the gradient died out.

This can happen, for instance, if you use a lot of sigmoid activations.

Next, you may find yourself with a network that runs
without errors or NaN values, but that doesn't learn:
the loss stays exactly or approximately the same.

The first thing to do is to try a few learning rates.
Learning only happens for a relatively narrow band of
learning rates, and the values changes from one
setting to the next. If the problem happens for all
learning rates, it's probably bug. The place to start
then is to check what gradients pytorch is computing.

Pytorch does not hold on to gradients it doesn’t need,
by default. For debugging purposes, you can add a
retain_grad() in the forward pass to a tensor. The
gradient is then retained, and after the backward pass,
you can print the gradient tensor (or some statistics).

If the gradient is None, then the backpropagation
algorithm never reached it. This can happen if your
computation graph is somehow disconnected (perhaps
you used a non-differentiable operation somewhere).
If the gradient has a value, but it's 0.0, then
backpropagation reached the node, but the gradient
died out. This can happen, for instance if you have
ReLU activations somewhere with all inputs always
negative, or a sigmoid activation with very large
negative or positive inputs.

Develop a model, tune hyperparameters

Publish model, or push to production

. Vu¥

Once you're pretty sure you have a model that is doing
something reasonable, you need to start tuning it, to
see how much you can boost the performance.

GENERAL TIPS

v

Start with a setup you know works. Plan a careful route to your own
design.

Baselines, baselines, baselines.
Competing models, linear models, majority class, random class

Scale up slowly: in features added, data size, in model size, in task
hardness.

. Vu¥

If you are designing a new network or architecture, or
otherwise trying something new that may or may not
work, don’t just implement your idea right away.
There’s a vanishing chance that it’ll work out of the
gate, and you’ll be stuck with a complicated mess that
doesn’t work either because you have a bug
somewhere, or because your idea doesn’t work. You’ll
be stuck looking for a bug that you are not sure is
even there, which is an almost impossible task.

Instead, start with a model that you know has to work,
and for which you know why it must work. Either make
the model simpler or make the data simpler:

Start with synthetic data that makes the learning
problem trivial to solve. Slowly scale up to more
realistic data.

Start with a competing model for which the
performance has been reported. Replicate the
performance, and then transform this model into
yours step by step.

Divide and conquer. If your model consists of
separate features, implement them one by one.,
and check the performance impact of each. If it
doesn’t think hard about how you can break things

up.

The main requirement for a successful deep learning
project is not a good idea: it’s a good plan consisting of
small and careful increments.

A baseline is simply another model that you compare
against. This can be a competing model for the same
task, but also a stupidly simple model that helps you

calibrate what a particular performance means.
Baselines help you to interpret your results, but they
are also incredibly helpful during development. For
instance, if you start with a baseline, and you slowly
turn it into the model you had in mind, then at each
step you can always check if the performance drops to
tell you whether you have a bug.

FOR EXAMPLE

“I want to build a 6 layer CNN for MNIST classification.”

1. Linear model

2. 1 convolution, linear layer, no activation, no pooling.
3. 1 convolution, linear layer, activation, no pooling.

4. 1 convolution, linear layer, max pooling.

5. 2 convolutions, etc.

Here’s an example. To build up to a 6 layer CNN, you
might start slowly with a simple linear model (a one-
layer NN). This will give you a baseline.

The next step is to introduce a stride-1 convolution
before the linear layer. As you know, this doesn't
change the expressivity of the network, but it allows
you to check if the performance degrades. We know
that this model is capable of performing the same as
the linear model, so if performance drops, we know
that there is either a bug or something is wrong with
the gradient descent or initialization.

Then, we can introduce an activation. We know that
activations don’t usually hurt performance, but they
might. If we can’t get the network with activation to
perform better than or as well as the previous network
(even after much tuning of hyperparameters), we
should try a different activation.

Then, we can introduce some pooling. This strictly
reduces the size of the linear layer so it may hurt
performance (we may make up this decrease by
adding more convolutions). At this point, we’re pretty
sure that the rest of our code is sound, so if the
performance drops, we know what the cause is.

This kind of approach may not always be necessary. On
well-covered ground like CNNs, you can probably start
with a more complex model right away and expect it to
work. But that's only because somebody else has done
this work before us. We know it has to work because
many other people have got it to work before us. If we
struggle, we can always take one of their versions, and
eliminate the differences one by one.

Whenever you are breaking new ground, and building
things from scratch, you need to start with a simple
model and build up the complexity step by step.

IF YOU DON’T KNOW WHY IT SHOULD WORK,

YOU WON’T KNOW WHY IT DOESN’T WORK

The main principle behind scaling up slowly is that you
need to have a sound reasoning for why the code you
are about to run will work. If you don’t, and the code
doesn’t work, you can’t tell whether it’s because of a
bug somewhere, or because the ideas behind the code
are simply not sound.

One of the best things you can do in building neural
networks is to make sure that you know exactly what
should happen when you execute your code.
Inevitably, that then won’t happen (we’re
programming after all), but then at least you can be
sure that something is wrong with the code and not
with your idea.

TUNING THE LEARNING RATE

Fix a batch size first
As big as fits in memory is usually reasonable. Better: measure the throughput, the amount of data seen by

the model per second, and choose your batch size to optimize that.

Standard: try 0.1, 0.01, 0.001, 0.0001, 0.00001 for a few epochs each. Compare
per-batch loss curves.

Y Vu¥

Your learning rate is very dependent on the batch size.
You can tune both together, but generally, the bigger
the batch size, the faster your training, so people tend
to go for the largest batch size that will fit in memory
and tune with that. There is some evidence that
smaller batches often work better, but then you can
train longer with a larger batch size, so the trade-off
depends on the model.

If you're running large experiments, it can be good to
measure throughput instead. This is the amount of
data (eg. the number of characters) that your models
sees per second. Often, GPUs work a lot faster if their
memory isn't entirely full, so the batch size that will
give you optimal throughput is the one that fills you
memory to something like 80%.

CHECK YOUR (PER-BATCH) LOSS CURVES

2.00 4
| —— learning rate 0.1
17 —— learning rate 0.03
1.50 —— learning rate 0.01
1.25 4 —— learning rate 0.003
—— learning rate 0.001

1009 |
0.75

loss per batch

0.50 1
0.25 1

0.00 . . ' ' '
0 100 200 300 400 500
batches see also:
- tensorboard k
N - weights and biases VU %

The simplest way to find a reasonable learning rate is
to take a small number of logarithmically spaced
values, do a short training run with each, and plot their
loss per batch (after each forward pass, you plot the
loss for that batch).

This is usually a noisy curve (especially if your batch
size is small), so you’ll need to apply some smoothing
to see what’s going on.

In this case, 0.1 is clearly too high. The loss bounces
around, but never drops below a certain line. 0.03
seems to give us a nice quick drop, but we see that in
the long run 0.01 and 0.003 drop below the orange
line. 0.001 is too low: it converges very slowly, and
never seems to make it into the region that 0.01 is in.

Note that the difference between the lower learning
rates seems small, but these differences are not
insignificant. Small improvements late in the process
tend to correspond to much more meaningful learning
than the big changes early on. It can be helpful to plot
the vertical axis in a logarithmic scale to emphasize
this.

Some popular toosl for automatically tracking your loss
this way are

Tensorboard (which originated with tensorflow, but
now works with both tensorflow and pytorch). This
is a tool that runs on your own machien

Weights and biases. This is a cloud-based tool. It
uploads your losses to a server, and provides an
online dashboard.

(basically an indicator of the size of step you're taking).

w= WWM’WWWW Just arrange all your parameters into a vector and
o compute its length.
ot '“\mwa\,,m,ﬂ,\,“rMM,V_MWJ\,\NW\N;v\ﬁ,w,,\w;u If the variance of your gradients goes to zero, you're
; e = probably getting stuck in a local minimum. If the
NN AN DA AN S AP A p s AN, variance is very large, your model is probably bouncing
—— e over areas of low loss. The middle curve shows a
g g happy medium: high enough to move around, but not
R = TR so high that it will miss important minima in the loss
e oAbt surface.
’ I the loss becomes NaN at any point, you will often see

the gradient norm growing out of bounds just before.
In that case gradient clipping, explained later, is a good
way to solve the problem.

Here's what that might look like on a 2D loss surface
(bright spots are the minima). If we have high variance
at the start, gradient descent bounces over the
minima. If we have high variance at the end, it has
settled in the "bowl" of a minimum, but it's bouncing
from side to side without ever settling in the middle.

INTERPRETING VARIANCE (IN LOSS OR NORM)

learning rate: 0.005

learning rate: 0.1 learning rate: 0.05

3 3

If we have low variance throughout, the process is
s S A v finding a minimum, but it takes ages, and it converges
high variance at the start high variance at the end low variance throughout to the first minimum it finds.

K
3 S5 02 a1 o0 1oz 3

Vu¥

LEARNING RATE SCHEDULING One trick that cap help speed thlpgs up a little is to

4 change the learning rate as learning progresses.
v warmup There are many schedules possible, and the precise
differences aren't that important. The main tricks that

: “ are often tried are:

/\ warmup, cooldown * Warming up at the start of training: starting at 0 and
slowly increasing the learning rate. This is

- particularly useful with optimizers like Adam (which
/\ nonlinear we'll discuss later) which gather secondary statistics
- about the gradients. It ensures that gradient

v descent doesn't make any big steps until these
o i 2.0/main_ mizer_schedules. el VU% statistics are accurate estimates.

multiplier

epochs

* Cooling down towards the end of learning (lowering
the learning rate again). This can help with the
problem where gradient descent is in an optimum,
but bouncing from side to side instead of finding the
minimum (this is known as oscillation). Momentum-
based optimizers should recognize and dampen
oscillations automatically, but sometimes a
cooldown on the learning rate helps the process
along.

In general, you should try learning without a schedule
first, and look at your loss curves and gradient norms
to see if you think a learning rate schedule might help.
If you do need a schedule, simple is best. A little
warmup is often all you need.

https://huggingface.co/transformers/v3.2.0/main_classes/optimizer_schedules.html

Ramp up learning rate exponentially during a single training run.

ImageNet on AlexNet

min_ir max_Ir

G005 001 0015 002 0025 003 0035 004 0045
earning rate

(a) Typical learning rate range test result
where there is a peak to indicate max_Ir.

image source: Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates Smith et al 2018 VU LS

One popular trick to get a feel for a good learning rate
is to do a range test. This is a single training run, where
you ramp up the learning rate by small, but
exponentially increasing steps each batch. It will give
you a plot like this. The point where the accuracy
peaks is a good estimate of your maximum learning
rate. You can then warm up to this learning rate slowly
(and possibly cool back down again).

PER-EPOCH LOSS CURVES

0.3 — training loss
—— validation loss

generalization gap

0.991 _ training acc
0.08] — validation acc

3

© 097

§ 096

0.95

0 5 10 15 20 25 30 35 40 V U k

With a decent learning rate chosen, we can train for
longer runs. At this point, a different kind of loss curve
becomes important. For a smaller number of times
during your training run (usually once per epoch), you
should test your model on the whole validation set
and on the whole training set.* You can then plot the
average loss or accuracy (or any other metric) for both
datasets.

What we see here is that if we look at just the training
accuracy, we might be confident of getting almost 99%
of our instances correct. Unfortunately, the validation
accuracy is much lower at around 96%. Some parts of
our performance are due to overfitting, and will not
generalize to unseen data. For this reason the
difference between the performance on the training
and validation data is called the generalization gap.

* People often use the running loss averaged over the
preceding epoch in place of this, but it's more accurate
to rerun the model on the whole training data. This is
because the running loss is an average taken as the
model changes. If you want to know the training loss
for the precise model at the end of the epoch, you
need to do a full pass over the training data as well as
over the validation data.

STABILIZING, SPEEDUPS

Learning rate warmup, cooldown

Gradient clipping: reduce gradient if it exceeds a threshold.

Either by element-wise clamping, or by normalizing the total norm
Momentum: more later

Regularization, batch normalization: more later

VUf

In general, a high learning rate is preferable to a low
one, so long as you can keep the learning stable. These
are some tricks to help learning stabilize, so that you
can use higher learning rates, and train faster.

A learning rate warmup is a slow, linear increase in the
learning rate, usually in the first few epochs. This can
usually help a lot to stabilize learning. A cooldown at
the end of learning can also help, but is less common.

Momentum and batch normalization can also help a
lot. We will discuss these techniques later.

Remember however, that using too many tricks can
hurt your message. People are much less likely to trust
the performance of a model that seems to require very
specific hyperparameters to perform well. If your
model only performs with a specific learning rate of
0.004857, a five stage learning rate schedule, and a
SIMPLICITY CAN BE MORE MEANINGFUL THAN ACCURACY very particular early-stopping strategy, then it’s
unlikely that that model performance will be robust
enough to translate to another dataset or domain (at
least, not without a huge effort in re-tuning the
hyperparameters).

Your performance is also unlikely to transfer from
validation to test, and your audience may be skeptical
that you chose such particular hyperparameters
without occasionally sneaking a look at your test set.

However, if you report performance for a simple
learning rate of 0.0001, with no early stopping,
gradient clipping, or any other tricks, it’s much more
likely that your performance is robust.

In other words, hyperparameter tuning is not simply
about playing around until you get a certain
performance. It’s about finding a tradeoff between
simplicity and performance.

need to figure out how many layers our network
Usually good enough. needs, how to preprocess the data, and how set things
like regularization parameters (which we will discuss

Easy to use model insights. later).

You know what your hyperparameters mean.

How should we proceed? Just try a bunch of settings
that seem right and check our validation performance?

Difficult to do fairly. Or should we follow some rigid strategy?

Nobody tunes their baselines as much as their own model.
In practice, when it comes to tuning your own model,
simple trial and error is usually fine, so long as you
check the performance only on the validation set. It
vu¥ also usually works better than automatic approaches,
because you know best what your hyperparameters
mean and what their impact may be. You can reason
about them in a way that automatic methods can't.

However, it is difficult to dispense the same amount of
effort when you are trying to tune your baselines. If
you want truly fair comparisons, automatic
hyperparameter tuning might be a better approach.

AUTOMATIC TUNING: GRID SEARCH VERSUS RANDOM SEARCH

Grid search: define values for each parameters, try all possibilities.

Grid Layout Random Layout

Unimportant parameter
Unimportant parameter

Important parameter Important parameter

NB: linear vs logarithmic scales: 0.1, 0.2, 0.3 or 0.0001, 0.001, 0.01, 0.1

image source: Random search for hyper-parameter optimization, Bergstra and Bengio JMLR 2012 VU ‘I
37

If you want to tune your hyperparameters in a more
rigorous or automated fashion, one option is grid
search. This simply means defining a set of possible
values for each hyperparameter and trying every single
option exhaustively (where the options form a grid of
points in your hyperparameter space).

This may seem like the best available options, but as
this image shows, selecting hyperparameters randomly
may lead to better results, because it gives you a larger
range of values to try over different dimensions. If one
parameter is important for the performance and
another isn’t you end up testing more difference
values for the important parameter.

You should also think carefully about the scale of your
hyperparameter. For many hyperparameters, the main
performance boost comes not from the difference
between 0.1 and 0.2 but from the difference between
0.01 and 0.1. In this case it’s best to test the
hyperparameters in a logarithmic scale. The learning
rate is an example of this.

© O (

)

I

Eye-catching advances in some Al fields are not real

By Matthew Hutson | May. 27, 2020, 12:05 PM

Avtifininl i i (AN itiet cnnme tn nat emartar and emartar Each iDhana lasrme unur fana

The practice of manual tuning is a large contributing
factor to a small reproduction crisis in machine
learning. A lot of results have been published over the
years that turn out to disappear when the baselines
and the models are given equal attention by an
automatic hyperparameter tuning algorithm.

There are a few potential reasons for this:

Publication bias: some people get lucky and find
some high performing parameters that generalize to
the test set but not beyond that.

Unrigorous experimentation: nobody checks how
careful you are in your experiments. If some
experimenters are careless about never using their
test set, they may get better results than their more
careful colleagues. The publication system will then
select the more careless researchers.

Regression towards the mean: Selecting good
results and then retesting will always yield lower
average scores. If we we take all students with a 9 or
higher for some exam and retest them, they will
probably score below 9 on average. This is because
performance is always partly due to ability and
partly due to luck.

For now, the important message is that we should be
mindful that when we compare hand-tuned models,
there is room for error. We can’t afford to do full
hyperparameter sweeps for every experiment we
publish, so the best option is probably to keep hand-
tuning and occasionally publish a big replication study
were all current models are pitted against each other
in a large automated search.

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

https://www.sciencemag.org/news/2020/05/eye-
catching-advances-some-ai-fields-are-not-real

AUTOMATIC TUNING

Useful for fair comparisons: each model gets the same amount of
compute.

Are GANs Created Equal? A Large-Scale Study Lucic et al, NeurlPS 2018

On the State of the Art of Evaluation in Neural Language Models Melis et al, ICLR 2018

You CAN Teach an Old Dog New Tricks! On Training Knowledge Graph Embeddings Ruffinelli et al, ICLR 2020

Random search with Sobol configurations for discrete parameters.
Bayesian search for continuous hyperparameters.
https://ax.dev/

image source: By Jheald - Own work. Created in R
39 CCBY-5A3.0, ikimedi w/i i

Here are some examples of papers that do this kind of
automatic turning. One popular approach is to use a
random layout for the discrete parameters, but to use
something called Sobol sequences to make the
sampled points a little more regular, and to then tune
the continuous hyperparameters using Bayesian
search.

Ax.dev is one popular platform for such experiments
(but beware, they require a lot of compute).

Publish model, or push to production

Vu¥

The last stage of our pipeline is to deploy our model.
Either we turn it into a production model powering our
software product, or we write a research paper about
our findings.

PUBLISHING: ABLATION

Which features have the most impact? Hyperparams Dev Set Accuracy
#L #H #A LM (pp) MNLI-m MRPC SST-2

3 768 12 584 71.9 79.8 884

. 6 768 3 524 80.6 822 907

1) Build the best model you can. 6 768 12 468 819 848 913
12768 12 399 84.4 867 929

2) Remove features one-by-one. 2 lo 16 33 me e

3) Measure lmpaCt Step by Step' Table 6: Ablation over BERT model size. #L = the

number of layers; #H = hidden size; #A = number of at-
tention heads. “LM (ppl)” is the masked LM perplexity
of held-out training data.

source: BERT: g of Deep for Language Devlin et al, 2018 VU #
4 3

Since the final model is usually a combination of many
different innovations, it’s good to figure out which of
these is the most important for the performance.

The most common way to do this is an ablation study:
you first pick the best model with all the bells and
whistles, and then remove features one by one to
evaluate the impact.

There’s no standard way to design an ablation. The
main principle is that you pick a full-featured model
first, because the features likely need to interact with
each other to improve the performance, and then you
measure their performance.

https://ax.dev/
https://commons.wikimedia.org/w/index.php?curid=16106862

ML IN PRODUCTION

Not to be underestimated

Be wary of:
« Distributional drift
 Cost of inference

Is it worth paying 10-6S for every product recommendation?

« Difference between prediction and taking action

Feedback loops!

. Vu¥

Finally, even if you have a cheap model that perfectly
predicts what you want it to predict, when you put it
into production you will be using that model to take
actions. This means that its predictions will no longer
be purely offline, as they were in the training setting.
For instance, if you recommend particular items to
your users, you are driving the whole system of all
your users engaging with your website towards a
particular mode of behavior. Your model was only
trained to predict certain targets on data where the
model itself was not active. In short, you have no idea
where the model will drive the interactions between
your users and your website.

. eaas
e o i data
—Bevetop-rrrotek-tamre-yperparameters
. 1 L4 dictinn
e =
a VU¥#

Lecture 4: Tools of the trade

Peter Bloem
Deep Learning

kwuz
divu.github.io VU G

WHY DOES ANY OF THIS WORK AT ALL?

Vu¥

| section| Why does any of this work at all?|
| video| https://www.youtube.com/embed/
ixI83iX7TV4?si=UBGkKtXkeHMioFPi|

NEURAL NETWORKS ARE GETTING BIG

Mparams

2.1 Model and Architectures

125M 2 68 1
350M 2 1 M
760M 153 6 SM
1.3B 048 8 M
2.7B 3 56(8 A
6.7B

13.0B 514() 3 v
175.0B Bl 28 2M

These are the sizes of some versions of GPT-3: a large
language model trained by OpenAl. The largest has
175 billion parameters.

This model was trained by nothing more than gradient
descent and backpropagation. It’s worth pausing to
think about that. Imagine if everybody on earth had 20
opinions that you could each individually sway one
way or the other, and you wanted to sway each and
every one of them in order to make one UN resolution
pass. Succesfully applying gradient descent on a model
of this size is like trying to reason backwards from the
outcome of the UN vote through the organizational
structure of the UN, the governments of the members
states, the determination of their makeup by elections
down to every individual on earth and how their
opinions go into influencing their government.

We don’t quite have the full picture for how it is
possible that such a simple algorithm as gradient
descent achieves this, but we are beginning to gather
up some of the ingredients.

Language Models are Few-Shot Learners, Brown et al,
2020.
https://arxiv.org/abs/2005.14165

ZHANG ET AL 2016

v

average_loss

~
o

~
o

n

o

<
@

o
o

=—a true labels
o—e random labels
== shuffled pixels
= random pixels
4—& gaussian

)

5

10 15 20
thousand steps

Understanding deep learning requires rethinking generalization, C Zhang et al, 2016

« True labels: the original dataset without modification.

« Partially corrupted labels: independently with probability p, the label of each image is
corrupted as a uniform random class.

« Random labels: all the labels are replaced with random ones.

« Shuffled pixels: a random permutation of the pixels is chosen and then the same permuta-
tion s applied to all the images in both training and test set.

« Random pixels: a different random permutation is applied to each image independently.

« Gaussian: A Gaussian distribution (with matching mean and variance to the original image
dataset) is used to generate random pixels for each image.

25

VU¥

At the start of the deep learning revolution, most
researchers were not immediately struck by how odd it
was that we can train neural networks with millions of
parameters. We were pleasantly surprised, of course,
but the main focus was on simply seeing how far this
method could be pushed.

The first clear signal of just how odd this breakthrough
was, came from a very simple experiment, performed
by Zhang et al. They took a simple convolutional neural
network, trained it on MNIST, and then they repeated
the experiments with the dataset randomized. They
did this in several ways: randomizing the labels,
replacing the images with gaussian noise, etc. But in
each case, they made it impossible to predict from the
image what the label could be, while still keeping the
possibility of remembering the label for a given image.

Of course, the validation loss plummeted to chance
level: anything that could be used to predict the label
was removed. However, the training loss still went to
zero. The model learned to predict the training data
perfectly. Better than it did when the task wan't
randomized.

Why is this so strange? Note that during training, we
only have access to the training loss. Gradient descent
can then choose between two possible models: a
generalizing solution that it chooses on normal data,
and an overfitting solution that it chooses if we
randomize the labels. And the second solution has
lower loss. Why doesn’t the model choose this
solution all the time, even on normal data? Why does
it end up with the (from its perspective) worse solution
which generalizes well, instead of the perfect solution

that doesn’t generalize at all? How does it know?

(By generalizing, we mean not just fitting the training
data well, but the validation and test data also.)

MACHINE LEARNING IS NOT JUST OPTIMIZATION

poor local optimum

good local optimum

parameter space

training loss

overfitting

Here's a cartoon image of the loss landscape. What the
Zhang experiment shows, among other things, is that
when it comes to models with a large capacity to
remember stuff, we are not actually looking for the
global minimum. The global minimum is an overfitting
solution that just remembers the training data. The
good solutions that also do well on the test and
validation data are good local optima (among all the
bad local optima).

Somehow gradient descent is more likely to land in a
good local optimum than a bad local optimum, or an
overfitting local optimum.

arg min 10SSgaa(0)
0

So, next time you see a formula like this, to explain the
basic optimization task of ML, you should know that
this is a slightly poor definition of our problem. We
want to solve this optimization problem, and we use
techniques from optimization to do so. But in a way,
we don’t want to solve it too well.

In the classical machine learning view, we would keep
to this optimization objective, and solve it perfectly,
but we would then cripple the model class so that the
overfitting models were no longer in the model space.
In deep learning we expand the model class far beyond
the overfitting models. At this point, the only
optimization algorithms we have available will only be
able to reach a certain part of this space. If we’re lucky,
these parts contain the generalizing local optima and
the overfitting global optima are pushed out of the
range of the optimization algorithm.

In short, modern machine learning is often the strange
business of letting an optimization algorithm loose on
a problem like this, but then crippling it, implicitly or
explicitly, so that it doesn’t find the very best solution,
because that wouldn’t lead to generalization.

DOUBLE DESCENT
3

test set loss

model capacity (eg. # of parameters)

The traditional view of machine learning has always
been that the aim was to find the sweet spot between
underfitting and overfitting. An underfitting model is
too simple to capture all the relations between the
input and the output. For instance, if we try to fit a
parabola with a line, we get errors due to underfitting.

If we give our model too much capacity, it can overfit:
it can remember all the features of the training set
that won’t be reproduced in the test set. The model
starts latching on to noise that isn’t relevant for the
task: it starts to overfit. Underfitting is called high bias,
because the mistakes are the same for every training
run. Overfitting is called high variance, because the
mistakes average out over multiple training runs,
assuming we get fresh data each time. Because we
only have one dataset, however, this doesn’t help us
much.

The point at which the model capacity is large enough
to fully remember the dataset (or at least enough of it
to remember all the labelings perfectly), is called the
interpolation threshold. This is the point beyond which
the model should always perfectly overfit without any
generalization. That is, assuming that the model search
find a global optimum.

The traditional solution was always to find the best
tradeoff between these two extremes of model
capacity. We cripple our model just enough that it
finds the generalizing solutions because the overfitting
solutions are simply not there in the parameter space.

“Double descent” refers to the surprising finding (due
to experiments like those of Zhang) that there is life
beyond the interpolation threshold. If we push on
beyond the regime where we can just about
remember the data, into the regime where the
capacity is vastly greater than that required to
remember the data, we see that some model classes
start to naturally prefer generalizing solutions over
non-generalizing solutions.

Classical Regime: Modern Regime:
Bias Variance Tradeoff Larger Model s Better

__ Optimal Early

°
o

o o o
[
15
< z
[
Test Error
o o o

Test / Train Error

°

°
5
°

i 10 20 30 a0 50 60 [60

o 320 30 40 50
ResNet18 width parameter ResNet18 Width Parameter
Figure 1: Left: Train and test error as a function of model size, for ResNet18s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.

Deep Double Descent: Where bigger Models and More Data Hurt, Nakkiran et al, 2019. VU %

Here is what such curves actually look like for deep
convolutional networks. Note on the left that the
training loss goes to zero as the model capacity grows,
due to overfitting. The test error first goes up as we
approach the interpolation threshold, showing that
the model is just overfitting, but then goes down again
as we go far enough past the interpolation threshold.

On the right, we see the effect of training time. If we
don't let gradient descent search too far into the
model space, we are essentially crippling its ability to
overfit to highly specific solutions. Only when we let it
search far enough to overfit, do we see a double
descent emerge. In between, there is a sweet spot
where the test error decays monotonically with model
capacity , but still reaches the same performance that

a longer search does.

https://openai.com/blog/deep-double-descent/

LONGER TRAINING = LARGER MODEL SPACE

starting point

reachable in 1000 steps

reachable in 3000 steps -+

52 model space -,

Here's a way to visualize that. Gradient descent takes a
fixed number of steps in model space, and these steps
usually have a maximum size, so if we limit the
number of epochs, we get a radius of models that we
can reach. As we allow more steps, the amount of
models that we can reach increases. This way, we can
think of the length of training as a cap on the model
complexity.

Test Error
0.8
Model-wise 0
Double Descent 0.6
Epoch-wise
Double Descent
@ '
o] 0.4
o N
a 1
W 0.3
0.2
15 30 45
ResNet18 Width Parameter
53 Deep Double Descent: Where bigger Models and More Data Hurt, Nakkiran et al, 2019. V U *

This means that we can see a double descent
phenomenon not just in model complexity (horizontal)
but also in training time (vertical).

The best solutions are suboptimal, local minima for the training error.
Finding the global optimum is disastrous

Gradient descent has implicit regularization: some parameters are
preferred over others, a priori.

More on explicit regularization later

Initialization is of crucial importance.

More on this later

. VU¥

Note that we’re talking about the minima of the
training loss on the dataset. If we define the loss as a
function of the data distribution (which we estimate by
sampling data), then the global optimum is still the
ideal, but the lowest loss we can find for the data is
actually a poor estimate, since we get a completely
different loss on a new sample.

The mechanism behind the double descent
phenomenon seems to be that the more your
overparametrize the model, the stronger the effect of
the imoplicit regularization of gradient descent
becomes.

THE BLESSING OF HIGH DIMENSIONALITY

nearby
pos -
nearby

1D 2D 3D

175 000 000 000 D

VU¥

Here's another mechanism that may play a role.
Imagine gradient descent taking a single step of a fixed
length. How many different models can it reach? If we
look at only the steps along one of the axes (changing
only one parameter, and leaving the rest), we can
count the available models. It's 2 for a single
parameter, 4 for two parameters and 8 for 3
parameters. In short, and exponential increase.

In reality, one fixed step of gradient descent can reach
every model on a sphere around the current position,
so the amount and variety of models is a little harder
to analyze, but the message remains the same: the
amount increases exponentially with the number of
dimensions. Once we get to billions of parameters, the
variety of nearby models might be so great, that
gradient descent only needs to walk a short path to a
very good model.

To paraphrase Geoffrey Hinton: “In a sixteen
dimensional supermarket, the pizzas can be next to
the anchovies, the beer, the cheese and the pasta”.

There’s not much rigorous work on this, but here’s a
blog post that goes a little deeper: https://
moultano.wordpress.com/2020/10/18/why-deep-
learning-works-even-though-it-shouldnt/

What does this look like inside the network? What
kind of parameters does gradient descent select? The
lottery ticket hypothesis offers us a perspective on
this.

OBSERVATION

Network pruning is the practice of removing near-zero connections from a
trained neural network.

Pruning works exceptionally well.

Often, 85— 95% of weights can be safely removed.

Vu¥

The lottery ticket hypothesis comes out of the
technique of network pruning. This is the simple idea
that after training a large neural network, we can
disable all the weights that are close to zero (by setting
them to zero), and lose almost no performance.
Pruning works so well, that we can often remove 85%
to 95% of the network weights.

Crucially, however, we can't just start with a network
that small and train it from scratch: the performance is
noticeably lower. So, we need the large networks to
end up with a good model, but the good model we get
is also highly redundant, with most parameters serving
no purpose in the trained network.

How do we explain this?

Traditional view:
« Initialization picks a random model.

« GD teaches each weight what to to.

Lottery ticket view:
« Initialization creates combinatorial explosion of subnetworks.
» Some of these, by chance perform well.

» GD selects these subnetworks and disables others.

The lottery ticket hypothesis is a suggested answer to
this question. The idea is that we aren’t actually
training the whole of this network, with all these
millions or billions of weights each acting in concert.

What actually happens is that we are initializing a
combinatorial explosion of subnetworks. By pure
chance, some these will perform well or be close to
something that performs well. Gradient descent isn't
actually carefully selecting just the right value for for
every single parameter. It's merely weeding the
subnetworks that are already performing well and
finetuning them a little bit.

COMBINATORIAL EXPLOSION OF SUBNETWORKS.

O O O O O @]
D D [0} D D D 0D
O O (ON6) O O O O
%] 1) D [4) 10}
‘ VU¥

Here are just five of the subnetworks of a simple (2, 3,
2) network that might compute a useful function if we
set the greyed out weights to zero. There are many
more, and the number explodes as the width of the
network grows.

In a network with N weights, there are 2N ways to
select a subnetwork. Some of these won’t connect the
input to the output, but most will.

EXPONENTIAL GROWTH

2N: subnetworks in a neural net with N weights.

233: People on Earth

276: Grains of sand in the Sahara

283: Molecules in a glass of water

2272; Atoms in the visible universe

2408; Number of possible games of chess

261000000; Number of subnetworks in AlexNet (2012)
2175000000 000; Number of subnetworks in GPT-3 (2020)

Vu¥

If you've never looked carefully at exponential growth,
you may not yet understand what the big deal is. Here
is a quick example to hammer the point home.

The last two numbers are fairly crude approximations
(we don't know for instance, what proportion of these
networks will be disconnected), but note that even if
only one-sixteenth of the possible subnetworks should
actually be counted as being useful, we should just
subtract 4 from the exponent.

So long as the proportion of useful subnetworks is non-
vanishing (doesn't go to zero), we still get a massive
exponential growth far beyond anything countable
that our universe holds.

1. Train a large Neural Network

2. Prune the trained neural network to a succesful subnetwork

basically: kill any weights near 0
3. Revert the non-pruned weights to their value at initialization

4. Retrain the remaining network

Result:
A small network trained to the performance of a large network.

If we revert to random weights, performance plummets.

Vu¥

Here's an experiment to verify (or at least boost our
confidence in) the lottery ticket hypothesis. We train
and prune a large neural net. Then, after training, we
keep the pruned weights 0, but we reset the non-
pruned weights to the value they had at initialization.
We then restart training, keeping the pruned weights
fixed to zero.

What we see is that we now have a small network
that GD can train to the same performance as the
large network.

If however, we re-initialize the unpruned weights to
random values, we lose the performance. It only works
because the non-pruned weights constitute a lottery
ticket in the original initialization.

UNDER ITERATION

Percent of Weights Remaining
1.0

"1 IH]H:ﬁlﬁh&f—wH.ﬁ-}fl-tarm:}ﬂ:’r;:“i

kN

<= re-init to ticket

[

Accuracy at Early-Stop (Train)

Pt
) l dom re-init
-

0.6 T T T T T T
100 514 26.5 13.7 7.1 37 1.9 1.0

Percent of Weights Remaining

61 The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin 2019. VU ka

If we iterate this process, we can prune to even lower
values. At each point in this plot, the network is
pruned by a small amount, the non-pruned values are
reset to the initialization values, and retrained. This is
compared with resetting to a new random
initialization, represented by the dashed line.

By the end, the network is pruned to 1% of its original
size, with a relatively small drop in performance. If we
had trained a network that small from scratch, we
would get 65% accuracy at best.

1. Initialize a large neural network.
2. Keep the weights fixed.

3. Search for a mask that selects a subnetwork.

use SGD and gradient estimation (see RL lecture)

Result: The lottery ticket by itself achieves
near-SOTA performance.

Randomly initialized A subnetwork
neural network N' 7 of N

62 What's Hidden in a Randomly Weighted Neural Network? Ramanujan et al. 2020 VU ﬁ"

This gives some weight of evidence to the lottery ticket
hypothesis, but we're still using gradient descent to
learn. How much of the performance is down to
selecting subnetworks and how much is weight
tuning? Can we somehow isolate the selection of
subnetworks, without ever changing the weights from
their initialization value?

It turns out this is possible. Using a method called
gradient estimation (discussed later, in the
reinforcement learning lectures) we can used stochatic
gradient descent to learn a mask over the weights. We
set some of the weights to zero, and keep the rest at
their initialization value.

The result is that the masked network, with the
majority of its weights zeroed out, and the rest kept
unchanged, already achieves performance that is close
to that of a state of the art. This more-or-less confirms
the lottery ticket hypothesis. When you train a
network, the perfectly performing model is already in
there. Like Michelangelo with a block of marble, all
you have to do is carve it out.

MORE CONCLUSIONS

Re-initializing, but retaining the sign of the original weight is enough to
retain performances (Zhou et al 2019).

Initializing with constant values with random sign (+/-) also yields lottery
tickets.

Vu¥

https://eng.uber.com/deconstructing-lottery-tickets/

LOTTERY TICKET HYPOTHESIS

The initialization of a large neural network
contains subnetworks (lottery tickets) that, if
isolated, already solve the task to near state-of-
the-art performance, before any gradient
descent is applied.

The power of gradient descent is not in training
the model, but in eliminating the dead weight.

64 The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle et al 2019.

Zhang et al: Neural Networks can memorize, but don’t.

Double descent: Some models perform best when massively
overparametrized.

Lottery ticket hypothesis: The real power of deep learning comes from the
combinatorial explosion of subnetworks, more than the ability of SGD to
train the model.

Open questions: The last word has not been spoken on these issues.

Vu¥

Lecture 4: Tools of the trade

Peter Bloem

Deep Learning

V VRUE
) : NVeRsTErT
divu.github.io VU B Awsteroam

UNDERSTANDING OPTIMIZERS

Vu¥

Optimizers are algorithms that take the basic idea of
(stochastic) gradient descent and tweak it a little bit, to
improve its performance. For large, and
heterogeneous neural networks, the use of optimizers
is essential.

With only plain SGD, you would often have to carefully
tune the learning rate and learning rate schedule
separately for different parts of one model. With a
good optimizer, this becomes a simple matter of trying
three or four learning rates and picking the best. It also
often means that you can train with higher learning
rates, taking bigger steps in model space, and getting
to a good model faster.

| section | Understanding optimizers|
|video| https://www.youtube.com/embed/

JUSTIFYING STOCHASTIC GRADIENT DESCENT

arg min 10ssg,:,(0)
0

arg min Eqa,-plossga (0)
0

Vu¥

To start, let's look at the business of optimization in
general. In the first videos of this lecture, we already
discussed the problem that the optimization that we
perform in machine learning is not the optimization
that we actually want to solve. This put us in the
awkward position of wanting to solve a problem well,
but not too well. We're not really doing optimization
so much as using optimization tools and then crippling
them so they don't work too well.

We can solve this by restating the problem
probabilistically. If we assume our data (either an
instance, a batch or the whole dataset) is drawn from
some distribution p, then what we really want to
minimize is the expected loss under that distribution.
For the expected loss, we do actually want to find a

global minimum: we have a proper optimization
problem again.

The problem we have now, is that the expected loss is
not something we can compute. The best we can do is
to estimate it by taking a bunch of samples from our
data distribution (i.e. our dataset) and to average the
loss over them. When we minimize that instead,
however, the problem of overfitting emerges: we may
end up optimizing for random details in our sample,
that would disappear if we took another sample.

NO MORE OVERFITTING

poor local optimum

expected loss

good local optimum

training loss

overfitting

parameter space

Here is our cartoon again, extended with the ideal
view. We have the expected loss, which we want to
optimize for but can't directly, and the loss on our
training data, which is an imperfect estimate of the
expected loss.

VEpplossp (0) ~ Vlossy(0) with d ~p

Under certain conditions, GD with an estimate of the gradient converges
the optimum (almost certainly).

Broadly:

« convex loss surface.

« asymptotically unbiased estimator.

. . o — 0
+ decaying learning rate a. Y oo
=

Lodee VU%

Luckily there is a result that tells us we can optimize
for a loss we can’t compute: the Robbins-Monro
algorithm. We estimate the loss and/or its gradient
based on some sample, and perform simple gradient
descent.

These constraints almost never hold in deep learning,
but for some we can assume that they hold locally. For
instance, once we get into an area of parameter space
where the loss surface is locally convex (and the other
constraints hold), we can be sure that SGD will
converge to that local optimum. And that local
optimum is a local optimum for the loss surface of the
expected loss, rather than the data loss.

In most cases, we don’t care too much about
maintaining the convergence guarantees (even if we
decay the learning rate, we rarely do it like this).
Ultimately, we prove the quality of our learning
empirically, not theoretically. Still, the Robbins-Monro
result tells us that if we have asymptotically unbiased
estimates of the gradient, we should in principle be
able to find a local optimum.

Note also that reusing data (training for more than one
epoch) eventually causes bias, which means the RM
conditions fail (which is where overfitting comes from).
The RM results only hold if we keep taking fresh
samples (or equivalently, we only train for one epoch).
This also, doesn't usually hold in deep learning.

image model, 1r = 0.03 language model, lr = 0.00001

To understand the limits of plain gradient descent as
we’ve seen it, imagine tuning two models: a CNN to
analyze images, and a language model RNN to
generate sentences (we haven’t looked at RNNs yet,
but we will soon).

Clearly these are very different models, with different
requirements. We can expect them to require very
different learning rates. So what should we do if we
want to connect a CNN to a language model, and train
the whole thing end to end? This is for instance, how
you would build a simple image captioning network.

The more heterogeneous a network becomes, the
more difficult it is to train it with a single learning rate.
Instead, we need a mechanism that is more adaptive.
Ideally, one that starts with a base learning rate, but
adapts that learning rate at every step of training for
every parameter individually.

4
Second-order optimization, conditioning

aka Newton’s method
Momentum
Adam

RAdam, LookAhead, LAMB

. Vu¥

These are the approaches we will look at. First, we will
look at second order optimization (also know as
Newton's method). This isn't actually practical for the
large models we get in DL, but it gives us a picture of
the ideal we would like to estimate.

Them, we will look at the basic idea, momentum, that
inspires most optimizers, and we will look in detail at
what is probably the most famous and commonly used
optimizer: Adam.

Finally, to show that there is much progress being
made in this area, we will look at a few recent
innovations.

To understand Newton's method, remember that the
gradient (or the derivative in 1D), is a local, linear
approximation to a function. At one particular point, it
gives us the line that best follows the function around
that point.

We can think of gradient descent in the following
terms. It takes this local, linear approximation, takes a
small step towards its minimum (which lies off towards
infinity for a linear approximation) and then repeats
the procedure.

With this view in hand, we can improve the method by
using a nonlinear approximation to our function
instead.

We could, for instance, use a a polynomial of order 2,
which gives us a better local approximation. For these
two points here, the linear approximations give pretty
similar slopes. However, the polynomial
approximations give us more information. for the
orange point on the left, the polynomial
approximation has a minimum at negative infinity, just
like the linear approximation. But for the green point
the polynomial approximation actually has a finite
minimum.

Taking the second value as an approximation, we could
move directly to its minimum, and get a solution in
one step. A solution that is not so far from the actual
minimum of the blue line.

The derivative (the linear approximation) only tells us
how fast the function is increasing or decreasing. The
second order approximation also gives us the second
derivative: whether the increase is slowing down, or
speeding up. If we are minimizing, both pictures will
tell us to move to the left, but in the first, the second
order derivative tells us that (moving left) the decrease
is speeding up, so we can take a big step. In the
second, we see that we are approaching the minimum,
so we should reduce our step size.

fo(x)=xs+b
fo(x) =xf'(a)+b

fo(a)=af'(a)+b
b=f(a)—af'(a)

fo(x) =xf'(a) +fa(a) —af(a)
=f(a)+f'(a)(x—a)

To see how this works in practice, let's work out the
formal details in a 1D setting (we'll sketch out how this
translates to higher dimensions later).

Let’s start with the linear approximation. We're usually
only interested in the slope of this function, but we
can work out the complete function if needs be; we
just have to solve for the bias term b.

As we can see here, the complete function for our
linear approximation at the point x=a works out as f.(x)
= f'(a)x + f(a) - af'(a), which can also be written as fa(x)
=f(a) + f'(a)(x - a)

Note that f.(a) = f(a) because at point a the two
functions coincide.

fo(x) =ci+co(x—a)+cs(x—a)?
x=a — ¢ =f(a)

/(x) = o +2c3(x — @)

x=a cx=1f(a)
fII(x) = 2c3
1 "
Xx=a Cg:gf (a)

R R 1 .
fo(x) =f(a)+f'(a)(x —a) + if”(a](xf a)?

For the best second order approximation we work out
the first three terms of the Taylor approximation of our
function. If you've never seen that done, here's briefly
how it works. If this is moving too fast, consult your
calculus textbook on Taylor polynomials.

We want a second order polynomial that is a good
approximation of our function at the point a. We
assume that this function has the form fi(x) = c1 + ca(x-
a) + ca(x-a)2. That is, it’s a regular second-order
polynomial with three coefficients, but the base of the
terms is not how far x is from 0, but how far x is from
a.

All we need is to work out what the values of the
constants ci, ¢; and c3 should be. If x = 3, the second
two terms disappear, so we are left with c1 = f(a).

Taking the first derivative of our approximation, the c1
term disappears, and c; becomes a constant. We can
now use the same trick again: set x=a and only c; is
left. Then we take the second derivative of f.(x) to
isolate cs.

What we end up with is an approximation of fat a as a
second degree polynomial. We get the values of the
constants by feeding a to the Oth, first and second
derivatives of f.

What we can do now, is to move towards the
minimum of the approximation. Since it has a simple
functional form, we can work out the location of this
minimum analytically.

) o 1.,
fo(x) =fla)+f'(a)(x—a)+ E’r/ (a)(x —a)?

£ (x) =f'(a)+f"(a)(x—a) =0

a

f'(a)

f"(a)
f'(a)
f(a)

X—a=—

X=a

—

"(x)

)
XEXTEE

Our approximation is a parabola, with a minimum of
its own (unlike the 1st order approximation, which as
its minimum at infinity). We can simply work out
where this minimum is, and take a step towards it.

To work out the minimum, we take the derivative of
our approximation wrt x (note that the purple factors
are just constants), we set it equal to 0 and solve for x.

In the result, x is where we want to be and a is where
we started.

We can now change the meaning of the symbol x to
where we are now in the optimization: if we are at x
and want to move towards the minimum of our
function, we should subtract from x: the first derivative
of f at our current position, divided by the second
derivative at our current position. This gives us the
update rule at the bottom of the slide.

Since we are dealing with an approximation, we
multiply this step size by some value alpha, so we
move only a small way towards the minimum rather
than jumping directly to it.

The step size is determined by how far we trust the
approximation. If we know the approximation is exact,
we can set alpha=1 and just jump directly to the
minimum in one step. The less we trust our
approximation, the smaller alpha becomes, and the
more steps we should take.

f(x) ~ f(a) +f'(a)(x — a) + %f”[a}(x— a)?

- f'(x)
X4 X— ot—r
f”(X]

f(x) ~ f(a) + Vf(a)(x —a) + %(X —a)TVv2f(a)(x —a)

—
scalar vector
(gradient)

X4 X— [V“)f(x]]flvl'lx‘

matrix
(Hessian)

VU

Of course in deep learning, we are not searching a
one-dimensional space, but a high dimensional space
(containing the parameters of our model).

In n dimensions, we can follow the same process (we’ll
save you the working out, but it’s pretty
straightforward with a little vector calculus). The Taylor
approximation in n dimensions has f(a) for a constant,
the dot product of the gradient and x-a as the first
order term, and the bilinear product of a matrix with x-
a as the second order term. This matrix is called the
Hessian: element (i, j) of the Hessian is a second-order
derivative: the derivative wrt to parameter j of the
derivative wrt to the parameter i.

Note that we're changing perspective from how we
viewed the problem in the backpropagation lecture:

we are now taking all parameters of our function as a
single vector, rather than lots of different tensors
retaining their shape.

This tells us how to apply Newton's method to high
dimensional problems. It's not usually done in practice
in deep learning because the number of elements in
the Hessian matrix is the square of the number of
parameters. If we have a million parameters, the
Hessian has 1012 elements. Not only is that too big to
fit in a reasonable amount of memory, we’d have to do
an additional backward pass for each element to
compute each second derivative, and then compute
the inverse of the Hessian after we've built this up.
Some of these steps can be approximated, but in
general, Newton's method still ends up being

IS IT PRACTICAL FOR US?

Newton’s method requires:

« NxN matrix

« Accurate estimation (10K batch size)

« Extra backward pass for each element of the gradient (N in total).

« Inversion of that matrix.

Newton’s method helps us understand and analyse our problems.

. Vu¥

Even for a relatively simple neural network of 100K
parameters, this is already completely infeasible.

WHAT DOES NEWTON’S METHOD SOLVE?

v

Parameter interactions: partial derivatives assume independent updates

provided by the off-diagonal elements of the Hessian.

Curvature information: are we nearing a local optimum?

provided by the diagonal elements of the Hessian.

When we compute a partial derivative for a parameter,
we assume that all other parameters are constant. This
is what the gradient tells us: how to change one
parameter, assuming that we keep all the rest
constant. Of course, this is not what we actually do: we
change all parameters of the network. In an ideal
world, we would work out how much we change
parameter a and parameter b together: modeling not
just their behavior independently of one another, but
also how they interact. This is what the off-diagonal
elements tell us: how all parameters interact with one
another.

On the diagonal, we get the second order partial
derivative of the parameter. This is the curvature
information along a particular dimension in model
space. We saw in the 1D example of Newton's method
what this tells us: if we are far from an optimum, it
increases the step size, and once we near the
optimum, it reduces the step size.

PATHOLOGICAL CURVATURE

;
@) st , Optimum.

7 / 4

4 /

7 "

! /’:v
/ / Salution
/
Stop-size a = 00044 Momentum 0.0
L L

81 source: https://distill.pub/2017/momentum/ VU n!

To visualize this, here is how gradient descent behaves
on a surface with a tricky curvature. If we had access
to the Hessian, it could tell us two things.

First, that the horizontal and vertical parameters
interact, creating a "canyon" with a curved shape. The
Hessian would let us follow this curved shape directly.
It would tell us that if we change parameterain a
certain way, we should change parameter b to match.
Gradient descent only looks at each parameter
independently. It can only see how parameter b should
change as a result of this curvature after it has
updated parameter a (and vice verse). As a result,
gradient descent shows much more oscillation, since
the loss landscape "curves away" from the direction
predicted by a linear approximation.

Second, we see that at the start, when the search
encounters a "bowl!" shape along the vertical axis, it
doesn't converge to the minimum of this bowl, but
bounces around from side to side: it oscillates from
one side of the canyon to the other. Most of the
distance covered is spent on these oscillations, rather
than following the direction of the canyon. If we had
access to the Hessian, it could tell us that in the
vertical direction we are nearing a minimum, so we
should lower the step size, dampening the oscillation.

We can, of course reduce the learning rate to eliminate
this oscillation, but the price we pay is that we take
more steps. The information from the Hessian allows
us to take big steps when the loss landscape is
predictable, and small steps when it curves in a tricky
way.

%[x—:l)'vzf\uw[x—u)
eigenvectors of the Hessian /

Conditioning number: ratio between the largest and
smallest eigenvalues of the Hessian

VU¥

Here's another way to think about the Hessian (which
requires a little linear algebra*). The first two parts of
our Taylor approximation define a linear function (a
hyperplane). The hessian term adds to that a parabola
in n dimensions (a quadratic function). This is a
function that takes the bi-unit sphere and stretches,
squishes and rotates it into an ellipsoid. The
eigenvectors of the Hessian give us the axes of this
ellipsoid.

If the largest eigenvector is very large and the smallest
is very small, the ellipsoid is very stretched, and
gradient descent is likely to perform poorly because
it's missing the required curvature information. The
ratio between the two is called the condition number,
and tells us a lot (if we can work it out) about how easy
our optimization problem is to solve.

*To brush up on the relevant concepts, this blog post
may help: http://peterbloem.nl/blog/pca-2.

SO, HOW CAN WE SOLVE THESE PROBLEMS?

Requirements:
« Require one backward pass, use only the gradient.
« only kN extra memory use.

= only O(N) extra computation.

So, if computing and inverting the Hessian is not
workable for deep neural nets, how can we solve some
of these problems in practice? First, let's sum up what
the requirements are, so that our optimization is
roughly as expensive as plain gradient descent.

Gradient descent (by backpropagation) requires only
one forward pass and one backward pass. These
usually take the bulk of the computation, so we don't
want to do more of these. In other words, whatever
optimizer we design shouldn't need more information
than the gradients we are already computing.

Next, we don't want to have to store substantially
more than we are already storing. In plain GD, we
store one (floating point) number for each parameter
of our network and one for its gradient. We're willing
to store one or two more number per parameters (like
previous gradients) but not more than that.

Finally, the extra computation after the forward and
backward should be limited. In plain GD this is limited
to subtracting the gradient from the parameter values,
which is a very cheap O(N) operation. This usually
vanishes compared to the forward and backwards
which are usually more than linear. So long as the
computation remains linear in the number of
parameters, we can be sure that updating our
parameters based on the gradients remains a
vanishingly small part of a single update of our
algorithm.

MOMENTUM

v

m%ym—l—wv

W< W —om

v :0.5,0.9,0.99
. VU¥

Here is our first practical variation on gradient descent.
In addition to the weights (w) of the neural network,
we maintain another vector m of the same length (that
is, we store one additional number per network
weight). This is called the momentum. These are
initialized to 0.

We compute the gradient for the weights, as before,
but instead of subtracting it from the weights directly,
we add it to the momentum, which is first reduced by
a hyperparameter gamma.

This means that the value m that we subtract from the
weights, is partially made up of the current gradient,
and partially of previous gradients.

THREE VIEWS ON MOMENTUM

« Heavy ball
» Gradient acceleration

« Exponential moving average

. VU¥

There are a few perspectives that can help us to
understand what is happening in momentum, and why
it makes optimization work better.

HEAVY BALL MOMENTUM

The gradient acts not like a direction, but like a force.
- force adds to the velocity

\v4
- velocity adds to the position m<— ym-—+w

W< W — o

If you imagine a heavy ball, rolling over the loss
surface, you can see that it will very efficiently find
good minima. If any minimum is to shallow, or too
small, the ball will roll back out of it, due to its
momentum. Only when a minimum is wide, with high
walls, will the ball stay put. The heavier the ball the
greater its momentum.

To model this analogy, we need to mimic the way
nature produces motion. This is not by direct change,
as in gradient descent: a force does not add directly to
our position. A force adds to our velocity, and the
velocity adds to our position. In momentum, the
gradient works as the force, and the momentum
vector works as the velocity.

HEAVY BALL MOMENTUM

rolls out of local minima

@
but also:

dampens oscillations

accelerates repeating directions

(@) sanngpon

: : Vu¥

These are the three main behaviors we want from our
heavy ball. First, It should roll out of insignificant local
minima, as already discussed.

Second, if the optimization process is oscillating (the
ball is rolling back and forth), this should be dampened
out. As we saw before, oscillations means we are
taking big steps, but not moving a lot, so the more we
can dampen them out, the more efficient our
optimization is.

Third, if any direction is repeated a lot in subsequent
gradient steps, we want to accelerate in that direction.
We are timid in gradient descent, taking only small
steps in case the current approximation of the loss
surface no longer holds after the step. If it turns out
that timidity is not necessary and the same direction is
consistently part of the gradient steps after step, we
can increase our step size in that direction.

Note that the second and the third can hold at the
same time. In the plot on the bottom left, we have an
oscillation from the bottom left to the top right, which
we want dampened out, and a repeating direction
from the top left to the bottom right (at the start),
which we want to accelerate.

For these second two points the heavy ball perspective
is perhaps not the most intuitive. We’ll look at some
other perspectives to help us understand what is
happening.

GRADIENT ACCELERATION

imagine all gradients point in in the same direction d:
w4 w+ od

W+ w+ o(yd+d)

W w4 o(v3d + yd +d)

w4 w+ od Z Ak 0 % acceleratiofl
rlL:O Y = 099 — 10
=w+ o<1 d
—y
. VU

To see how momentum accelerates repeated
gradients, imagine an ideal scenario where the
gradient always points in exactly the same direction.
This happens for instance, if we try to find the
minimum on a hyperplane

In this case GD will send us off to infinity, so it's not a
realistic example, but some loss surfaces may look like
a hyperplane for a large stretch of their domain.

In the first gradient update, the momentum vector is 0
plus this direction d, so the update is the same as our
regular GD update.

In the second update, the momentum is the previous
direction (which was d) times gamma, plus the current.
In the third, these previous two are multiplied by

gamma and the new direction is added. This pattern
continues forever.

Because all the directions are the same in this
example, we can take them out of the sum and the
remainder is just an infinite sum of gammas with
increasing exponents. This infinite sum has a simple
analytic expression: 1/(1- v), which becomes 100 if
gamma is 0.99.

This means that compared to our plain gradient
descent update, under momentum, we are moving in
exactly the same direction, but we are multiplying our
step size a hundredfold.

EXPONENTIAL MOVING AVERAGE

Averaging gradients helps to stabilize.

£
A

. Vu¥

To see how momentum helps us to dampen out
oscillations, we can use yet another perspective:
momentum computes an exponential moving average.

To motivate this, here's a simple way to deal with
oscillations: store the k previous gradients, and instead
of moving in the direction of the last, move in the
direction of their average. Look at the oscillation in the
picture. If we average the gradients, the oscillation
gives us roughly as many gradients pointing one way as
in the opposite direction. Averaging these removes the
oscillation, and leaves only the gradient pointing
bottom right.

This repeats for all steps so it becomes accelerated.

There are two problems with this idea. First, we need
to store k gradients, which for a large model means k
times the memory we use to store the model itself.
Second, if we choose k small, we get little dampening,
but if we choose it large, we get a lot of influence from
old gradients that are no longer relevant.

The exponential moving average solves both
problems.

MOMENTUM AS A WEIGHTED SUM

W4 W+ xg

W w+ o(ygr +82)

W w+ (Vg +vg + 83)

W w+ (Vg + 778 + vgs +81)

wewHoaytg + .o Vg 1+ 8n)
VU

If we fill in the sequence of gradients gy, ..., 8, as we
did before, we can easily see that the change we make
to the neural network parameters is a weighted sum
over all the previous gradients.

This is not strictly a weighted average, because the
weights don't sum to one. However, we are multiplying
by an arbitrary hyperparameter o anyway.

MOMENTUM VS. EXPONENTIAL MOVING AVERAGE

EMA, = kx, + (1 — «)EMA, | with EMA, =0

=KX + (1 —«) (kxn 1 + (1 — «)EMA,, 5)

= ixp + k(1= K)xn_1 + (1 — ©)’EMA,_»

=ixp + k(1=)xn 1 + k(1 —K)%xn o+ (1 — K)’EMA, 3
v=1—«

EMAH/(lf\./):Xn"F\‘Xu \+\J2XY\ 2+\.'3Xn 3+...

An exponential moving average is a weighted average
of a sequence of values (humbers or vectors) that is
easy to compute on the fly (without storing the whole
sequence). It takes all elements of the sequence into
account, but with the most recent values weighted
more heavily. It's defined similarly to momentum, but
slightly different. Can we find a precise relation
between the two?

The exponential moving average works recursively:
when we see element x, come in, we simply take the
average of x, and our previous average, with the new
value counting for some proportion kappa and the old
counting with proportion 1-kappa. At the very start
(t=0) we set the average to 0.

Because the new average is the average of the new
value and an old average, we can be sure that the
value is a proper average at every stage (in contract to
the momentum).

Starting with this definition, we can fill in the definition
of EMA..1 and multiply out the brackets. If we keep
doing this, we see that the exponential moving
average is a simple weighted sum over the whole
sequence. If we define a value gamma =1 - kappa,
then we see that the EMA is proportional to the
weighted sum that momentum computes.

In other words, the momentum m can be seen as an
exponential moving average of the recently observed
gradients (it’s scaled by a constant factor, but then we
multiply it by an arbitrary learning rate anyway).

MINIBATCHING IS ALSO AVERAGING

v

B : minibatch of instances x

VW% Z lossy(w) = % Z V loss, (w)
x€B

x€EB

VU¥

This idea of taking averages to stabilize gradient
descent also provides us with a new perspective on
minibatching. Assume we have some minibatch of
instances, and we are averaging the loss over them.
When we look at the gradient over the batch loss, we
see that it is equivalent to the average of the individual
gradients of each instance.

This means that doing one step of gradient descent for
the loss over a minibatch, is equivalent to doing single-
instance gradient descent, but averaging the gradients
that we get and holding off on the descent step until
we’ve seen all gradients in the batch.

With this perspective, we can think of momentum as
giving us the best of both worlds: because we use an
exponential moving average, we can do an update
after each instance (or small batch), but we also get
the stabilizing and accelerating effects of large batch
training.

In practice, we do both, big batches, and momentum,
but this is probably more because big batches allow us
to fill up our memory and thus achieve the maximum
amount of parallelization.

« N extra memory N: number of weights
« N extra operations

« One extra hyperparameter to tune (y)

 Potential quadratic speedup in convergence.
« Per-parameter tuning of behavior (each param gets its own momentum)
« Much more to be said: https://distill.pub/2017/momentum/

So that's momentum. We pay a little extra memory
(one extra number for each weight), and we make one
extra operation (a sum) per weight, and we have one
extra hyperparameter to tune.

In return, we get a potential massive speedup in
convergence, escaping of local minima, dampening of
oscillations and acceleration of gradients, so it’s a
pretty good deal.

We can also see the fact that each parameter gets its
own momentum as a kind of adaptive learning rate.
Momentum learns to accelerate some directions and

= vu¥ to dampen others.
NESTEROV MOMENTUM Nesterov momentum is a slight tweak on plain
momentum.

Compute gradient where you will be, not where you are.

w' w4+ om m momentum
A% w =
m<< ym-+w
w w + (Xm m Nesterov momentum
w
94 see also: https://cs231n.github.io/neural-networks-3/#sgd Vuk

With plain momentum, the position where we end up
is the sum of our momentum term and the current
gradient. The idea behind Nesterov momentum is that
if we are going to add the momentum term anyway,
and you know the momentum term before you
compute the gradient, you might as well add the
momentum term first, and then compute the gradient.
The gradient for this position will be closer to where
you're going, so the information should be more
accurate.

In practice, Nesterov momentum often works better,
but both versions are used.

REMEMBER THE VARIANCE

— lebrning rate U
s

[B 1250 1500 1750

— leaming rate 0.01

AN N A A
1o [* VYV A vmm\rww%m,/ (VI WV, VG W

] 20 %0 750 1000 1250 1500 1750

— leaming rate 0.001

NS Wwwxxmyu"u\/\vwW\/\,fwm',’V\,\,m,vam/;,r\/xwf.\,\‘

] 20 %0 E) 1000 1250 1500 1750

— learning rate 0.0001

] 20 %0 E) 1000 1250 1500 1750

leaming rate 1005

: o e yle
o

It’s not just the average of our gradients that can tell
us something. Remember in the first part of this
lecture, we noted that if the variance of our gradients
is high, we’re probably bouncing around some bowl in
the loss surface (at least for that parameter), so we
want to lower the learning rate. If the variance is low,
we’ve settled on a local minimum, and (if that
minimum isn’t good enough) we had better boost the
learning rate a little.

This tells us that it’s not just helpful to use the average
of a bunch of suggestions for the gradient, we may get
a boost from normalizing the variance as well.

NORMALIZATION

mean std. dev.

VU¥

If you've done any data science before, you've
probably seen this operation before: you subtract the
mean of your data and divide by the standard
deviation. This operation ensure that the new mean of
your data is 0 and the new variance is 1.

Adding a small epsilon to avoid problems when the
standard deviation gets too close to zero.

We can use this normalization as inspiration to
normalize our gradients. If we divide them by the
standard deviation, we boost the values if they
collectively get too small, and dampen them if them
get too big.

https://distill.pub/2017/momentum/

ADAM: EXPONENTIAL MOVING NORMALIZATION

m<« Bpm+ (1—B,)wY
2 <=
v Bov+4 (1 —po) (wv) < ﬁlamambmise
m
W W—X
Vvte
. Vu¥

This is the basic idea behind Adam: we compute not
only an exponential moving average (as momentum
does), but also an exponential moving average of the
(non-centralized) second moment of each parameter
(this is essentially the variance).

The result is that the step size is reduced if we observe
that we are bouncing around a lot and increased if we
observe that we are stagnating.

m < m + v
2
« Bovt (%)
m
m < N
I —B1" < steps so far
v
V T
L — P
m
—w—

In the first steps of our iteration, moving averages are
very biased towards our initial values. These are
arbitrarily set to 0, underestimating the gradient. For
m this leads to slightly smaller steps than desired,
which is not a problem, but for v this can lead to larger
steps by a serious amount.

To correct for this, the authors introduced the
following bias correction. Note that this correction
weighs heavily in the first steps and then dies out
quickly.

People have observed that even with the bias
correction, the early estimates are often a little off.
There are many more complicated corrections, but a
simpler approach is to just warm up the learning rate.
That way, you’re not taking any big steps until m and v
are accurate estimates of the first and second
moments.

+ 2N extra memory
« 2N extra operations

« Two extra hyperparameters to tune (B, B2)

defaults are usually fine, and the learning rate becomes much easier to tune.

» No convergence guarantees.
« Per-parameter tuning of behavior
+ Currently the default optimizer for most DL settings

And has been for 7+ years despite many alternatives proposed.

. VU¥

PRACTICAL ADVICE

Newton’s method doesn’t work for deep learning, but it’s great in other
settings.

Start with Adam, with learning rates between 0.1 and 0.00001.

defaults are usually fine for B1, B2
Consider trying plain SGD with (Nesterov) momentum.

Warning: Adam converges slowly for simple problems

SGD is much faster for linear problems. &

£ 4

3e-4 s the best learnin

te for Adam, hands down.

100

Client

401 AM - Nov 24, 2016 - Twiter

A word of warning. You will likely find yourself, at some
point, optimizing for a very simple linear problem, and
wondering why Adam performs poorly. Just because
Adam works better for highly complex, nonlinear
problems doesn't mean it should therefore work even
better for simple linear problems. Often, Adam is very
slow to converge in such situations and basic SGD or
momentum will give you much faster convergence.

Lecture 4: Tools of the trade

Peter Bloem

Deep Learning

? VRUE
) : NVERSTTEIT
divu.github.io VU ® AMSTERDAM

In the previous lectures, we’ve seen how to build a
basic neural network, how to train it using
backpropagation and we’ve met our first specialized
layer: the Convolution. Putting all this together, you
can build some pretty powerful networks already, but
doing so is not a trivial process. Today, we’ll look at
some of the things you need to know about to actually
design, build and test deep neural nets.

THE BAG OF TRICKS

VU

Getting deep learning to work can be a bit of a dark
art. The basic principles that we've described so far are
enough to understand how everything works, but to
actually get to the point where you can build a working
network yourself, you usually need a few tricks. In this
video, we'll go through the main ones.

| section|The bag of tricks|
| video| https://www.youtube.com/embed/
mX92C0s0q1Y?si=2iZIRjcusuCLZQ8T|

initialization, normalization

« Glorot, He

« Batch Norm, group norm, layer norm
regularization

» L1, L2, weight decay

« Dropout, priors

other tricks

+ data augmentation, transfer learning

VU¥

INITIALIZATION

If the gradients are zero at the first batch, training never starts

If they’re near zero, training starts very slowly

If the gradients blow up, we get NaN

Initial weights should be randomly chosen in a way that keeps gradient
and activation magnitudes consistent throughout the network.

To understand this, imagine a network with just a
single weight per layer (and no biases). First, consider
what happens if you have linear activations, and set all
weights higher than 1. As the network gets deeper, the
output of each layer grows exponentially. If we get a
gradient over the loss, the chain rule tells us to
multiply it by the weights, so the gradient also grows
exponentially. In theory, this is no problem: the
gradients are correct so if we need smaller values, they
should shrink quickly. It does mean, however, that
unless we carefully tune our learning rate, we are
taking very big steps at the start of learning. There is
also the problem of numerical instability: the bigger
our output, the less stable our nonlinear computations
(like the loss) get.

If we try to avoid it by setting the weights less than 1,
we get the opposite problem: as the network gets
deeper, the output shrinks exponentially and with it
the gradients. Here, we have a situation, where
learning never starts, because the initial gradient is far
too small. And again, in this regime, there is a big
probability of numerical instability.

The sweet spot is a network with activations all equal
to 1. That way, however big the input is, that's how big
the output is, and the same goes for the gradient
traveling back down the network.

Of course, we never stack linear layers like this in
practice. Let's see what happens when we add sigmoid
activations. We see that for positive inputs the
activations get squished into the interval (0, 1). Large
activations are mapped to 0 and 1 and small
activations are mapped to 0.5. In both cases, the
sigmoid does something to counter the activation
explosion/shrinkage problem. But we pay a large price
in the backward pass.

derivative 025 ->

The very largest derivative the sigmoid will give us is
0.25. This means that as it propagates down the
network, the gradient now shrinks exponentially in the
number of sigmoids it encounters.

We could fix this by squeezing the sigmoid, so its
derivative is 1 in the middle, but that would increase
the regions where the sigmoid is close to flat. If
backpropagation encounters anything in these region,
the gradient is multiplied by something very close to
zero, so it dies immediately.

derivative 1 >

<r,

v

ag;,
v

~

The ReLU activation preserves the derivatives for the nodes
whose activations it lets through. It Kills it for the nodes that
produce a negative value, of course, but so long as your
network is properly initialised, about half of the values in
your batch will always produce a positive input for the
ReLU.

One way to think about the difference between the sigmoid
and the RelLU is that the sigmoid preserves a gradient for
every weight, but shrinks the magnitude exponentially. The
ReLU exponentially shrinks the number of weights for
which it preserves a gradient, but for those it preserves the
magnitude perfectly. This is much preferable. In gradient
descent, we take many steps, so it's fine to take a step for
only an arbitrary subset of our weights each time.

The only thing we must watch out for is that for each weight
there is some input for which the weight gets a gradient. If
any input to a ReLU is negative for all possible inputs to the
network, its derivative will always be 0 and it will never
change. This is what we call a dead neuron.

We can avoid dead neurons by normalization: if all the
inputs look standard-normally distributed, then half of
them will always get a gradient.

GOOD INITIALIZATION

Make sure your input data is normalized: 0 mean, covariance I

uniform over [0, 1] is usually fine too

Initialize your layer weights so that if the input has mean 0, covariance I,
then the output does too. Same for the backward function.

bias is easy: just init to 0 or close to zero.

+ Glorot Initialization

+ He initialization

In short, the precise behavior of your network at
initialization depends a lot on your activations. But
there is a basic principle that almost always works
well: make sure that on average, your activations don't
increase or decrease from the input to the output, and
make sure that your gradients don't increase or
decrease from the output loss to the input loss.

A simple way to guarantee this is to ensure that if the
input to your layer has standard mean and covariance,
then the output does to, and ensure the same thing
for the backward function (or as close as you can get).

There are two simple approaches that are commonly
used: Glorot and He initialization. These are also
known as Xavier and Kaiming initialization respectively
(in both cases after the authors' first name).

mean std. dev.

Before we get to the weights, however, we must make
sure that our assumption hold for the input to the first
layer. We must normalize our data. For each scalar in
our input (i.e. each color channel of each pixel, or each
feature in a tabular dataset), we should make sure that
over the whole data its mean is 0 and its variance is 1.
The operation that achieves this is simple: compute
the data mean, and subtract the data standard
deviation.

NB: Remember what we said about leakage. How
should you normalize the test and validation sets?

VUi
Glorot initialization makes the simplifying assumption
that the layer is linearly activated. This won't be true in
y = Wx with W ¢ RnX™ assume Var(x;) =1 practice, but the initialization usually works anyway
choose Var(W4;) = ¢, Exp(W4;) =0 (especially with RelLU activations).

xV =WTyV

Var(y;) =Var)_ Wi = Y_ Var(Wixi)
k k

= Z (Var Wiy - Var x +
k

require Var(y;) =1

)

— , /2
=m-c \\ii”N<0~ <
n+m
Var(xY)=n-c
1 1 1 , 6 6
Var Wiy = —~ — = 7 Wiy ~U | — N
noom o j(n+m) n+m yn+m
Understanding the difficulty of training deep feedforward neural networks, Glorot and Bengio PLMR 2010 VU nt‘

Top left, we see the forward and the backward
functions. We will assume first that the input has
standard mean and variance. We will then sample the
weights from some distribution with mean 0 and
variance c, and try to ensure that the output yi has
variance 1 for all i. What should c be?

We fill in the definition of y;, and work the sum out of
the variance. Variance doesn't distribute over
multiplication, so if we rewrite to the product of the
input and the weight, we get a few extra terms.
Happily, these contain the expectations of the weights
and the input as factors, which we'd assumed to be
zero, so these disappear (more briefly; the variance
does distribute over multiplication if the expectations
of both arguments are zero, as they are here). What's
left reduces to the sum of m times the variance of c,
where m is the number of columns in the weight
matrix.

The same argument holds in the other direction for
the backward pass. The variance of the loss for the
input is n times c. For these to be 1, we need to set the
variance of the elements of W to 1/n and 1/m. This is
clearly impossible unless W is square. In practice, we
choose either or m, or we take the we take the
average of n and m.

All that's left is to pick a distribution that has 0 mean
and variance 2/(n + m). The most common options are
a uniform distribution or a normal distribution. In the
case of the normal distribution the parameter (the
standard deviation) can be derived directly from the
desired variance. In the case of the uniform
distribution, the upper and lower bound shown here
will give you the required variance.

http://proceedings.mlr.press/v9/glorot10a.html

HE INITIALIZATION (GAIN FACTOR)

If we use a ReLU activation, we expect to lose half our outputs, so we need
to change c to double the output variance.

2
Wii“(°vﬁ)
Wi ~u (- 12 12

Y n+m’ Vn+m

NB: Glorot averages n and m by default, He takes n by default.

11 Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, He et al ICCV 2015 VU o

The simplifying assumption of the Glorot initialization
was that the layer was linear. In short, we ignored the
activation. In practice, it turns out that this doesn't
hurt too much, and most networks train fine with
Glorot initialization. However, it isn't too much effort
to work out the impact of the activation.

In the case of a RelU, it's particularly straightforward:
if the input to the activation has mean zero, then we
expect half of them to be set to zero. This means that
the remainder needs to have double the variance, or
sqrt(2) times the standard deviation. This factor is
called the gain. Each activation comes with its own
gain. You can find a list here: https://pytorch.org/
docs/stable/nn.init.html# or in the paper.

Note also that while the default choice for Glorot
initialization is to average n and m (as shown here), the
default choice for He initialization is to take only n. This
choice shouldn't affect performance too much, but it
may be important to implement it this way for
compatibility or reproduction. When in doubt try to
check the code of the model you're trying to
reproduce.

v
from torch import nn

model = nn.Sequential(
nn.Linear(784, 1024),
nn.ReLU(),
nn.Linear(1024, 10),

nn.Softmax(dim=1)

+ -Linearweight (torch.Tensor) - the learnabl
) (out_features, in_features). The values are initialized from U

/e weights of the module of shape
—E, V), where k =

1
e out_features). If bias is True, the
- ble bias of the module of shape (out._f
+ -Linear.bias - the learnal e it (01
©alues are initalized from U (—VE, VE) where k = o eatizes
112

In practice, it's very easy to initialize things without
knowing exactly what you're doing. For instance, if you
check the pytorch documentation for a linear layer, it
turns out that it uses neither He nor Glorot, but a
similar initialization with 1 in the numerator

Apparently based on this '99 paper by Yann Lecun:
http://yann.lecun.com/exdb/publis/pdf/
lecun-98b.pdf.

These default initializations usually work fine, but it's
worth trying different initializations if your model isn't
performing as it should. Additionally, if you're
reproducing a model that uses a specific stated
initialization, make sure to initialize the layers
manually.

Another thing to consider is that the linear layer
doesn't know which activation it feeds into. If you
want to use He initialization, make sure to set the gain
manually.

https://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html

BATCH NORMALISATION

X1,...,Xm : output batch of previous layer

Y1s---,¥m : batch result
¥, B : learnable parameter vectors

1
= b Z Xi mean over batch
J‘ .
o==—3Y (xi—u)? variance over batch
m
. Xi— U .
k= — - standardize
I
T

rescale

VU¥

Even with sound initialization, however, in a very deep
neural net, your gradients and activations will start to
wander away from the standard mean and covariance.
One good way to avoid this—both at initialization and
as training takes hold—is to insert a layer that
specifically normalizes its input, whatever the values.

The most popular layer that does this is called a batch
normalization layer. It takes a batch of tensors (vectors
here, but any tensor shape works), and computes, for
each dimension in the tensor, the mean and variance.
It then normalizes the input by subtracting the mean
and dividing by the standard deviation. All of these are
simple, differentiable operations, so we can easily
chain them together and let our AD system take care
of the backpropagation.

Optionally we can add two learnable parameters: an
element-wise multiplication and a bias. This gives us
the best of both worlds: the output of the batch norm
can have any mean and variance, but we still get
perfectly controlled gradients (this last step is linear, so
the gradients are scaled linearly as well).

Batch normalization works extremely well. In fact
much better than any other approach that should
work similarly (like controlling normalization through
extra loss terms, or training the initial values to for
normal activations). Many papers have been written
about exactly why this is the case, but there doesn't
seem to be a clear answer yet. For now, we can just
remember that the basic idea is to stabilize the
activations and the gradients.

Using batch information is looking forward in the test data.

Solution:
» Take the training set mean and standard deviation.

« Compute using EMA

This means your network needs to know whether it’s training or predicting.

During inference, we should only look at one instance at a time.

Remember leakage? Batch norm is a typical example
of a mechanism that can leak during evaluation. If we
use batch norm the same way in evaluation as we do
during training, we are aggregating information over
the batch dimension. This is not usually a realistic way
to use a neural net. In production, instances come in
one at a time. Even if they don't in your setting and
you can actually batch them together, you are likely
comparing to a model that doesn't.

Moreover, your evaluation performance is an average
of several independent samples of the performance on
a single instance.

To eliminate this unfair advantage, batch norm
behaves differently during evaluation than during
training. Like the data normalization should do, it takes
the mean and variance from the training data and
normalizes by that. Since it's difficult in a library like
pytorch to compute the training data mean/variance
from inside a layer (in some cases, there may not be
fixed dataset at all), batch norm usually computes a
running mean and variance using the exponential
moving average to use during evaluation.

This does mean that when you use batch norm your
network needs to know whether its training or
predicting. All DL libraries have a simple functionality
for telling your network this, but if you forget to do so,
you are inflating the performance of your network.

Same as batch norm, but over different subsets of the batch tensor.

Batch Norm Layer Norm Instance Norm Group Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H, W)
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

Batch norm tends to work best if
« you have a large enough batches
« your instances are i.i.d.
N le

image source: Group Normalization, Wu and He, 2018 VU (3

The batch dimension isn't the only dimension along
which you can normalize. You can pick other directions
and even subsets of the dimensions of your batch
tensor. Depending on which dimension you pick this is
called instance normalization, layer normalization or
group normalization.

Not normalizing over the batch dimension has several
benefits. First, you don't have the leakage issue from
the previous slide: group normalization can operate in
exactly the same way during training and testing (only
the batch dimension is "protected"). Second, the
performance doesn't degrade for smaller batches.
Batch norm requires a large number of instances to get
strong estimates. If we don't have many instances in
the input, but we do have, for instance, many pixels,
then it may be better to normalize in another
direction.

In practice, however, for reasonable batch sizes, batch
normalization appears to work best, and remains the
most popular option for small models.

RESIDUAL CONNECTIONS

v

layers %} X

X

VU¥

Another cheap trick to help your gradients propagate
during early training is to simply add a connection around a
block of layers. We take the input of the block and add it to
the output (sometimes multiplied by a single scalar
parameter, but this isn't usually necessary).

This does require that the input of the block has the same
dimensions as the output, but it's usually possible to design
your network in these kinds of blocks. This is called a
residual connection.

The benefit of the residual connection is that at the start of
training, when the gradient signal through the block is weak
because of the limits of initialization, there is a second
signal through the residual that doesn't suffer this decay.
The lower layers can start training based on this signal, and
later, when the layers in the block start to do something
useful, integrate the gradient from the block.

regularization

« L1, L2, weight decay
« Dropout, priors
other tricks

« data augmentation, transfer learning

Once we have our network up and running we need to
control its behavior. If we are lucky, gradient descent
moves towards a model that generalizes in the way we
want it to generalize. If not, it will pick a different
model, which generalizes in another way. It may, for
instance end up overfitting on some aspects of the
data. If the problem isn't too bad, we can control this
with a little bit of regularization.

REGULARIZATION

Encoding a preference for certain parameters over others, independent of
the data (a priori).

Implicit regularization: initialization, choice of optimizer, etc.

Explicit regularization:
* penalty terms
« priors

« dropout

Vu¥

Regularization is telling the model in some way that we
have an a priori preference for some models over
other models. One common preference is simplicity.
All else being equal, we prefer models that are
somehow simple (fewer parameters, smaller
parameter values, more zero parameters) to models
that are more complex.

Regularization is how we define this preference and
how we communitcate it to our learning algorithm,

A lot of the methods we use in deep learning have an
implicit regularizing effect. For instance in gradient
descent, we start at some point in model space, and
take a finite number of small steps. This means we are
much more likely to end up with a model that is close
to our starting point. By our choice of initialization
mehtod (which chooses the starting point) and our
choice of gradient descent we have defined a
preference from some models over others, even if we
didn't do it consciously, and we couldn't quite state
what that preference is.

We'll now look at some more explicit regularizations.
Methods which are explicitly added to GD or to our
model to regularize it, and for which we can describe
reasnoably well what preference we are encoding.

PENALTY TERM: LP REGULARIZER

lossreg = loss + A||6]]

parameter space

VU¥

The 12 regularizer considers models with small weight
values to be preferable. It adds a a penalty to the loss
for models with larger weights.

To implement the regularizer we simply compute the
12 norm of all the weights of the model (flattened into
a vector). We then add this to the loss multiplied by
hyperparameter lambda. Thus, models with bigger
weights get a higher loss, but if it’s worth it (the
original loss goes down enough), they can still beat the
simpler models.

In the image, the light brown parameter vector is
preferable (according to |2 regularization) to the dark
brown one.

Here, theta is a vector containing all parameters of the

model (it’s also possible to regularise only a subset).

VECTOR NORM

w

l1oll

161}y =

Here's how the 12 norm is computed for a two
parameter model (this should not be news to you).

By replacing the square with an arbitrary exponent
(and similarly adapting the root), we can modify the
norm to a range of other so called I-norms. All of these
are well defined norms following the rules that a norm
should follow. By regularizing with | norms of different
values of p, we can change the regularization behavior.

L2 NORM

v

VU

To visualize this, we can color all points that are a fixed
distance from the origin. If we use the norm as a
penalty, these are all the models that get the same
penalty.

For the 12 norm, they form a circle. Or, in higher
dimensions, a hypersphere.

VU

For the 11 norm, they form a diamond.

0>p>1

VU

L1 REGULARIZER

loss + loss + AJ|9]|

VU

What does this mean for our regularization behavior
with the | norms? For low p values (p=1 is most
common), we are telling the learning algorithm that
we prefer solutions closer to the origin (all else being
equal). However, if the solution is far out into space,
we also prefer it to align with the axes. A vector
aligned with the axes gets to have a much high length
(by 12 norm) than a vector at an angle of 45 degrees,
for the same penalty.

The effect is that we get, wherever possible, weight
values that are exactly 0. Under the 12 norm, there is
no difference between a values of 0.0 and a value of
0.0001. The 11 norm encodes a strong preference:
weights of 0 are axis aligned, and so preferable.

—
<«

Vu¥

Here’s an analogy. Imagine you have a bowl, and you
roll a marble down it to find the lowest point. Applying
12 loss is like tipping the bowl slightly to the right. You
shift the lowest point in some direction (like to the
origin).

Vu¥

L1 loss is like using a square bowl. It has grooves along the
dimensions, so that when you tip the bowl, the marble is
likely to end up in one of the grooves.

UNREGULARIZED

Here is a loss landscape for a simple linear regression
problem with two parameters. Brighter points have
lower loss.

And here it is with |2 loss. Note that the "cloud" of
good solutions has widened and a little tuft has been
pulled out towards the origin.

And here it is for |1 loss. Note the "creases" in the
surface along the axes.

L2 regularization: often uses squared norm wTw as penalty term

For computational simplicity, and ease of analysis.

L1 regularization: promotes sparsity

130

VU

In practice, the 12 loss doesn't usually use the norm,
but the squared norm, which is equal to the dot
product of the weight vector with itself. This is cheaper
and easier to implement and easier to analyze.

It's not 100% the same (the square amplifies the effect
of outliers), but the basic principle is similar.

W w — oV, (loss(w) + Al w||?)

= w — aVloss(w) — cAV) w3
W W— w i

=w — oVloss(w) — aA2w
W YW

w <+ w— «Vloss(w)

W w — ocA2w = (1 — aA2)w
Vu¥

One consequence of using the squared norm instead
of the norm in 12 loss, is that we if we use plain
gradient descent, we can implement |12 loss as weight
decay. In weight decay we simply shrink the weights a
little after each gradient update by multiplying by a
value gamma which is slightly less than 1.

If we fill in the gradient for the penalized loss, we see
that the penalty term rewrites into a simple negative
term of the weights multiplied by a constant. The
result that when we subtract this term, we are
subtracting from weights a small multiple of
themselves. For the correct value of gamma, the two
approaches are equivalent.

If we use plain gradient descent....

Equivalent to (squared norm) L2 regularization, but only with vanilla SGD.
Cheap to compute: no extra nodes in the computation graph required.

With different optimizers, weight decay must be implemented differently.
cf Adam and AdamwW

The benefit of weight decay is a memory saving.
Penalty terms extend the computation graph, whereas
weight decay is a simple in-place computation on the
weights outside of the computation graph.

However, when we sue weight decay with other
optimizers, it is no longer equivalent to 12 loss, unless
we implement it differently. It may still work, but you
should be aware of the implications. In practice, there
are often specific implementations of optimizers (like
AdamW) that implement weight decay in a way that is
equivalent to 12 loss.

arg max py (x)p(w)

W

= argmin — log P (x)p(w)

w

= arg min — log py(x) — logp(w)

w

base loss penalty

—logN(w |0,I) = —log w w — wTw

VU¥

If our model is a probability distribution (like most
neural networks are), then we can easily cast penalty
terms as priors. This fits our view of regularization very
well, since it's meant to tell us which models to prefer
regardless of the data, exactly what a prior does as
well.

The analysis is simple. If we are maximizing the
posterior probability (using the MAP criterion to
choose a model), we are maximizing the product of
the prior and the sampling distribution (aka the
likelihood). Taking the negative logarithm, we see that
we retrieve a loss with two terms: one involving the
data, and one involving only the weights. The negative
log of the prior functions as a penalty term.

Many well-known priors correspond to well know
regularizers. For instance, if we use a standard normal
prior on our weights, the complicated expression of
the normal distribution simplifies to a simple dot
product of the weight with themselves: the (squared)
12 loss that we've seen already.

arg max p,,(x) p*(w) with p™(w) = m

= arg min —log py (x) —logp(w)* + log | p(v)®

W v

= arg min — log py (x) — alog p(w)

W

So what about this penalty hyperparameter alpha? It
turns out that we can include that as well if we raise
our prior probability density to the power alpha.
Repeating the analysis from the previous slide shows
that this results in a penalty term as before, but scaled
by alpha.

The only problem is that when we raise a probability
density function to a power it stops summing/
integrating to 1, so it's no longer a proper probability
function. Therefore, we need to apply an additional
normalization factor. Happily, this factor is constant
with respect to the chosen weights w, so its term
disappears from our loss function.

What's the effect on the prior of raising it to a power
like this? It's a little bit like adjusting the contrast in an
image. If alpha is larger than 1, the difference between
the large and small densities becomes more defined.
In short our preferences becomes stronger. If it's less
than 1, the differences become less defined and our
preferences, while still the same, become less strong.
This is exactly the effect that alpha has on our loss
function.

In the limit, as alpha goes to 0, the preferences
disappear and we have a uniform preference over all
models (although in practice, of course, we already
have a load of implicit biases encoded in our search
algorithm).

In Bayesian parlance, adjusting a prior like this is
known as tempering.

DROPOUT

v

(1) Standard Neural Net (b) After applying dropout
Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.
135 source: Dropout: A Simple Way to Prevent Neural Networks from Overfitting Srivastava et al, JMLR 2014 VU é’

Dropout is another regularization technique for large
neural nets. During training, we simply remove hidden
and input nodes (each with probability p).

This prevents co-adaptation. Memorization (aka
overfitting) often depends on multiple neurons firing
together in specific configurations. Dropout prevents
this.

Present with Always
probability p present
(1) At training time (b) At test time

ne that is present with probability p
ghts w. Right: At test time, the u
nultiplied by p. The output at test time is sar

units
and

ected output
at training time.

VU¥

Once you've finished training and you’ve starting using
the model, you turn off dropout. Since this increases
the size of the activations, you should correct by a
factor of p.

Here again, we see a situation where the model needs
to know whether it’s training or predicting.

https://twitter.com/Smerity/status/
980175898119778304

entered wide scale use in machine learning. Dropout, sim-
ply described, is the concept that if you can learn how to do
a task repeatedly whilst drunk, you should be able to do the
task even better when sober. This insight has resulted in nu-

137

initialization, normalization

» Glorot, He

« Batch Norm, group norm, layer norm
regularization

« L1, L2, weight decay

» Dropout, priors

other tricks

« data augmentation, transfer learning

Vu¥

DATA AUGMENTATION Again, this is usually only done during training.

Simple random manipulations of your input

most common in image tasks

Rotation, flipping, adding noise, masking portions.

« Forces your network to learn the invariance that it doesn’t possess
naturally.

« Reduces overfitting: never the same input twice.

But: some invariances can harm your performance. n

label: 9 label: 9
abel:0 obel:d \y fe

T ANSEERIEARNING There is much more to be said ab'out t.hIS, but for now,
just remember that for small projects in computer
Some models extract features that work well for other domains. vision and NLP, it's a no brainer to grab a large

pretrained model and finetune it for your data.

1. Train a large model to classify ImageNet or predict tokens in NL
Inception, ResNet, VGG, MobileNet, GPT-2, BERT

2. Remove the last layer
3. Add a new classification layer, train only this layer.

Only the last layer requires gradients

state of the art performance, at the cost of a linear model

Vu¥

LECTURE RECAP

The basic process of training a model. Designing implementing, debugging,
tuning, publishing.

Why does deep learning work at all? Randomization, double descent,
lottery tickets.

Optimizers. Newton’s, momentum, Adam.

The toolbox: initialization, normalization, regularization.

Vu¥

THANK YOU FOR YOUR ATTENTION

divu@peterbloem.nl

Vu¥

