
Welcome to lecture 3 of the deep learning course. Today we will be 
talking about convolutional networks which are networks responsible 
for several recent breakthroughs in deep learning.
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THE PLAN
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In the first part we will talk about where commercial architectures are 
needed. 

In the second part I will be talking about one dimensional convolutional 
networks and explain the basic concepts.

In part three we'll scale up to more dimensions (3D, 4D, etc.) and 
discuss some of the theory.

In part four we will look at some example architectures 



PART ONE: INTRODUCTION



4 source: https://cs.stanford.edu/people/karpathy/neuraltalk2/demo.html

Of the recent breakthroughs in deep learning, the ones which are often 
visible are those related to images. For example, these are three 
examples where a deep learning system that includes some 
convolutional neural networks is able to create a description of an 
image. So basically the system receives an image and then produces 
a caption for that image. For example the first one you see a football 
player and then the system is able to generate a sentence like “a 
soccer player is kicking a soccer ball”. These kinds of systems 
receive a lot of training data (in the form of images with their 
captions) and generate output on images they have never seen 
before.



5 source: https://arxiv.org/pdf/1506.01497v3.pdf

A second example is semantic image segmentation. The system is able 
to determine what certain parts of the picture depict.



● We need to get features!

● For tabular data, this is “simple”

● But what with more complex data?

INPUT DATA 
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When we look back at our basic deep learning knowledge we have a bit 
of an issue: we have that image coming in but what we need for our 
deep learning model is a set of features. For tabular data (meaning 
the typical table) this would be simple but what do we do with more 
complex data like an image?



● Example 

INPUT DATA -  IMAGES

https://pixabay.com/nl/illustrations/vector-afbeelding-landschap-vector-3833815/

The first thing we should realize is that an image has a width, has a 
depth but also has colors. 



● Example 

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING

We can split an image into so-called color-channels. You've probably 
already heard about RGB (red green blue). We can separate the 
image such that we have these three channels separate from each 
other.



● Example 

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING

CONCATENATE

We can then look at each of those colour channels and depict their 
intensity in the form of a vector. How intense is the intensity of the 
red colour channel at this pixel? We could then in principle 
concatenate all these vectors together to form one long vector 
representing that image.



● The input dimensions are very big

● One channel of an image of 1920x1080 ≃ 2M features

● 1 second of sound at 44kHz = 44k features

● A video: frame rate * image features + sound

○ 10 seconds => 10*(60fps*3*2M+44k)

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING
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A problem here is that the input dimensions are very big. That means if 
we look at this one channel of an image, for example the image in 
the previous slide, we have two million features. Now we have three 
channels so that would already be six million. Obviously now one 
second of sound for example sampled at 44 kilohertz would similarly 
lead to 44 000 features. For videos, you have sound and a moving 
image leading to an even greater number of features.



● The input dimensions are very big

● Too big for an MLP

● Example 

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING

1920x1080 ≃ 2M 

dimensional vector

Now, the problem is that this very large number of features is also just 
too big for our normal multi layer perceptron. The example before 
would lead to a 2 million dimensional vector. 



● The input dimensions are very big

● Too big for an MLP

● Example 

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING - MLP

1920x1080 ≃ 2M 

dimensional vector

So, you need 2M 

weights for just 1 

neuron!!!

If we want to attach a neuron to this, so we're going to make first, say, a 
hidden layer of our neural network, that neuron also needs 2 million 
weights. That neuron also needs memory space to store the 
gradients. And then on top of that, you probably want more than one 
neuron, you probably want several hidden layers and you want to 
have more neurons per layer. This requires an extremely large 
amount of weights.



● The input dimensions are very big

● Too big for an MLP

● Example 

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING - MLP

1920x1080 ≃ 2M 

dimensional vector

So, you need 2M 

weights for just 1 

neuron!!!

And you want more 

than 1

This approach is simply not feasible in practice.



● The input dimensions are very big

● Too big for an MLP

○ Too many weights

○ Would not converge

○ would not fit in GPU memory

■ Especially when you also need to 

keep gradient information

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING - MLP - LIMITATIONS

Besides just having too many weights this system would also not 
converge because you have to train all those weights. Constraints in 
GPU memory make this infeasible as well. 



● The features in this kind of data are not independent

○ They have locality

● But, an MLP does not remember this ordering

INPUT DATA - SOUND, IMAGES, VIDEO - ENCODING
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One notable observation about networks of this type is that, aside from 
the size argument, the features within this dataset exhibit a level of 
interdependence; they possess a certain locality. This implies that 
when two pixels are adjacent to each other, there is inherent 
meaning in their proximity. In contrast, when you consider a 
Multi-Layer Perceptron (MLP), it does not take into account this 
spatial ordering. Whether the information is presented with one note 
above another or in a mixed configuration, the MLP does not retain 
the sequence or order of the notes.



● We want to be able to do deep learning on this kind of data

● Steps

○ 1D

■ Build intuition

○ 2D

■ Do the same for images

GOAL FOR TODAY
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All right, let's recap what we've observed. We've encountered an image 
and successfully devised a digital representation for it in memory. 
However, the MLP we initially employed doesn't prove to be a viable 
option. It lacks scalability and effectiveness. To address this issue 
and facilitate deep learning for this data type, we'll take a systematic 
approach. We'll begin by exploring this in 1D, gaining an intuitive 
understanding. Subsequently, we'll formalize the process and 
transition to 2D. Our ultimate goal is to apply the same principles to 
higher dimensions, such as images.



Welcome to part two of the convolutional neural network lecture. In this 
part we will be looking at one dimensional convolutions and try to 
build an intuition for them.

PART TWO-a: conv1D



● What is the style of this music?

● Does the user like this music (yes/no)?

○ A classifier

● What is the beat of this music?

● How pleasant is this music to listen to (1-100)?

○ Regression

1D - SOUND - TASK - CLASSIFICATION / REGRESSION
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A sound wave is the superposition of sine waves.

With deep learning, we can try to answer hard questions like the ones 
mentioned here.

The central example we'll consistently refer to in the following slides 
revolves around a one-dimensional sound wave. Our objective is to 
harness the power of deep learning to address complex inquiries 
related to sound. For instance, when presented with a particular sound 
wave, like the one displayed, we could seek to determine the musical 
style it embodies. Additionally, we could discern whether the user 
enjoys this music, rendering the need for a classification model. 
Essentially, this is a classification problem: given a piece of music, we 
classify it into clusters.

Conversely, there are regression tasks, like discerning the beat or 
rhythm underlying the music. Furthermore, we can assess the 
pleasantness of the music, typically quantified on a scale from one to 
100.



● What does a cleaned version of this audio signal look like?

● What audio would fit to these lyrics?

● How would this song continue?

1D - SOUND - TASK - GENERATION
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Later, with generative modelling, we will go even further. In addition to 
the conventional classification and regression tasks, we encounter more 
challenging endeavors, particularly those falling within the realm of 
generative tasks. These tasks demand a creative response. For 
instance, when presented with a sound wave, we might ponder, "What 
would a pristine version of this audio signal sound like?" Alternatively, 
we might explore, "What audio composition best complements these 
lyrics?" Or perhaps, we may contemplate, "How should this sound 
progress, given a brief excerpt from the song?"

In these instances, the objective isn't limited to delivering a simple 
categorical label, integer, or floating-point number as an answer. 
Instead, it involves the creation of a more intricate, generative response 
– akin to crafting a sandwich, in a metaphorical sense.



● Traditionally, manual feature extraction was used

○ (digital) signal processing with filters

○ Detecting beat

○ Finding manually crafted patterns

○ etc.

1D - SOUND - FEATURES - TRADITIONAL
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Traditionally, addressing these challenges entailed the labor-intensive 
process of manual feature extraction. This approach involved the 
creation of digital or standard signal processing filters, which were 
subsequently applied to the audio data. Such filters were employed 
for tasks like beat detection and the identification of specific, 
manually engineered patterns.



● Traditionally, manual feature extraction was used

○ Problems:

■ Noise

■ Variations

■ Fragments missing

■ etc.

1D - SOUND - FEATURES - TRADITIONAL - ISSUES
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However, these approaches are not without their shortcomings. Several 
challenges emerge in their application. Noise is a significant issue; 
when the audio signal is contaminated by noise, these methods tend 
to falter. Additionally, variations in vocal attributes, such as a song 
performed by a male versus a female, can result in substantially 
different sounds. Furthermore, scenarios where audio fragments are 
missing pose a significant challenge, as these filters struggle to 
perform optimally under such conditions.

In essence, the fundamental problem lies in the fact that the specific 
features that need to be extracted from the audio are not 
predetermined. This uncertainty makes it challenging to identify the 
appropriate set of features for extraction.



● Feature Extraction in deep learning is dealt with 

by the model itself

1D - SOUND - FEATURES - DEEP LEARNING
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DL model

Jazz
Rock
Hip hop
...

In the context of a deep learning system, we aim to offload the burden 
of feature extraction onto the model itself. The model is designed to 
autonomously handle this aspect, and all you need to do is feed it the 
raw data.



● Let us try to use an MLP 

1D - SOUND - HOW? - MLP
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DL model

Jazz
Rock
Hip hop
...

 To begin, we'll explore using a Multi-Layer Perceptron (MLP) for this 
purpose. Our initial focus is on a classification task, specifically the 
identification of music styles.



I1

I2

I3

1D - SOUND - HOW? - MLP
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Jazz

Rock

Hip hop

...

w1,1
w1,2

σ(Σwi,1 *Ii)

σ(Σwi,2 *Ii)
w3,2

w3,1

w2,1

w2,2 ...

Weights

Hidden layers, 

Non-linearities

Bias (not in the image)

Backprop



I1

I2

I3

1D - SOUND - HOW? - MLP
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Jazz

Rock

Hip hop

...

w1,1
w1,2

σ(Σwi,1 *Ii)

σ(Σwi,2 *Ii)
w3,2

w3,1

w2,1

w2,2 ...W

Weights

Hidden layers, 

Non-linearities

Bias (not in the image)

Backprop

So, what would we do in principle or what we do normally is we would 
have these these neurons, we would feed the information based from 
the input into this input layer, then we would have the weights on the 
connections between these these neurons, then we would have a new 
layers which we basically collect the incoming information summing 
together and apply non linearity and that way things propagate into the 
network. I did not explicitly mentioned the bias notes in this in this 
image, but there are there right so in all the images which are showing 
about MLPs there is always also a bias note in these in these formulas 
and indeed images. after things have forward propagated through the 
network, you can also use the backpropagation basically to improve the 
classification accuracy of that network. Now, of course, these weights 
which are here, we can just represent them with one big weight matrix.



1D - SOUND - HOW? - MLP
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Jazz

Rock

Hip hop

...

w1,1

w1,2 σ(Σwi,1 *Ii)

σ(Σwi,2 *Ii)

w3,2

w3,1

w2,1

w2,2

I1

I2

I3

W

● In theory, this might just work, but:
○ Lots of training data would be 

needed
○ The MLP does not explicitly look at 

the order of the inputs
○ We need very large MLPs with a 

lot of weights
■ this will not converge

As previously noted, in theory, this approach may appear feasible, but it 
is beset by several inherent challenges. Firstly, it necessitates a 
substantial volume of training data. Furthermore, the Multi-Layer 
Perceptron (MLP), as mentioned earlier, doesn't account for the order 
or sequence of input data. Moreover, it was highlighted previously 
that to make this approach effective, you would require an 
exceedingly large MLP. This means having a virtually one-to-one 
connection between neurons and input features, resulting in an 
impractical abundance of connections. Ultimately, this approach is 
unlikely to yield desirable results.



1D - SOUND - FEATURES - DIGITAL 
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A sound wave is the superposition of sine waves.

While in reality, this a sound wave is continuous, it gets sampled at a 
high rate (44Khz) to make it possible to store on a computer. For or a 
computer a sound wave is just a sequence of numbers.

For the sake of this lecture we will directly use this wave as features. 
So, what we have is a one-dimensional vector of numbers.

Now, let's let's discuss a bit about how our input data. So what the 
sound wave basically is, is a superposition of sine waves, that's we 
have. That's basically words such as signals consists of, and in reality 
that send your sample if it's continuous, it's a continuous continuous 
wave. But what we do for getting this into computer is sampling it. So 
we're sampling is, for example, at a rate of 44 kilohertz is very common. 
And this makes it possible to store it digitally on a computer. So for a 
computer, a sound wave is just a sequence of numbers, right, so it is 
not a wave anymore, it's just a sequence of numbers. And for the sake 
of this lecture, we will just directly use this wave as the feature. So what 
we have is basically a one dimensional vector of numbers. Now, let's 
let's look at how we can do that. So basically, we have that sound wave. 
Now if we look, if we zoom in, we basically see that the sound wave 
consists of certain heights, let's say or certain, let's say y axis values, 



and we can basically basically sample them say like how high is this peak and 
measure it and then put it into into the vector.



● In the context of the following, we will only use the amplitude of the 

soundwave:

1D - SOUND - AMPLITUDE
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In the context of the following steps we will only use the amplitude of 
the soundwave. Note, that this is reasonable, since we can reasonably 
easily design an MLP that extracts this.

It is a good exercise to pause the video and think how such a network 
could be created. A possible answer can be found in the slides.



RELU

1D - SOUND - FILTERS - AMPLITUDE MLP
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In the context of the following steps we will only use the 
amplitude of the soundwave. Note, that this is reasonable, 
since we can reasonably easily design an MLP that extracts 
this.

In the example, biases are left out, as we do not even need 
them.

Note that when we use a CNN as we will introduce later, 
this network can be represented in a very compact way.



● In the context of the following, we will only use the amplitude of the 

soundwave, which we will normalize

1D - SOUND - AMPLITUDE
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-1

+1

Next, let's explore our following step. Instead of representing this wave 
in its original form, we'll take a different approach. Essentially, we will 
gauge the amplitude of the sound wave, measuring its loudness. This 
choice is quite rational because, in principle, you can design a MLP to 
perform this transformation. It can take the original sound wave and 
calculate its amplitude, which is essentially equivalent to computing the 
absolute value of the waveform.

I encourage you to pause the video for a moment and consider how you 
might convert the original sound wave into its amplitude. This pause will 
enhance your comprehension of the subsequent content in this lecture.

In the presentation slides, you'll discover a possible solution for the 
challenge of deriving the amplitude from the original sound. Moving 
forward, our next step involves normalizing this amplitude. In essence, 
we'll adjust it so that its values fall within the range of plus one to minus 
one, with an average value centered around zero.



● The features in the soundwave are not independent

● Nearby features are more important as far away ones

● This idea can be used in filters

1D - SOUND - FILTERS
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All right, with that step completed, we now have our vector input. 
However, when dealing with sound input, as we've previously 
discussed, and this holds true not just in general but especially for 
sound data, the features are intricately interconnected. The order in 
which these features appear is of paramount significance. This 
ordering plays an important role, signifying that nearby features carry 
more weight than those located further away. In essence, when you 
have a particular sound, it's crucial to comprehend it both at a local 
level and in the context of what was heard shortly before or after in 
the audio. This concept, emphasizing the significance of nearby 
information, is often harnessed in what's known as "filtering."



● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE
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A silence is at points where the amplitude is low for some time.

And so, what we will be doing with filters is we will first look into an 
example in which we try to find silence in our sound right and. What 
does it mean in our case? It is basically a time a period in which the 
amplitude is fairly low, close to zero or exactly zero during that during 
that time. 



● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

In our case, this means a several consecutive features with a low value.



● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

We want to detect where in our sound wave a silence occurs.

 If we examine a segment over a specific time interval, as indicated 
here, and closely inspect the numerical values derived from the original 
signal's samples, you'll notice that there's a period during which the 
values remain consistently low for a certain duration.



● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

Let’s try to create a 

silence neuron

We want to detect where in our sound wave a silence occurs.

In the context of an MLP, we want to create a “silence neuron”. A 
neuron that fires in case there is a silence.



● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

I1

I2

I3

w1,1

σ(Σwi,1 *Ii)w2,1

w3,1

This would be a neuron. Let’s work backwards. We want it to have a 
high value.

So, all parts of the summation need to have a high value (the 
non-linearity is a monotonic function)



● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

I1

I2

I3

w1,1

σ(Σwi,1 *Ii)w2,1

w3,1

To get a high value here

In our features, this means a several consecutive features 
with a low value.

We want to detect where in our sound wave a silence 
occurs.

In the context of an MLP, we want to create a “silence 
neuron”. A neuron that fires in case there is a silence.

This would be a neuron. Let’s work backwards. We want it 
to have a high value.

So, all parts of the summation need to have a high value 
(the non-linearity is a monotonic function)



● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

I1

I2

I3

w1,1

σ(Σwi,1 *Ii)w2,1

w3,1

To get a high value here

We need all parts of 
the sum to have a high value

In our features, this means a several consecutive features 
with a low value.

We want to detect where in our sound wave a silence 
occurs.

In the context of an MLP, we want to create a “silence 
neuron”. A neuron that fires in case there is a silence.

This would be a neuron. Let’s work backwards. We want it 
to have a high value.

So, all parts of the summation need to have a high value 
(the non-linearity is a monotonic function)



● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

w1,1

σ(Σwi,1 *Ii)w2,1

w3,1

To get a high value here

We need all parts of 
the sum to have a high value

-0.9

-1.0

-1.0

Since the input value are negative numbers, the only 
option is to also have the weights with negative numbers



● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

w1,1= -1

σ(Σwi,1 *Ii)w2,1 = -1

w3,1 = -1

To get a high value here

We need all parts of 
the sum to have a high value

-0.9

-1.0

-1.0



● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

w1,1= -1

σ(Σwi,1 *Ii)w2,1 = -1

w3,1 = -1

To get a high value here

We need all parts of 
the sum to have a high value

-0.9

-1.0

-1.0

We observe that the weights have a pattern similar to the 
data we are interested in.

Since we are essentially computing a dot product, the 
more the weights agree with the pattern we are interested 
in, the stronger the neuron will be. We will call such 
patterns - filters - a term which is directly borrowed from 
the field of signal processing.

animation: 1



● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

w1,1= -1

σ(Σwi,1 *Ii)w2,1 = -1

w3,1 = -1

To get a high value here

We need all parts of 
the sum to have a high value

-0.9

-1.0

-1.0

-1
-1
-1

We represent our filter as a 
vector (which is equivalent to 
the weight matrix of an MLP.

We observe that the weights have a pattern similar to the 
data we are interested in.

Since we are essentially computing a dot product, the 
more the weights agree with the pattern we are interested 
in, the stronger the neuron will be. We will call such 
patterns - filters - a term which is directly borrowed from 
the field of signal processing.

animation: 2



● Detect whether there is a silence

1D - SOUND - FILTERS - EXAMPLE

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

w1,1= -1

σ(Σwi,1 *Ii)w2,1 = -1

w3,1 = -1

To get a high value here

We need all parts of 
the sum to have a high value

-0.9

-1.0

-1.0

-1
-1
-1

We represent our filter as a 
vector (which is equivalent to 
the weight matrix of an MLP.

Cleaning up

animation: 3



● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

σ(Σwi *Ii)

Σwi *Ii = 2.9
-1.0

-1.0

-1
-1
-1

This image is now simplified to the essential parts, the input to the MLP 
is in green, the filter in cyan.

This filter is supposed to detect silence, but how does would it perform 
on other parts?

Now, let's simplify this further because there's a lot of unnecessary 
detail, and what we'll be left with is something like this: we have our 
input values, and right beside them, we place our filter. Imagine this as 
a small MLP connected to these input neurons. It includes a bias, all the 
necessary connections, and basic computations. Now, in this case, we 
can compute the output of the neuron depicted here. This output is 
essentially the result of multiplying these values with each other, 
followed by summation. At some point, we apply a non-linearity, and the 
specific nature of that non-linearity remains open-ended, as various 
types are possible.

A crucial question we need to address is whether this "silence filter" or 
"noise filter," as we refer to it, truly functions as intended. By 
"functioning," I mean that it should yield a high value in the presence of 
silence and a low value when silence is absent. Let's test it out. We'll 
begin at the beginning of the sound, and you'll notice that we obtain a 
value of 1.2, significantly lower than what we had seen before. As we 



move down the sound, the value increases, reaching 1.6, still relatively low. 
However, as we approach the period of silence, the value surges, with the 
highest value, 5, achieved right at the point of silence. After this silent interval, 
the value begins to decrease again.

Does it give a low signal when there is sound? Let us try…

animation: 1



● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

σ(Σwi *Ii)

Σwi *Ii = 1.2
-1.0

-1.0

-1
-1
-1

animation: 2



● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

σ(Σwi *Ii)

Σwi *Ii = 1.6
-1.0

-1.0

-1
-1
-1

This image is now simplified to the essential parts, the input to the MLP 
is in green, the filter in cyan.

This filter is supposed to detect silence, but how does would it perform 
on other parts?

Does it give a low signal when there is sound? Let us try...
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This image is now simplified to the essential parts, the 
input to the MLP is in green, the filter in cyan.

This filter is supposed to detect silence, but how does 
would it perform on other parts?

Does it give a low signal when there is sound? Let us try…
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This image is now simplified to the essential parts, the 
input to the MLP is in green, the filter in cyan.

This filter is supposed to detect silence, but how does 
would it perform on other parts?

Does it give a low signal when there is sound? Let us try…

animation: 2
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This image is now simplified to the essential parts, the 
input to the MLP is in green, the filter in cyan.

This filter is supposed to detect silence, but how does 
would it perform on other parts?

Does it give a low signal when there is sound? Let us try…

animation: 3



● Detect whether there is a silence
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This image is now simplified to the essential parts, the 
input to the MLP is in green, the filter in cyan.

This filter is supposed to detect silence, but how does 
would it perform on other parts?

Does it give a low signal when there is sound? Let us try…

animation: 4
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This image is now simplified to the essential parts, the 
input to the MLP is in green, the filter in cyan.

This filter is supposed to detect silence, but how does 
would it perform on other parts?

Does it give a low signal when there is sound? Let us try…

animation: 5
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This image is now simplified to the essential parts, the 
input to the MLP is in green, the filter in cyan.

This filter is supposed to detect silence, but how does 
would it perform on other parts?

Does it give a low signal when there is sound? Let us try…
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● Detect whether there is a silence

1D - SOUND - FILTERS - CONVOLUTIONS 

-0.5
-0.3
-0.4
-0.9
-1.0
-1.0
-0.4
-0.1
+0.3
+0.4

-1.0

-1.0

-1
-1
-1

Observations:

● The filter can act as a feature extractor

● The filter can be used at all locations to detect silence

○ We call sliding a filter over all positions convolving

■ The operation is called a convolution operator 

There are two essential observations from what we tried.

1. The filter can act as a feature extractor. 
2. The filter can be used at other locations as well and 

will extract the same feature, but locally.



● Detect whether there is a silence
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○ The output of the convolution operator is itself 

again a vector! 

○ A time shift in the input causes the same shift in 

the output: Convolution is translation equivariant

○ This operation can be understood as a small MLP 

that wanders across the input signal. 

○ In practice, the conv. kernels are learned.
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There are Three essential observations from what we 
tried.

1. The filter can act as a feature extractor.  The output is 
itself a vector.

2. The filter can be used at other locations as well and 
will extract the same feature, but locally. If there is a 
time shift in the sound, the same shift will be visible 
in the output vector. This means that the convolution 
operator is translation equivariant. 

3. The convolution is just an MLP, but its connections 
are localized and weights are tied, meaning that they 
are kept the same for specific connections.



For this part, we will stay within one dimensional convolutions, as we 
were doing in the previous video. 

PART TWO-b: conv1D



● To understand how the conv. kernels are learned, we require a formal 

definition. For a 1D input sequence                    and a filter                      

the convolution operation is:

1D CONVOLUTION - FORMAL DEFINITION 
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To better grasp how convolutional kernels are learned, we'll delve into a 
more formal definition. We're still operating within a one-dimensional 
input sequence. Our input sequence, denoted as x, is n-dimensional, 
comprising n floating-point real numbers. In addition, we have a filter, 
which also possesses a specific length. This length is expressed as 
2n+1, and it's designed to be uneven. In this context, we only support 
filters with uneven lengths, such as one, three, five, or seven.

Now, what precisely does this convolution operation entail? The formula 
we see here aims to describe how to compute one of the network's 
outputs. Let's focus on the output at position T, denoted as H(T). It's 
essentially a summation of various elements. We've previously 
encountered the concept of convolution, which entails the summation 
of input neurons multiplied by their corresponding weights from filter 
K. To formalize this, we examine the vector x and identify the part 
that corresponds to our position T. Then, we traverse m steps both 
upwards and downwards from this position. In other words, we 
traverse from -m to m and calculate the dot product of these values 
with their respective counterparts in filter K. This computation forms 
the core of the convolution operation. Afterward, we apply the bias, 
along with our non-linearity. In essence, convolution boils down to 



this fundamental operation of multiplication or dot product.



● How do we learn the filter    ?

● If    is learned, we will update the filter weights based on some loss                        

●                                  depending on the conv. response at all places, e.g., 

cross-entropy for classification.

● The gradient utilized to update a kernel weight            is given by:

1D CONVOLUTION - FORMAL DEFINITION 

Always zero, 
except when 
tau_0 = tau

In this context, where we're training a learnable filter, like our silence 
detector, we employ data samples and backpropagation to update 
this filter. This entails updating the filter weights based on a specific 
loss. The loss function, represented here, can vary and depend on 
factors such as the convolutional response at various locations. For 
instance, it may align with the cross-correlation in classification tasks, 
where a better classification results in a lower loss.

To compute the updates to the filter, we need the gradient information 
to determine in which direction the filter values should be adjusted in 
each iteration. This requires calculating the derivative of the loss with 
respect to the filter weights. In this expression, the final term, which 
pertains to the weight at position tau in the filter, will typically be zero 
except when tau is equal to tau zero. Tau zero corresponds to the 
index of the weight being updated, and it is equal to the specific 
position where the filter is applied. In other words, these weights are 
adjacent when the filter operates.



1D CONVOLUTION - FORMAL DEFINITION 

The update of the weights takes into consideration ALL 
ELEMENTS OF THE INPUT SEQUENCE INTO ACCOUNT!

● The weights are shared across the entire input ( MLPs learn independent 

weights at every position:                                           )

Always zero, 
except when 
\tau_0 == \tau

Another noteworthy observation is that when we calculate the updates 
for this weight, we take into account all elements in the input 
sequence, ranging from zero to n. In essence, we consider how each 
element in the input sequence affects the updates for the position of 
the filter. This implies that these weights are genuinely shared across 
the entire input. In contrast, the Multi-Layer Perceptron (MLP) learns 
independent weights for each position, without this sharing property.



1D CONVOLUTION - FORMAL DEFINITION 

● Advantages:

● Since weights are shared for every position, Convolutional Networks (CNNs) are 

much MUCH! MUCH! smaller than MLPs. -> PARAMETER EFFICIENCY

● Convolutions can learn a powerful pattern recognizers, e.g., for silence, based 

on “silences” appearing everywhere in the input (MLPs must learn an 

independent “silence recognizer” for every position) -> DATA EFFICIENCY

● Convolutions can recognize a “silence pattern” regardless of where it appears 

(MLPs must have seen silence at a given position before in order to recognize it)  

-> GENERALIZATION IMPROVEMENTS 

IMPORTANT: 2 and 3 are a consequence of convolution being translation equivariant.   

There are several advantages to this approach. Applying filters across 
the entire dataset makes convolutional neural networks significantly 
smaller in comparison to Multi-Layer Perceptrons (MLPs). For 
instance, a feature detector for noise, as demonstrated earlier, 
involves only three weights. In contrast, designing a comprehensive 
silence detector with an MLP would necessitate an extensive network 
to identify silences effectively. This showcases an outstanding 
parameter efficiency.

Convolutional neural networks also excel at becoming potent pattern 
recognizers. For example, in the case of detecting silences, a CNN 
can recognize silences appearing anywhere in the input. In contrast, 
an MLP would need to learn independent silence patterns for every 
possible position. This leads to exceptional data efficiency, making 
the most out of available data. Convolutions can recognize patterns, 
such as silence, regardless of their specific location, making them 
versatile. Even if a silence occurs in a position that hasn't been seen 
before, the convolutional network can adapt effectively, as it's 
designed to identify the presence of silences anywhere.

In summary, convolutional neural networks offer substantial benefits in 
terms of generalization improvement. It's worth noting that points two 



and three, as indicated in these bullet points, are direct outcomes of the 
convolution's property of translation equivariance. We'll delve deeper into 
this concept in the upcoming discussion.



Up till now:

● We can create filters

○ MLP in disguise

○ We can convolve them over the input which creates an output vector

Coming next:

● We need multiple filters

● What do we do at the start and end of the data?

● What at the next layer?

● How do we get the dimension down?
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So, let's summarize our progress thus far. We've been primarily focused 
on filters and discussed how they effectively act as an MLP but with 
the added capability of moving over the input data, generating an 
output vector. However, we're not only interested in detecting silence; 
to address the complex questions we've raised, we require more. We 
need filters to identify various features, such as regions with high 
noise, specific rhythms, and more. This necessitates multiple filters; a 
single filter won't suffice.

The next question we need to address is how to handle the data's 
beginning and end. Our analysis has mainly centered on the middle 
of the data, but we also need to consider the data's start and finish. 
Additionally, we've thus far examined a single layer, but it's important 
to think about the behavior of subsequent layers.

Lastly, we must consider dimension reduction. While applying a filter, 
we've observed that the output maintains the same dimension as the 
input. In our network, we need to reduce the dimension to match the 
number of classes, for example, and further compress it as needed.



Up till now:

● We can create filters

○ MLP in disguise

○ We can convolve them over the input which creates an output vector

Coming next:

● We need multiple filters

● What at the next layer?

● What do we do at the start and end of the data?

● How do we get the dimension down?
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● We need to have all sorts of filters 

for feature extraction

■ We can have as many filters as 

we want

■ Now, the output becomes a 

matrix, called the output 

volume
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We need more as just a silence feature extractor. We are, for example 
also interested in detecting sudden drops, specific frequencies, periods 
with sustained sounds, etc.

A first thing we do is adding multiple filters supporting different features. 
The number of filters is chosen by the network designer.

Now, the output becomes a matrix; the output volume.  The columns 
of this volume correspond to each filter. The row in this volume 
corresponds to a certain group of entries in the input volume.



Up till now:

● We can create filters

○ MLP in disguise

○ We can convolve them over the input which creates an output vector

Coming next:

● We need multiple filters

● What at the next layer?

● What do we do at the start and end of the data?

● How do we get the dimension down?
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Let's begin with the need for multiple filters. As mentioned, we require numerous 
filters for feature extraction. The key point is that our design doesn't restrict us to 
having just one filter; we started with one as an example, but in practice, we can 
create as many filters as necessary. Whether you need two filters, ten filters, or 
any number, it's entirely feasible. The main difference is that instead of having a 
single output factor, you'll obtain multiple output factors. Each filter generates its 
own factor, and if you have more filters, you'll generate a corresponding number of 
factors.
This transformation takes us from an initial dimension, denoted as n x 1 or 1 x n, 
and leads to a new dimension, which depends on the number of filters employed. 
We refer to these outputs as the "output volume." Currently, it's represented as a 
2D matrix, but it can expand further in the subsequent steps. So, we're essentially 
moving from one-dimensional input to a multi-factor output volume.



What do we do at the next layer?

● We have the output volume of the previous layer and we will just define 

a convolution operator over that!

■ This filter needs a second dimension! 

■ And can be of a different size.
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For the sake of the example, we did not apply the bias 
and non-linearity!!, which you would do in practice.

We've established that we can utilize multiple filters, which allows us to 
transition from a one-dimensional output to a multi-dimensional one 
in the form of a matrix. The next layer in our network necessitates a 
different approach; we can't merely replicate the same process. 
Instead, we redefine our convolutional operators for this layer.

In this new layer, when we apply a convolutional operator, it operates 
on the data received from our previous multiple filters. Each filter in 
this layer still resembles a typical filter, but now it has an added 
dimension. It operates across the entire data, creating a dot product 
that results in a multi-component output.

This allows us to return to an output volume with just one dimension, 
but it's important to note that we can also employ multiple filters in 
this layer, yielding multiple output vectors.

One crucial observation is that the meaning of the filters in these 
subsequent layers depends on the meaning of the filters in the 
previous layers. As we progress through the layers, the filters 
become more intricate and exhibit complex meanings. For instance, 
if you have a filter like the "silence filter" in the first layer and a 
"high-frequency noise" filter before it, the filter in this layer combines 
the meanings of the previous filters. It might represent, for instance, a 



period of silence followed by a high-pitched sound.

With each layer, the neurons producing the output start to acquire more 
semantic meaning. This meaning evolves into context; it's not just a 
high-pitched noise but may signify the presence of a specific beat in music. 
As you proceed deeper into the network, the features become increasingly 
refined, and eventually, you might be able to classify music based on the 
output.

animation: 1



What do we do at the next layer?

● We have the output volume of the previous layer and we will just define 

a convolution operator over that!

■ This filter needs a second dimension! 

■ And can be of a different size.

1D - CONVOLUTIONS - FILTERS AT FURTHER LAYERS

65

1.2
1.6
2.3
2.9
2.4
1.5
0.2
-0.6

0.1
-0.6
-0.6
-0.1
0.6
0.9
0.7
0.5

...
1 -1
-1 -1
-1 -1
1 1

1.2
0.7
-0.5
-1.5
-1.6

For the sake of the example, we did not apply the bias 
and non-linearity!!, which you would do in practice.
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What do we do at the next layer?

● We have the output volume of the previous layer and we will just define 
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For the sake of the example, we did not apply the bias 
and non-linearity!!, which you would do in practice.
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What do we do at the next layer?

● We have the output volume of the previous layer and we will just define 

a convolution operator over that!

■ This filter needs a second dimension! 

■ And can be of a different size.
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For the sake of the example, we did not apply the bias 
and non-linearity!!, which you would do in practice.
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What do we do at the next layer?

● We have the output volume of the previous layer and we will just define 

a convolution operator over that!

■ This filter needs a second dimension! 

■ And can be of a different size.
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For the sake of the example, we did not apply the bias 
and non-linearity!!, which you would do in practice.
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What do we do at the next layer?

● We have the output volume of the previous layer and we will just define 

a convolution operator over that!

■ This filter needs a second dimension! 

■ And can be of a different size.

■ The meaning of these filters 

recursively depends on the meaning 

of the filters on the layer before. But, 

overall becomes more complex.
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For the sake of the example, we did not apply the bias 
and non-linearity!!, which you would do in practice.

animation: 6



Up till now:

● We can create filters

○ MLP in disguise

○ We can convolve them over the input which creates an output vector

Coming next:

● We need multiple filters

● What at the next layer?

● What do we do at the start and end of the data?

● How do we get the dimension down?
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Okay, so we have talked about multiple filters and what we can do in 
the next layers of this convolutional neural network. Now, there is still 
an issue at the start and end of the data. So let's look at an example.



● Near the boundaries of the data, we cannot apply the convolution as we 

normally do:
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This is still ok.

As we approach the start of our data, a challenge arises near the 
boundaries. Near the middle of the data, applying convolution works 
well. However, a problem arises when we move one step further 
toward the beginning. The problem is that we lack input data for this 
initial position in our filter.

One solution could be to simply ignore the boundaries and start one 
position lower. However, this approach leads to a reduction in 
dimension, effectively trimming one value from our data. This means 
that information near the boundaries is lost.

The more common solution is to pad the boundaries. Padding involves 
adding extra values that aren't part of the original data and then 
applying the filter. In the example, zero padding is used at the top, 
and the convolutional filter is applied. This produces an output, as 
demonstrated. While padding introduces some artifacts because the 
exact values are uncertain, it typically yields better results than not 
padding and reducing the data size.

animation: 1



● Near the boundaries of the data, we cannot apply the convolution as we 

normally do:
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● Near the boundaries of the data, we cannot apply the convolution as we 

normally do:
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Solutions:
● Ignore the boundaries

○ This also leads to a 
reduction of dimension!

○ information at the 
boundaries gets lost
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● Near the boundaries of the data, we cannot apply the convolution as we 
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● Pad the boundaries

○ Add (filter length-1)/2 
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the dimension
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often 0
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Up till now:

● We can create filters

○ MLP in disguise

○ We can convolve them over the input which creates an output vector

Coming next:

● We need multiple filters

● What at the next layer?

● What do we do at the start and end of the data?

● How do we get the dimension down?
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So we have now seen what to do at the start and the end of our input 
data. Finally, we have to talk about how we get the dimension down. 
Here, we want to get the dimension lower in a controlled way. 
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● We need to reduce dimension for the final 
classification

○ Solution 1: we take larger steps with our 
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To in the end be able to do a classification, we need to get the 
dimension down. We do not want it by not padding, as that is 
destructive for the boundaries of the data.

A first option is to use a different stride while convolving the filters. that 
means, make bigger steps.
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To in the end be able to do a classification, we need to get 
the dimension down. We do not want it by not padding, as 
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● We need to reduce dimension for the final 
classification

○ Solution 1: we take larger steps with our 
filter

■ the size of the step is called the stride
■ The dimension reduces with a factor equal 

to the stride
● The input dimension must be a multiple 

of the stride!

To in the end be able to do a classification, we need to get 
the dimension down. We do not want it by not padding, as 
that is destructive for the boundaries of the data.

A first option is to use a different stride while convolving 
the filters. that means, make bigger steps.

This leads to an output volume which has a dimension 
equal to the input dimension divided by the stride. To 
make this work, the input dimension must be a multiple of 
the stride.
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● We need to reduce dimension for the final 
classification

○ Solution 1: use a larger stride
○ Solution 2: use a pooling layer

To in the end be able to do a classification, we need to get 
the dimension down. We do not want it by not padding, as 
that is destructive for the boundaries of the data.

The second option is the use of a pooling layer. To put it 
simple, a pooling layer takes a set of elements from the 
previous layer and squeezes that down to one output in a 
deterministic way. Examples include a max pooling and 
average pooling. The former takes the biggest element of 
the input and only outputs that. The latter takes the 
average of the inputs and forwards that. 
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● We need to reduce dimension for the final 
classification

○ Solution 1: use a larger stride
○ Solution 2: use a pooling layer

■ Goes over the data similar to a 
convolution

■ Applies a deterministic function like max 
or average on the input

■ Usually has stride ==pool size

To in the end be able to do a classification, we need to get 
the dimension down. We do not want it by not padding, as 
that is destructive for the boundaries of the data.

The second option is the use of a pooling layer. To put it 
simple, a pooling layer takes a set of elements from the 
previous layer and squeezes that down to one output in a 
deterministic way. Examples include a max pooling and 
average pooling. The former takes the biggest element of 
the input and only outputs that. The latter takes the 
average of the inputs and forwards that. 
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To in the end be able to do a classification, we need to get 
the dimension down. We do not want it by not padding, as 
that is destructive for the boundaries of the data.

The second option is the use of a pooling layer. To put it 
simple, a pooling layer takes a set of elements from the 
previous layer and squeezes that down to one output in a 
deterministic way. Examples include a max pooling and 
average pooling. The former takes the biggest element of 
the input and only outputs that. The latter takes the 
average of the inputs and forwards that. 

In the example, we look at a max pooling layer which looks 
at 3 elements at a time.; or in other words, the pool size is 
3. Its stride is also 3.

Hence, the output dimension will be 3 times lower as the 
input dimension.
animation: 1
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To in the end be able to do a classification, we need to get 
the dimension down. We do not want it by not padding, as 
that is destructive for the boundaries of the data.

The second option is the use of a pooling layer. To put it 
simple, a pooling layer takes a set of elements from the 
previous layer and squeezes that down to one output in a 
deterministic way. Examples include a max pooling and 
average pooling. The former takes the biggest element of 
the input and only outputs that. The latter takes the 
average of the inputs and forwards that. 

In the example, we look at a max pooling layer which looks 
at 3 elements at a time.; or in other words, the pool size is 
3. Its stride is also 3.

Hence, the output dimension will be 3 times lower as the 
input dimension.
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To in the end be able to do a classification, we need to get 
the dimension down. We do not want it by not padding, as 
that is destructive for the boundaries of the data.

The second option is the use of a pooling layer. To put it 
simple, a pooling layer takes a set of elements from the 
previous layer and squeezes that down to one output in a 
deterministic way. Examples include a max pooling and 
average pooling. The former takes the biggest element of 
the input and only outputs that. The latter takes the 
average of the inputs and forwards that. 

In the example, we look at a max pooling layer which looks 
at 3 elements at a time.; or in other words, the pool size is 
3. Its stride is also 3.

Hence, the output dimension will be 3 times lower as the 
input dimension.
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In this third part, we aim to expand our understanding beyond 
one-dimensional convolution. Our goal is to delve into more intricate 
forms of data processing, such as two-dimensional convolution, 
three-dimensional convolution, and so forth. The motivation for 
venturing into higher dimensions is our desire to work with more 
diverse and intriguing types of data.

PART THREE: Conv2D, Conv3D, ConvND



2D - IMAGES - REPRESENTATION 

For instance, when we examine images, we've already observed that 
we move from two dimensions to three dimensions. In the case of 
images, we typically work with three color channels, often 
represented as RGB (red, green and blue). One way to 
conceptualize this is by envisioning an image as a three-dimensional 
tensor, which accommodates these three channels.



The 2 dimensional color image becomes a 3 dimensional tensor!

2D - IMAGES - REPRESENTATION - 3D TENSOR 

As we dive into working with this type of data, it becomes apparent that 
our one-dimensional approach is no longer adequate. The complexity 
increases, particularly when dealing with video data.



A 3 dimensional color video becomes a 4 dimensional tensor!

3D - VIDEO - REPRESENTATION - 4D TENSOR 

A video essentially transforms into a four-dimensional tensor because it 
comprises a sequence of images. This sequence of images, in turn, 
can be thought of as a sequence of tensors, culminating in a 
four-dimensional tensor representation.



We start with a 5x5 image

2D - IMAGES - CONVOLUTION 

92 animation/image source: https://cs231n.github.io/convolutional-networks/#fc

In general, we aim to engage with this type of multidimensional data. To 
begin with, let's consider an example, a five-by-five image—a matrix 
of pixel intensities. It's essential to note that we don't deal with just 
one of these matrices; we have multiple color channels to take into 
account.



We start with a 5x5 image

We have 3 channels

2D - IMAGES - CONVOLUTION - CHANNELS 

93 animation/image source: https://cs231n.github.io/convolutional-networks/#fc

In this case, as explained in the example, we have three color channels 
to consider. Next, we move on to defining our filters. 



We start with a 5x5 image

We have 3 channels

We want to use 2 filters, these are 

themselves 3 dimensional

2D - IMAGES - CONVOLUTION - FILTERS 

94 animation/image source: https://cs231n.github.io/convolutional-networks/#fc

In this specific example, we opt for two filters, but it's important to note 
that the number of filters can be chosen as needed. For filter W0, the 
first filter, it exhibits increased dimensions. This depiction illustrates a 
three-dimensional cube, with dimensions of three by three by three. 
The depth of this filter, the last dimension, aligns with the number of 
input channels available. Meanwhile, the width and height of the filter 
can be selected freely; in this case, it's three by three. However, it 
could have just as well been five by five, for instance. Additionally, it's 
worth mentioning that there's an explicit inclusion of a bias node, 
ensuring that the bias is accounted for.



We start with a 5x5 image

We have 3 channels

We want to use 2 filters, these are 

themselves 3 dimensional

We add padding to solve issues 

with convolving near the border

2D - IMAGES - CONVOLUTION - PADDING 

95 animation/image source: https://cs231n.github.io/convolutional-networks/#fc

The challenges related to the boundaries of data persist when dealing with data in 
two or more dimensions. In two dimensions, such as in this case, we encounter 
not just the start and end of the data, but also the sides. For instance, when 
applying convolution at a corner point like this, it becomes evident that we require 
extra padding on both sides. Therefore, the approach is to add padding around 
the image, which, in this instance, involves adding one pixel of padding. This 
augmentation results in an input data size of seven by seven, rather than the 
original five by five.



We start with a 5x5 image

We have 3 channels

We want to use 2 filters, these are 

themselves 3 dimensional

We add padding to solve issues 

with convolving near the border

We convolve with a stride of 2

Try to understand why the output 

volume has these dimensions.

2D - IMAGES - CONVOLUTION - OUTPUT VOLUME 

96 animation/image source: https://cs231n.github.io/convolutional-networks/#fc

Lastly, we must consider the nature of the outputs we're generating. The 
dimensions of our output depend on both our input size and the filter. In this 
particular scenario, we've applied a stride of 2. Before delving further into the 
topic, I recommend taking a brief pause to reflect or attempt to grasp the 
reasoning behind the resulting output dimensions. Moving forward, we'll explore 
the precise calculations that lead to these output dimensions.



We start with a 5x5 image

We have 3 channels

We want to use 2 filters, these 

are themselves 3 dimensional

We add padding to solve issues 

with convolving near the border

We convolve with a stride of 2

● See the animation on the site 

below

2D - IMAGES - REPRESENTATION 

97 animation/image source: https://cs231n.github.io/convolutional-networks/#fc

Let’s work on a 2D matrix, i.e., one color channel of an 
image.



We saw that convolutions are equivariant to translations. Naturally it 

holds for ConvNDs as well:

CONVOLUTION - EQUIVARIANCE ANALYSIS

Conv2D

Conv2D

Translation Translation

INPUT FEATURES

Worral’17

A translation of the input produces an 

equivalent translation in the output.

For a translated input                   : 

Let's delve into a couple of intriguing characteristics. As we mentioned 
earlier, the concept of equivariance, especially in the context of 
images, is quite significant. In this example, we have an image on 
which we apply a 2D convolution, specifically an edge detection filter. 
This filter helps us detect certain features in the image.

What's particularly interesting about this is the equivariance property of 
convolutions. When you first translate your input, such as moving the 
image to the right, and then apply our convolutional filter, you 
essentially obtain the same output, but it's shifted to the right as well. 
This property is crucial because it means that if certain features exist 
in your input, it doesn't matter where they are located. Your filter can 
detect these features regardless of their position. For instance, if you 
have a person in an image, it doesn't matter where within the image 
that person appears; your system or filter will identify it as a person.

This property is already visible in the formal definition. When we include 
the shift operation by using T0 in the convolution formula, we can 
observe that the result remains the same, but it is shifted by the 
same amount. This emphasizes the equivariance property of 
convolutions, making them an essential tool for recognizing features 
across different locations in an image.



What about other transformations?, e.g., rotation, scaling, … 

Are ConvNDs rotation and scale equivariant?

CONVOLUTION - EQUIVARIANCE ANALYSIS

The convolution is not a rotation or scale equivariant mapping. 

Let's discuss an interesting aspect related to the equivariance property. 
It's fascinating that features can occur anywhere in the data, but for 
images, there are other transformations we'd like our system to 
handle, such as rotation and scaling. We want the ability to recognize 
a person, for example, even if they're upside down, and this is where 
traditional convolutions have limitations. When you rotate an image, 
the filter doesn't function as effectively anymore, and it may fail to 
detect an upside-down person.

This limitation poses a challenge because we need our system to be 
robust against various transformations, especially in computer vision 
applications. One approach to address this is training a convolutional 
neural network with permutations of the data. Essentially, you would 
take an image of a person and train the system not only with the 
original image but also with versions that have been rotated by 90 
degrees, 180 degrees, and 270 degrees. By exposing the network to 
these multiple variations of the same data, you can enhance its 
robustness against rotation without fundamentally changing the 
system architecture.

However, this approach has some drawbacks, as it requires training the 
model with many permutations of the same data, which can be 



computationally expensive and not very efficient in terms of data utilization.



What about other transformations?, e.g., rotation, scaling, … 

Are ConvNDs rotation and scale equivariant?

CONVOLUTION - EQUIVARIANCE ANALYSIS

The convolution is not a rotation or scale equivariant mapping. But a 

network can learn rotated / scaled versions of the same filter. 

BUT approx. equivariant 

for scales /  rotations 

learned by the network. 

Convolutional neural networks exhibit an interesting property in their filter design, 
even though they aren't explicitly designed to handle rotations. When we look at 
the filters in a convolutional network for images, we can observe that these filters 
represent what the network is detecting in the input data. For instance, some 
filters detect lines with a particular slope.
What's fascinating is that within the set of filters, you often find filters that are 
essentially rotations of each other. In other words, filters that detect lines with 
varying orientations. For instance, you might have a filter that detects lines with a 
particular slope, and another filter that detects lines with the opposite slope.
This inherent property of the filters means that the convolutional network, while 
not explicitly designed for handling rotations, can still recognize them to some 
extent. As you go deeper into the network, you encounter higher-level features 
that also exhibit this ability to detect rotated versions of the underlying patterns. 
So, even though rotation robustness is not a primary design consideration, the 
network's architecture and filter diversity end up providing some level of rotation 
invariance.



CONVOLUTION - EQUIVARIANCE ANALYSIS

Approx. equivariant for 

scales /  rotations 

learned by the network. 

Problem: Each of these filters are independent weights:

● The network wastes a lot of parameters learning transformed 

versions of the same -> Parameter Inefficient!

● To learn these filters the network must see these transformations in 

the training set -> Data Inefficient + No equivariance guarantees!

Group convolutions indeed address some of the challenges associated 
with parameter and data inefficiency in convolutional neural 
networks. In group convolutions, the idea is to share the pyramids 
not just for translation but also for other transformations like rotations 
and scaling. This approach results in extreme parameter sharing 
across the network.

By doing so, you make the network more efficient and data-efficient 
because it no longer requires explicit training on various 
transformations of the same data. It allows the network to generalize 
better across different transformations without explicitly observing 
them during training.

Group convolutions are particularly useful when working with data that 
can have multiple types of transformations or symmetries. They are 
often used in computer vision tasks to ensure that the network can 
handle different orientations, scales, and other transformations 
without the need for extensive data augmentation.



CONVOLUTION - EQUIVARIANCE ANALYSIS

Approx. equivariant for 

scales /  rotations 

learned by the network. 

Solution: Group Convolutions:

● Not just share parameters for translation but also other transformations! 

● Extreme parameter sharing + equivariance guarantees.

● Active field of research. Amsterdam is a big player in this field. Several 

papers written at the VU, the UvA and Qualcomm AI Research.* 

* Let us know if you are interested in writing your thesis in this topic ;) 

As you mentioned, this parameter-efficient and data-efficient approach 
is an interesting and effective way to tackle the limitations of standard 
convolutions, which are mainly translation-invariant. Group 
convolutions can offer better results and more robustness in 
situations where multiple transformations need to be considered.

If you have any more specific questions or want to explore real-world 
examples of convolutional neural networks, please feel free to ask.



This part is an example of a real-world convolutional neural network. 
Specifically, we will be looking at the network called AlexNet, 
employed for the task of image classification.

PART FOUR: Example of a real world CNN



Showed the feasibility of deep learning

○ Mainly thanks to the use of GPUs for computing convolutions

○ Achieved a top-5 error of 15.3% on a dataset with 1000 categories

By some considered as the real start of adoption of neural networks by 

the industry

Is actually just a variant on an older idea 

● LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard, R. E.; Hubbard, W.; Jackel, L. D. (1989). "Backpropagation Applied to Handwritten Zip Code Recognition”

AlexNet (                                                                                                         )
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Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with 

deep convolutional neural networks." Advances in neural information processing 

systems. 2012

AlexNet marked a pivotal moment in deep learning, and it's safe to say 
that it demonstrated the feasibility of this approach. In 2012, it 
triggered great developments in deep learning and broader machine 
learning fields. The primary driver behind AlexNet's remarkable 
performance, and that of similar architectures around that time, can 
be attributed to its adept utilization of GPUs for accelerating 
convolution computations.

To elaborate, consider the intricacies of these convolutions. Each filter 
necessitates computing numerous dot products with the input image, 
demanding an immense computational load. This is where GPUs 
shine; they excel at executing these computations in parallel, thus 
greatly expediting convolution operations. The parallelization of tasks 
is executed with notable efficiency.

The essence of this work revolved around harnessing the 
computational power of GPUs available at the time. What's truly 
astounding is the extent to which it outperformed other systems 
reliant on manual feature extraction. Achieving a top-five error rate of 
15.3 percent on a dataset featuring a thousand categories is quite 
exceptional. Handling a thousand different categories is a daunting 
challenge as the probability of achieving correct classifications purely 



by chance in such a vast space is exceedingly small. This accomplishment 
signaled a significant turning point in the industry's acceptance of neural 
networks for practical applications.

It's noteworthy that this work, although revolutionary, is essentially a modern 
reiteration of an older concept. This idea harks back to a study from 1989, 
nearly three decades prior, which initially targeted handwritten digit 
recognition. While the core technique remains consistent, this reimagining's 
clever adaptation for GPU acceleration makes it an emblem of technological 
advancement.

Now, let's delve into an exploration of this network and dissect its architectural 
components, shall we?



AlexNet

112
image source: https://www.learnopencv.com/number-of-parameters-and-tensor-sizes-in-convolutional-neural-network/

In this context, the initial input is a 227x227 pixel image with three color 
channels (RGB). The first layer involves a convolutional operation, 
similar to what we've discussed earlier. In this case, the convolutional 
filter is 11x11 in dimension and applies with a stride of four. To 
calculate the output volume dimensions, a formula subtracts the filter 
dimensions from the input dimensions and divides it by the stride, 
then adds one.

This first layer employs 96 different filters or kernels to process the 
image, each with an 11x11 dimension. The result is the first output 
volume. Following this is an "overlapping max pool" layer, where the 
stride is set to two instead of three, creating a slight overlap. This 
process also reduces the dimensions of the volume.

The network proceeds with another convolutional layer, this time using 
5x5 filters with a padding of two and employing 256 of these filters. 
You can once more apply a similar formula to find the output volume 
dimensions in this case. This pattern continues with a max pooling 
layer, another convolutional layer, and so on.

As the network progresses, you'll notice it gradually evolves into a deep 
network with many filters. Finally, it applies fully connected layers, 
including two of them, culminating in a softmax function over a 



thousand dimensions. This sequence creates a deep neural network 
architecture.

Exploring the "magic numbers" chosen for the filter dimensions—11, 3, 5, 
3—might raise questions. While some aspects remain enigmatic, research 
is ongoing to gain a better understanding. It is known that smaller filters, 
such as 3x3 or 5x5, are typically more practical than larger ones. This is 
because smaller filters are stacked and, when examined recursively, impact 
a larger region of the image.

Much of the development following the 2012 paper has involved 
experimenting with different network configurations, seeking incremental 
improvements.



part 1: Introduction - why are convolutional architectures needed?

part 2: One-dimensional convolutional neural networks (conv1D)

part 3: Two-dimensions and beyond (conv2D, conv3D, ...)

part 4: Example architecture

Summary
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If we want to attach a neuron to this, 
so we're going to make first, say, a 
hidden layer of our neural network, 
that neuron also needs 2 million 
weights. That neuron also needs 
memory space to store the 
gradients. And then on top of that, 
you probably want more than one 
neuron, you probably want several 
hidden layers and you want to have 
more neurons per layer. This 
requires an extremely large amount 
of weights.

We've just explored the example of AlexNet, a deep architecture that 
relies on the fundamental concepts we've been discussing. Similar 
ideas underpin many other networks in this field.

Let's recap today's discussion. We began with an introduction, 
addressing the necessity of convolutional architectures. We delved 
into the one-dimensional case, examining why these architectures 
are indispensable. The primary reason is that using a multi-layer 
perceptron (MLP), as we've done previously, isn't feasible. An MLP 
grows too large, becomes impractical to train, and loses the ability to 
recognize features if they don't occur exactly in the same position as 
in the training data.

We used sound as an example to understand these concepts better. 
Subsequently, we extended our understanding to two-dimensional 
scenarios, applying similar principles like filters, padding, and deeper 
nested structures. We then scrutinized AlexNet, an example 
architecture, and mentioned that further developments exist in this 
field.

The key takeaway from this presentation is the realization that deep 
learning models can autonomously extract features from data, and 
these models can be applied across higher dimensions.


