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Today’s lecture will be entirely devoted to the backpropagation
algorithm. The heart of all deep learning.

STOCHASTIC GRADIENT DESCENT
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This is where we left things last lecture. We introduced
gradient descent as the training algorithm for neural
networks. The gradient collects all derivates of the loss
with respect to every weight in the neural network.

For simple models, like a one-layer linear or logistic
regression, we can work out the gradient in closed
form. That means we get a function of what the
gradient is at every point in our parameter space.

Fro complex, multilayer functions, working out the
gradient is not so easy. We need an algorithm to do it
for us. That algorithm is called backpropagation, and
it’s what powers deep learning.

part 1: scalar backpropagation

part 2: tensor backpropagation

part 3: automatic differentiation

Vu¥

Because backpropagation is so important, we are going to
spend an entire lecture on it. Looking at it from different
perspectives, and slowly building up to the completely
automated, highly parallelized version of the algorithm that we
use today.

In the first part we describe backpropagation in a scalar
setting. That is, we will treat each individual element of the
neural network as a single number, and simply loop over all
these numbers to do backpropagation over the whole
network. This simplifies the derivation, but it is ultimately a
slow algorithm with a complicated notation.

In the second part, we translate neural networks to operations
on vectors, matrices and tensors. This allows us to simplify our
notation, and more importantly, massively speed up the
computation of neural networks. Backpropagation on tensors
is a little more difficult to do than backpropagation on scalars,
but it's well worth the effort.

In the third part, we will make the final leap from manually
worked out and implemented backpropagation system to full-
fledged automatic differentiation: we will show you how to
build a system that takes care of the gradient computation
entirely by itself. This is the technology behind software like
pytorch and tensorflow.
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In the previous video, we looked at what neural
networks are, and we saw that to train them, we need
to work out the derivatives of the loss with respect to
the parameters of the neural network: collectively
these derivatives are known as the gradient.

SCALAR BACKPROPAGATION

How do we work out the gradient for a neural network?
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| section|Scalar backpropagation|

| video| https://www.youtube.com/embed/
idO5r5eWIrw?si=NnUUgtAroD3_Rich|

Here is a diagram of the sort of network we’ll be
encountering (this one is called the GooglLeNet). We
can’t work out a complete gradient for this kind of
architecture by hand. We need help. What we want is
some sort of algorithm that lets the computer work
out the gradient for us.
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GRADIENT COMPUTATION: THE SYMBOLIC APPROACH of course, working out derlvatlves. Is a pretty
mechanical process. We could easily take all the rules
* Wolfra mAIpha computatona we know, and put them into some algorithm. This is
called symbolic differentiation, and it’s what systems
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x[l(w):d* 1+e,(mr1n.|su.r*“"m)= aw qUICk|Y'
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in size.

Note that in symbolic differentiation we get a
description of the derivative that is independent of



the input. We get a function that we can then feed any
input to.

GRADIENT COMPUTATION: THE NUMERIC APPROACH

\l deriv ~ —f(x +o)—fix¥)

the “method of finite differences”
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Another approach is to compute the gradient
numerically. For instance by the method of finite
differences: we take a small step = and, see how much
the function changes. The amount of change divided
by the step size is a good estimate for the gradient if
is small enough.

Numeric approaches are sometimes used in deep
learning, but it’s very expensive to make them
accurate enough if you have a large number of
parameters.

Note that in the numeric approach, you only get an
answer for a particular input. If you want to compute
the gradient at some other point in space, you have to
compute another numeric approximation. Compare
this to the symbolic approach (either with pen and
paper or through wolfram alpha) where once the
differentation is done, all we have to compute is the
derivative that we've worked out.

BACKPROPAGATION: THE MIDDLE GROUND

Work out parts of the derivative symbolically

chain these together in a numeric computation.

secret ingredient: the chain rule.

. VU¥

Backpropagation is a kind of middle ground between
symbolic and numeric approaches to working out the
gradient. We break the computation into parts: we
work out the derivatives of the parts symbolically, and
then chain these together numerically.

The secret ingredient that allows us to make this work
is the chain rule of differentiation.
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Here is the chain rule: if we want the derivative of a
function which is the composition of two other
functions, in this case f and g, we can take the
derivative of f with respect to the output of g and
multiply it by the derivative of g with respect to the
input x.

Since we’ll be using the chain rule a lot, we’ll introduce
a simple shorthand to make it a little easier to parse.
We draw a little diagram of which function feeds into
which. This means we know what the argument of
each function is, so we can remove the arguments
from our notation.

We call this diagram a computation graph. We'll stick
with simple diagrams like this for now. At the end of
the lecture, we will expand our notation a little bit to

INTUITION FOR THE CHAIN RULE
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Since the chain rule is the heart of backpropagation,
and backpropagation is the heart of deep learning, we
should probably take some time to see why the chain
rule is true at all.

If we imagine that f and g are linear functions, it’s
pretty straightforward to show that this is true. They
may not be, of course, but the nice thing about
calculus is that locally, we can treat them as linear
functions (if they are differentiable). In an
infinitesimally small neighbourhood f and g are exactly
linear.

If f and g are locally linear, we can describe their
behavior with a slope s and an additive constant b. The
slopes, sfand s, are simply the derivatives. The
additive constants we will show can be ignored.

In this linear view, what the chain rule says is this: if we
approximate f(x) as a linear function, then its slope is
the slope of f as a function of g, times the slope of g as
a function of x. To prove that this is true, we just write
down f(g(x)) as linear functions, and multiply out the
brackets.

Note that this doesn’t quite count as a rigorous proof,
but it’s hopefully enough to give you some intuition for
why the chain rule holds.

MULTIVARIATE CHAIN RULE
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Since we’ll be looking at some pretty elaborate
computation graphs, we’ll need to be able to deal with
this situation as well: we have a computation graph, as
before, but f depends on x through two different
operations. How do we take the derivative of f over x?

The multivariate chain rule tells us that we can simply
apply the chain rule along g, taking h as a constant,
and sum it with the chain rule along h taking g as a
constant.
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We can see why this holds in the same way as before.
The short story: since all functions can be taken to be
linear, their slopes distribute out into a sum

MULTIVARIATE CHAIN RULE

b Vu¥

If we have more than two paths from the input to the
output, we simply sum over all of them.
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With that, we are ready to show how backpropagation
works. We'll start with a fairly arbitrary function to
show the principle before we move on to more
realistic neural networks.

ITERATING THE CHAIN RULE
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The first thing we do is to break up its functional form
into a series of smaller operations. The entire function
fis then just a chain of these small operations chained
together. We can draw this in a computation graph as

we did before.

Normally, we wouldn’t break a function up in such
small operations. This is just a simple example to
illustrate the principle.



ITERATING THE CHAIN RULE
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Now, to work out the derivative of f, we can iterate the
chain rule. We apply it again and again, until the
derivative of f over x is expressed as a long product of
derivatives of operation outputs over their inputs.

GLOBAL AND LOCAL DERIVATIVES
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global derivative
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We call the larger derivative of f over x the global
derivative. And we call the individual factors, the
derivatives of the operation output wrt to their inputs,
the local derivatives.

BACKPROPAGATION

The BACKPROPAGATION algorithm:

« break your computation up into a sequence of operations
what counts as an operation is up to you

» work out the local derivatives symbolically.

» compute the global derivative numerically
by computing the local derivatives and multiplying them

VU

This is how the backpropagation algorithm combines
symbolic and numeric computation. We work out the
local derivatives symbolically, and then work out the

global derivative numerically.

WORK OUT THE LOCAL DERIVATIVES SYMBOLICALLY
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For each local derivative, we work out the symbolic
derivative with pen and paper.

Note that we could fill in the a, b and c in the result,
but we don’t. We simply leave them as is. For the
symbolic part, we are only interested in the derivative
of the output of each sub-operation with respect to its
immediate input.

The rest of thew algorithm is performed numerically.



COMPUTE A FORWARD PASS (X = -4.499)
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This we are now computing things numerically, we
need a specific input, in this case x = -4.499. We start
by feeding this through the computation graph. For
each sub-operation, we store the output value. At the
end, we get the output of the function f. This is called a
forward pass: a fancy term for computing the output
of f for a given input.

Note that at this point, we are no longer computing
solutions in general. We are computing our function
for a specific input. We will be computing the gradient
for this specific input as well.

COMPUTE A FORWARD PASS (X = -4.499)
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Keeping all intermediate values from the forward pass
in memory, we go back to our symbolic expression of
the derivative. Here, we fill in the intermediate values
a b and c. After we do this, we can finish the
multiplication numerically, giving us a numeric value of
the gradient of f at x = -4.499. In this case, the gradient
happens to be 0.

BACKPROPAGATION

The BACKPROPAGATION algorithm:

« break your computation up into a sequence of operations
what counts as an operation is up to you

» work out the local derivatives symbolically.

» compute the global derivative numerically
by computing the local derivatives and multiplying them

+ Much more accurate than finite differences
only source of inaccuracy is the numeric computation of the operations.

« Much faster than symbolic differentiation
The backward pass has (broadly) the same complexity as the forward.

Vu¥

Before we try this on a neural network, here are the
main things to remember about the backpropagation
algorithm.

Note that backpropagation by itself does not train a

neural net. It just provides a gradient. When people

say that they trained a network by backpropagation,
that's actually shorthand for training the network by
gradient descent, with the gradients worked out by

backpropagation.

BRACKPROPAGATION IN A FEEDFORWARD NETWORK
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To explain how backpropagation works in a neural
network, we extend our neural network diagram a
little bit, to make it closer to the actual computation
graph we’ll be using.

First, we separate the hidden node into the result of
the linear operation ki and the application of the
nonlinearity hi. Second, since we’re interested in the
derivative of the loss rather than the output of the
network, we extend the network with one more step:
the computation of the loss (over one example to
keep things simple). In this final step, the output y of
the network is compared to the target value t from the
data, producing a loss value.

The loss is the function for which we want to work out
the gradient, so the computation graph is the one that



computes first the model output, and then the loss
based on this output (and the target).

Note that the model is now just a subgraph of the
computation graph. You can think of t as another input
node, like x1 and xz, (but one to which the model
doesn’t have access).

BRACKPROPAGATION IN A FEEDFORWARD NETWORK
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We want to work out the gradient of the loss. This is
simply the collection of the derivative of the loss over
each parameter.

We'll pick two parameters, v in the second layer, and
w1 in the first, and see how backpropagation
operates. The rest of the parameters can be worked
out in the same way to give us the rest of the gradient.

First, we have to break the computation of the loss
into operations. If we take the graph on the left to be
our computation graph, then we end up with the
operations of the right.

To simplify things, we’ll compute the loss over only
one instance. We'll use a simple squared error loss.

BACKPROPAGATION IN A FEEDFORWARD NETWORK
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For the derivative with respect to v,, we’ll only need
these two operations. Anything below doesn’t affect
the result.

To work out the derivative we apply the chain rule, and
work out the local derivatives symbolically.

BACKPROPAGATION IN A FEEDFORWARD NETWORK
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We then do a forward pass with some values. We get
an output of 10.1, which should have been 12.1, so
our loss is 4. We keep all intermediate values in
memory.

We then take our product of local derivatives, fill in the
numeric values from the forward pass, and compute
the derivative over v..

When we apply this derivative in a gradient descent
update, v> changes as shown below.



BACKPROPAGATION IN A FEEDFORWARD NETWORK
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Let’s try something a bit earlier in the network: the
weight wi,. We add two operations, apply the chain
rule and work out the local derivatives.

BACKPROPAGATION
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Note that when we’re computing the derivative for
W1, we are also, along the way computing the
derivatives for y, h, and k.

This useful when it comes to implementing
backpropagation. We can walk backward down the
computation graph and compute the derivative of the
loss for every node. For the nodes below, we just
multiply the local gradient. This means we can very
efficiently compute any derivatives we need.

In fact, this is where the name backpropagation comes
from: the derivative of the loss propagates down the
network in the opposite direction to the forward pass.
We will show this more precisely in the last part of this
lecture.

WALKING BACK DOWN THE NETWORK

loss @

.5'0%0
/

Break your function up into modules &
Call the last node the foss.

Do a forward pass.
Start at the loss node and work your way down.
At each input to a module, multiplying
of loss over output < already comFubed

of output over input <= local deriv,
produces the deriv. of loss over input.
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Here is a more abstract view of what is happening in
backpropagation, which should apply to any kind of
computation. We can think of the computations we do
as modules with inputs and outputs, chained together
to make a computation graph. The output of each
module contributes ultimately to the result of the
computation, which is the /oss.

We want to know the derivative of the loss with
respect to each of our input nodes. By the chain rule,
this is the derivative of the los with respect to the
output times the derivative of the output with respect
to the input.

If we take care to walk back down our computation
graph in the correct order, then we can be sure that for
every module we encounter, we will have already
computed the first factor. We only need to compute
the second, and mulitply by the value we already have.

We’ll extend this abstract view of backpropagation in
the last part of the lecture.



BACKPROPAGATION

The BACKPROPAGATION algorithm:

« Walk backward from the loss, accumulating the derivatives.
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BUILDING SOME INTUITION
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To finish up, let’s see if we can build a little intuition for
what all these accumulated derivatives mean.

Here is a forward pass for some weights and some
inputs. Backpropagation starts with the loss, and walks
down the network, figuring out at each step how every
value contributed to the result of the forward pass.
Every value that contributed positively to a positive
loss should be lowered, every value that contributed
positively to a negative loss should be increased, and
so on.

IMAGINE THAT y IS A PARAMETER

y«y—o-2y—t)
=y —o-20

Yy+y—o-2(y—t)

i\o =y +o-20
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We’'ll start with the first value below the loss: y, the
output of our model. Of course, this isn’t a parameter
of the network, we can set it to any value we'd like.
But let’s imagine for a moment that we could. What
would the gradient descent update rule look like if we
try to update y?

If the output is 10, and it should have been 0, then
gradient descent on y tells us to lower the output of
the network. If the output is 0 and it should have been
10, GD tells us to increase the value of the output.

Even though we can’t change y directly, this is the
effect we want to achieve: we want to change the
values we can change so that we achieve this change
iny. To figure out how to do that, we take this gradient
fory, and propagate it back down the network.

Note that even though these scenarios have the same
loss (because of the square), the derivative of the loss
has a different sign for each, so we can tell whether
the output is bigger than the target or the other way
around. The loss only tells us how bad we've done, but
the derivative of the loss tells us where to move to
make it better.
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Of course, we cannot change y directly. Instead, we
have to change the values that influenced y.

Here we see what that looks like for the weights of the
second layer. First note that the output y in this
example was too high. Since all the hidden nodes have
positive values (because of the sigmoid), we end up
subtracting some positive value from all the weights.
This will lower the output, as expected.

Second, note that the change is proportional to the
input. The first hidden node h1 only contributes a
factor of 0.1 (times its weight) to the value of y, so it
isn't changed as much as hs, which contributes much
more to the erroneous value.

Note also that the current value of the weight doesn’t
factor into the update: whether v1 is 1, 10 or 100, we
subtract the same amount. Only how much influence
the weight had on the value of y in the forward pass if
taken into account. The higher the activation of the
source node, the more the weight gets adjusted.

Finally, note how the sign of the the derivative wrt to y
is taken into account. Here, the model output was too
high, so the more a weight contributed to the output,
the more it gets "punished" by being lowered. If the
output had been too low, the opposite would be true,
and we would be adding something to the value of
each weight.

NEGATIVE ACTIVATION

v
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The sigmoid activation we’ve used so far allows only
positive values to emerge from the hidden layer. If we
switch to an activation that also allows negative
activations (like a linear activation or a tanh
activation), we see that backpropagation very
naturally takes the sign into account.

Note the negative activation on h:.

In this case, we want to update in such a way that y
decreases, but we note that the weight v is multiplied
by a negative value. This means that (for this instance)
v, contributes negatively to the model output, and its
value should be increased if we want to decrease the
output.

Note that the sign of v. itself doesn’t matter. Whether

g hy « hy — - 2(y — t)vs
O.Sd :h2+(X203
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We use the same principle to work our way back down
the network. If we could change the output of the
second node h; directly, this is how we’d do it.

Note that we now take the value of v; to be a constant.
We are working out partial derivatives, so when we
are focusing on one parameters, all the others are
taken as constant.

Remember, that we want to decrease the output of
the network. Since v, makes a negative contribution to
the loss, we can achieve this by increasing the
activation of the source node v, is multiplied by.

Note also that we’ve switched back to sigmoid
activations.
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Moving down to ki, remember that the derivative of
the sigmoid is the output of the sigmoid times 1 minus
that output.

We see here, that in the extreme regimes, the sigmoid
is resistant to change. The closer to 1 or 0 we get the
smaller the weight update becomes.

This is actually a great downside of the sigmoid
activation, and one of the big reasons it was eventually
replaced by the ReLU as the default choice for hidden
units. We'll come back to this in a later lecture.

Nevertheless, this update rule tells us what the change
is to k, that we want to achieve by changing the
gradients we can actually change (the weights of layer
1).

Finally, we come to the weights of the first layer. As
before, we want the output of the network to

o decrease. To achieve this, we want h; to increase
(because v; is negative). However, the input x1 is
10 0 Wis = Wio — o 2(y — hvaha(1 — ho)xa negative, so we should decrease w1, to increase h,.
. 1“ - This is all beautifully captured by the chain rule: the
o : =Wy —o-20-—3- 1 -3 two negatives of x1 and v» cancel out and we get a
(') 1 ' positive value which we subtract from w1..
=wip—o-20-3---3
A 12 > 1
3
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FORWARD PASS IN PSEUDOCODE To finish up let's look at how you would implement this
in code. Here is the forward pass: computing the
model output and the loss, given the inputs and the
for j in [1 .. 3]:
for i in [1 .. 2]: target value.
K31 += wli, j1 * x[i] - .
kil - bJEj]” B Assume that k and y are initialized with Os or random
values. We'll talk about initialization strategies in the
for i in [1 .. 3]:
h[il = sigmoid(k[il)) 4th lecture.
for i in [1 .. 3]:
y += h[il * v[il]
y += ¢
i X Toss = (y — t) #* 2
VUt

BACKWARD PASS IN PSEUDOCODE

y' =2 % (y - t) # the error
for i in [1 .. 3]:

v'[i]l =y’ % h[i]
h'[il =y’ * vIil
=y

for i in [1 .. 3]:
k'[i] = h'[i] * h[i] * (1-h[i])

for j in [1 .. 3]:
for i in [1 .. 2]:
w'li, j1 = k' [3] * x[i]
b’ [j1 = k'[j]
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And here is the backward pass. We compute gradients
for every node in the network, regardless of whether
the node represents a parameter. When we do the
gradient descent update, we'll use the gradients of the
parameters, and ignore the rest.

Note that we don’t implement the derivations from
slide 44 directly. Instead, we work backwards down
the neural network: computing the derivative of each
node as we go, by taking the derivative of the loss over
the outputs and multiplying it by the local derivative.



Backpropagation: method for computing derivatives.
Combined with gradient descent to train NNs.

Middle ground between symbolic and numeric computation.
» Break computation up into operations.

» Work out local derivatives symbolically.
« Work out global derivative numerically.
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TENSOR BACKPROPAGATION

Expressing backpropagation in vector, matrix and tensor operations.
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| section|Tensor backpropagation |

| video| https://www.youtube.com/embed/O-
xs8lyP4bQ?si=YWT0e5PGkU37kOVf|

We've seen what neural networks are, how to train
them by gradient descent and how to compute that
gradient by backpropagation.

In order to scale up to larger and more complex
structures, we need two make our computations as
efficient as possible, and we’ll also need to simplify our
notation. There’s one insight that we are going to get a
lot of mileage out of.

IT’S ALL JUST LINEAR ALGEBRA

. VU¥

When we look at the computation of a neural network,
we can see that most operations can be expressed
very naturally in those of linear algebra.

The multiplication of weights by their inputs is a
multiplication of a matrix of weights by a vector of
inputs.

Note that the weight w1 (as we’ve called it so far,
because it goes from node 1 to node 2) actually goes
into element W>: of the matrix \W. You can tell the
difference by whether we’re using a lower-case or
capital w.

The addition of a bias is the addition of a vector of bias
parameters.

The nonlinearities can be implemented as simple



element-wise operations.

This perspective buys us two things. First...

f(x) =Vo(Wx+Db)+c

Our notation becomes extremely simple. We can
describe the whole operation of a neural network with
one simple equation. This expressiveness will be sorely
needed when we move to more complicated
networks.

MATRIX MULTIPLICATION

v

for j in [1 .. 2]:
for 1 in [1 .. 3]:
k[i]l += wli,j] * x[il]
k[i] += b[il]

VU¥

The second reason is that the biggest computational
bottleneck in a neural network is the multiplication of
the layer input by the layer weights. The matrix
multiplication in the notation of the previous slide.
This operation is more than quadratic while everything
else is linear. We can see that in our pseudocode,
because we have one loop, nested in another.

Matrix multiplication (and other tensor operations like
it) can be parallelized and implemented efficiently but
it’s a lot of work. Ideally, we’d like to let somebody else
do all that work (like the implementers of numpy) and
then just call their code to do the matrix
multiplications.

This is especially important if you have access to a
GPU. A matrix multiplication can easily be offloaded to
the GPU for much faster processing, but for a loop
over an array, there’s no benefit.

This is called vectorizing: taking a piece of code
written in Tor loops, and getting rid of the loops by
expressing the function as a sequence of linear algebra
operations.



Express everything as operations on vectors, matrices and tensors.
Get rid of all the loops

Makes the notation simpler.
Makes the execution faster.

. Vu¥

Without vectorized implementations, deep learning
would be painfully slow, and GPUs would be useless.
Turning a naive, loop-based implementation into a
vectorized one is a key skill for DL researchers and
programmers.

FORWARD

B
yO Ot :Z(y_t)2 K = w.dot(x) + b
VI ¢ _ Vh + C h = sigmoid(k)
ho e VT
k cl) h = O‘(k) y = v.dot(h) + c
W‘\b k:WX+b T=(y - t) %2
xO @
. VUt

Here’s what the vectorized forward pass looks like as a
computation graph, in symbolic notation and in
pseudocode.

When you implement this in numpy it’ll look almost
the same.

Note that this doesn't just represent the network in the
previous part, it represents any such network,
regardless of the sizes of the input and hidden layers.
We've abstracted away some details about the
specifics of the network. We've also made the output
and the target label vectors for the sake of generality

So far so good. The forward pass is easy enough to
vectorize.

BUT WHAT ABOUT THE BACKWARD PASS?

1O

y<|>\0t 1=> (y—t)?

v \e Can we do something like this?
ho e Y=Vhte ol ; 0l 0y oh 0Ok
e h = o(k) OW ~ 0y 0h 0k 0OW
W‘\b k=Wx+b

xO @
. vu¥

Of course, we lose a lot of the benefit of vectorizing if
the backward pass (the backpropagation algorithm)
isn’t also expressed in terms of matrix multiplications.
How do we vectorize the backward pass? That's the
question we'll answer in the rest of this video.

On the left, we see the forward pass of our loss
computation as a set of operations on vectors and
matrices.

To generalize backpropagation to this view, we might
ask if something similar to the chain rule exists for
vectors and matrices. Firstly, can we define something
analogous to the derivative of one matrix over
another, and secondly, can we break this apart into a
product of local derivatives, possibly giving us a
sequence of matrix multiplications?

The answer is yes, there are many ways of applying
calculus to vectors and matrices, and there are many
chain rules available in these domains. However, things
can quickly get a little hairy, so we need to tread
carefully.



GRADIENTS, JACOBIANS, ETC

3
f(A) =B, % : derivatives of every element of A over every element of B
C

. function returns a
for instance:

o scalar vector matrix
1
by e
f as ={w) arrange derivativesina:
2
as scalar scalar vector  matrix

0b1/oa, 0b2/aq,
Jf — ()bl/(\a_; ()bg/()a_)
Obl/Oa; ObQ/Oa;

vector vector matrix ?

inputisa

matrix  matrix ? ?

The derivatives of high-dimensional objects are easily
defined. We simply take the derivative of every
number in the input over every number in the output,
and we arrange all possibilities into some logical
shape. For instance, if we have a vector-to-vector
function, the natural analog of the derivative is a
matrix with all the partial derivatives in it.

However, once we get to matrix/vector operations or
matrix/matrix operations, the only way to logically
arrange every input with every output is a tensor of
higher dimension than 2.

NB: We don’t normally apply the differential symbol
to non-scalars like this. We'll introduce better
notation later.

ol 7 0l dy dh ok

OW  Jy 0h 0k

=

uh oh

Vu¥

As we see, even if we could come up with this kind of
chain rule, one of the local derivatives is now a vector
over a matrix. The result could only be represented in
a 3-tensor. There are two problems with this:

If the operation has n inputs and n outputs, we are
computing n3 derivatives, even though we were only
ultimately interested in n2 of them (the derivatives
of W). In the scalar algorithm we only ever had two
nested loops (an n2 complexity), and we only ever
stored one gradient for one node in the
computation graph. Now we suddenly have n3
complexity and n3 memory use. We were supposed
to be making things faster.

We can easily represent a 3-tensor, but there’s no
obvious, default way to multiply a 3-tensor with a
matrix, or with a vector (in fact there are many
different ways). The multiplication of the chain rule
becomes very complicated this way.

In short, we need a more careful approach.

SIMPLIFYING ASSUMPTIONS

1) The computation graph always has a single, scalar output: 1

2) We are only ever interested in the derivative of L.

scalar | vector  matrix
a l <~ scalar
scalar scalar |vector  matrix

‘N/ <= tenso
a sor of vector | vector |matrix ?

any dimﬁv\sio!«\

matrix | matrix ? ?

52 3-tensor | 3-tensor ? ? U k

To work out how to do this we make these following
simplifying assumptions.
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computation graph

computation
of model

inputs

Note that this doesn’t mean we can only ever train
neural networks with a single scalar output. Our
neural networks can have any number of outputs of
any shape and size. We can make neural networks that
generate images, natural language, raw audio, even
video.

However, the loss we define over those outputs needs
to map them all to a single scalar value. The
computation graph is always the model, plus the
computation of the loss.

THE GRADIENT

1
We will call W the gradient of 1 (with respect to W)

Commonly written as V\Vl

Nonstandard assumption: le has the same shape as W

l

(Vw 1]ijk = IWoe
ijk

We call this derivative the gradient of W. This is a
common term, but we will deviate from the standard
approach in one respect.

Normally, the gradient is defined as a row vector, so
that it can operate on a space of column vectors by
matrix multiplication.

In our case, we are never interested in multiplying the
gradient by anything. We only ever want to sum the
gradient of L wrt W with the original matrix W in a
gradient update step. For this reason we define the
gradient as having the same shape as the tensor
with respect to which we are taking the derivative.

In the example shown, W is a 3-tensor (a kind of matrix
with 3 dimensions instead of 2). The gradient of 1 wrt
W has the same shape as W, and at element (i, j, k) it
holds the scalar derivative of 1 wrt Wig.

With these rules, we can use tensors of any shape and
dimension and always have a welldefined gradient.

NEW NOTATION: THE GRADIENT FOR W

Vv
<= always the same —
Vil W

The standard gradient notation isn’t very suitable for
our purposes. It puts the loss front and center, but that
will be the same in all cases. The object that we're
actually interested in is relegated to a subscript. Also, it
isn’t very clear from the notation what the shape is of
the tensor that we’re looking at.

For this reason, we’ll introduce a new notation. This
isn’t standard, so don’t expect to see it anywhere else,
but it will help to clarify our mathematics a lot as we
go forward.

We’ve put the W front and center, so it’s clear that the
result of taking the gradient is also a matrix, and we’ve
removed the loss, since we’ve assume that we are
always taking the gradient of the loss.



You can think of the nabla as an operator like a
transposition or taking an inverse. It turns a matrix into
another matrix, a vector into another vector and so on.

The notation works the same for vectors and even for
scalars. This is the gradient of 1 with respect to W.
Since L never changes, we’ll refer to this as “the
gradient for W”.

VU

When we refer to a single element of the gradient, we
will follow our convention for matrices, and use the
non-bold version of its letter.

Element (i, j) for the gradient of W is the same as the
gradient for element (i, j) of W.

To denote this element we follow the convention we
have for elements of tensors, that we use the same
letter as we use for the matrix, but non-bold.

TENSOR BACKPROPAGATION
v

M
ULTIVAR AT CHAIN Ry ¢

Work out scalar derivatives first, then vectorize. -
Use the multivariate chain rule to derive the scalar derivative. '.<:l‘
of
ax =2 I 9,
Apply the chain rule step by step. T 09 ox
Start at the loss and work backward, accumulating the gradients.
. vu¥

This gives us a good way of thinking about the
gradients, but we still don’t have a chain rule to base
out backpropagation on.

The main trick we will use is to stick to scalar
derivatives as much as possible.

Once we have worked out the derivative in purely
scalar terms (on pen and paper), we will then find a
way to vectorize their computation.

GRADIENT FOR y

v
l O y v _ ol
| o=y
7 Q _ 0 (e —t)? Z 0y, — ti)?
N oy; - 0y;
Oy —ti
=2 2 —t) 7 =2 w)
k
yY 2(y; —t1)
A e I Bt
5 uN 2(yn —tn) VU%‘

We start simple: what is the gradient for y? This is a
vector, because y is a vector. Let’s first work out the
derivative of the i-th element of y. This is purely a
scalar derivative so we can simply use the rules we
already know. We get 2(yi - ti) for that particular
derivative.

Then, we just re-arrange all the derivatives for y;into a
vector, which gives us the complete gradient for y.

The final step requires a little creativity: we need to
figure out how to compute this vector using only basic
linear algebra operations on the given vectors and
matrices. In this case it’s not so complicated: we get
the gradient for y by element-wise subtracting t from y
and multiplying by 2.



We haven’t needed any chain rule yet, because our
computation graph for this part has only one edge.

GRADIENT FOR V

a
1 ? 1 V= Vi;
o oy oy
v o . Spa pa
_y vdVhtde | oVihto
VI 2 Vi = Vs /H
_y o0 Vit
o - -0 -0 2T vy k%H
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Let’s move one step down and work out the gradient
for V. We start with the scalar derivative for an
arbitrary element of V: V.

Now, we need a chain rule, to backpropagate through
y. However, since we are sticking to scalar derivatives,
we can simply use the scalar multivariate chain rule.
This tells us that however many intermediate values
we have, we can work out the derivative for each,
keeping the others constant, and sum the results.

This gives us the sum in the second equality. We've

worked out the gradient yV already, so we can fill that
in and focus on the derivative of yi over Vj. the value
of yk is defined in terms of linear algebra operations
like matrix multiplication, but with a little thinking we
can always rewrite these as a simple scalar sums.

In the end we find that the derivative of yx over Vj;
reduces to the value of h;.

This tells us the values of every elemen (i, j) of VV. All
that's left is to figure out how to compute thisin a

vectorized way. In this case, we can compute VVas the
outer product of the gradient for y, which we've
computed already, and the vector h, which we can
save during the forward pass.

To work out a gradient XV for some X:

Write down a scalar derivative of the loss wrt one element of X.

Use the multivariate chain rule to sum over all outputs.

Work out the scalar derivative.

* Vectorize the computation of XV in terms of the original inputs.

. VU¥




GRADIENT FOR h
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Since this is an important principle to grasp, let’s keep
going until we get to the other set of parameters, W.
We'll leave the biases as an exercise.

For the gradient for h, most of the derivation is the
same as before, until we get to the point where the
scalar derivative is reduced to a matrix mulitplication.
Unlike the previous derivation, the sum over k doesn't
disappear. We need to take it into the description of
the gradient for h.

To vectorize this, we note that each element of this
vector is a dot product of y and a column of V. This
means that if we premultiply y (transposed) by V, we
get the required result as a row vector. Transposing the
result (to make it a column vector) is equivalent to
post multiplying y by the transpose of V.

Note the symmetry of the forward and the backward
operation.

GRADIENT FOR k

10 1 v o
| ® LT ok
y O =Y m _ hy, Jolkm)
VI 7% Tm ks 7% tm oki
hm do(ki)
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s TR S oot - o)
kY =hV®he (1—h)
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Now, at this point, when we analyze k, remember that
we already have the gradient over h. This means that
we no longer have to apply the chain rule to anything
above h. We can draw this scalar computation graph,
and work out the local gradient for k in terms for the
gradient for h.

Given that, working out the gradient for k is relatively
easy, since the operation from k to h is an element-
wise one.

GRADIENT FOR W

Q!
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Finally, the gradient for W. The situation here is exactly
the same as we saw earlier for V (matrix in, vector out,
matrix multiplication), so we should expect the

derivation to have the same form (and indeed it does).



PSEUDOCODE: BACKWARD

2% (y - t)
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Here’s the backward pass that we just derived.

We've left the derivatives of the bias parameters out.
You’ll have to work these out to implement the first
homework exercise.

Vectorizing makes notation simpler, and computation faster.
Vectorizing the forward pass is usually easy.

Backward pass: work out the scalar derivatives, accumulate, then
vectorize.

Vu¥

Lecture 2: Backpropagation

Peter Bloem
Deep Learning

kwuz
divu.github.io VU G

AUTOMATIC DIFFERENTIATION

Letting the computer do all the work.

Vu¥

| section | Automatic differentiation |

| video | https://www.youtube.com/embed/9H-
08WESCxI?si=NyQ6djR2xavcBsiL |

We've simplified the computation of derivatives a lot.
All we've had to do is work out local derivatives and
chain them together. We can go one step further: if we
let the computer keep track of our computation graph,
and provide some backwards functions for basic
operations, the computer can work out the whole
backpropagation algorithm for us. This is called
automatic differentiation (or sometimes autograd).



THE STORY SO FAR

=y’ .mm(h.T)
yO Ot
= (y’[None, :] % v).sum(axis=1)
o e = sigmoid(k) * sigmoid(1 - k)
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xO @
pen and paper in the computer
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k = w.dot(x) + b

—

0—,0
e
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= sigmoid(k)
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y = v.dot(h) + ¢
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.backward() # start backprop
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[

pen and paper

in the computer Vuk

This is what we want to achieve. We work out on pen
and paper the local derivatives of various modules, and
then we chain these modules together in a
computation graph in our code. The computer keeps
the graph in memory, and can automatically work out
the backpropagation.

5 o .

VU

Whenever we work out a gradient, as we did in the
previous video, we always look at the node above the
one for which we're computing the gradient, and use
the multivariate chain rule to split the gradient in two.
In this case, we are working out the gradient for W and
we apply the multivariate chain to break that gradient
into the gradient for k and the derivatives of k with
respect to W.

The key idea, that powers automatic differentiation is
that once we have kY, we no longer care about
anything else that happens above k in our
computation graph. All we need is kV and we can work
out W nabla.

Define your computation graph in terms of operations chained together.

For each operation x -> y, if you know the gradient yV for the output, you
can work out the gradient xV for the input.

It doesn't matter what happens in the rest of the computation graph, before or after the operation.

With this knowledge, you can start at the top of the graph, and work your
way down, computing all the gradients.

; Vu¥




AUTOMATIC DIFFERENTIATION

many inputs, few outputs, work backward

<~
Yo
eqmli;,‘

few inputs, many outputs, work forward

VU

This kind of algorithm is called automatic
differentiation. What we’ve been doing so far is called
backward, or reverse mode automatic differentiation.
This is efficient if you have few output nodes. Note
that if we had two output nodes, we’d need to do a
separate backward pass for each.

If you have few inputs, it’s more efficient to start with
the inputs and apply the chain rule working forward.
This is called forward mode automatic differentiation.

Since we assume we only have one output node
(where the gradient computation is concerned), we
will always use reverse mode in deep learning.

Tensors

Scalars, vectors, matrices, etc.

Building computation graphs

Define operations with tensor inputs and outputs, chain them together.

Working out backward functions

For each operation, work out how to compute the gradient for the input given the gradient for the output

To make this idea precise, and applicable to as broad a
range of functions as possible, we'll need to set up a
few ingredients. Our values with be tensors: scalars,
vectors, matrices, or their higher-dimensional
analogues.

We then build computation graphs out of operations

VUt
TENSORS (AKA MULTIDIMENSIONAL ARRAYS) The basic datastructure of.our system wnll.be the
tensor. A tensor is a generic name for family of
datastructures that includes a scalar, a vector, a matrix
scalar vector matrix and SO on.
There is no good way to visualize a 4-dimensional
- e structure. We will occasionally use this form to
E - °” indicate that there is a fourth dimension along which
. s we can also index the tensor.
We will assume that whatever data we work with
O-tensor 1-tensor 2-tensor 3tensor  4-tensor (images, text, sounds), will in some way be encoded
shape: 3 shape:32  shape:2:3:2  shape:2:3:2:4 v into one or more tensors, before it is fed into our
s VU% system. Let’s look at some examples.
A CUASSIE|CATIONITASKIAS TWO TENSORS A simple dataset, Wlth. numeric features can simply be
represented as a matrix. For the labels, we usually
word count  nr. of class A
recipints create a separate corresponding vector for the labels.
30 3 ham P S
340 4 ham e B Any categoric features or labels should be converted to
121 2 spam [ | H numeric features (normally by one-hot coding).
1 1 spam il [
5|1 S
23 1 spam = YT
455 1 spam EZ [
= o]
512 2 spam | E— L
al o
2 12 ham P Y o]
32 1 ham i; z
432 1 ham
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AN IMAGE AS A 3-TENSOR

pixel

# + -
:

height

—

. Vu¥

width

channels

Images can be represented as 3-tensors. In an RGB
image, the color of a single pixel is represented using
three values between 0 and 1 (how red it is, how green
it is and how blue it is). This means that an RGB image
can be thought of as a stack of three color channels,
represented by matrices.

This stack forms a 3-tensor.

A DATASET OF IMAGES

In (5]: from keras.datasets import cifarl0
(x_train, y_train), (x_test, y_test) = cifarl0.load data()

x_train.shape

7 3

If we have a dataset of images, we can represent this
as a 4-tensor, with dimensions indexing the instances,
their width, their height and their color channels
respectively. Below is a snippet of code showing that
when you load the CIFAR10 image data in Keras, you
do indeed get a 4-tensor like this.

There is no agreed standard ordering for the
dimensions in a batch of images. Tensorflow and Keras
use (batch, height, width, channels), whereas Pytorch
uses (batch, channels, height, width).

(You can remember the latter with the mnemonic
“bachelor chow”.)

Building computation graphs

Working out backward functions

. Vu¥

COMPUTATION GRAPHS

Tensor nodes Operation nodes

—O

bipartite: only op-to-tensor or tensor-to-op edges
tensor nodes: no input or one input, multiple outputs

operation nodes: multiple inputs and outputs

. VU¥

We’ll need to be a little mode precise in our notations.
From now on we’ll draw computation graphs with both
the operations and the values as nodes. The graph is
always bipartite and directed. A tensor node is
connected to the ops for which it is an input, and an
operation node is connected to the tensor nodes that
it produces as outputs.

There doesn’t seem to be a standard visual notation.
This is what we'll use in most of this course.

In Tensorflow operations are called ops, and in Pytorch
they’re called functions.


http://www.adsell.com/scanning101.html
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As an example, here is our MLP expressed in our new
notation.

Just as before, it’s up to us how granular we make the
computation. for instance, we wrap the whole
computation of the loss in a single operation, but we
could also separate out the subtraction and the
squaring.

You may note that this graph is not directed or
bipartite everywhere. This is just visual shorthand.
Occasionally, we will omit the direction of an edge for
clarity, or omit intermediate nodes when it's clear that
a tensor node or op node should be there. The actual
computation graph we are describing in such cases is
always bipartite and entirely directed.

RESTATING OUR ASSUMPTIONS

One output node 1 with a scalar value.

All gradients are of 1, with respect to the tensors on the tensor nodes.

We compute gradients for all tensor nodes.

. Vu¥

We hold on to the same assumptions we had before.
They are required for automatic differentiation to work
efficiently.

IMPLEMENTATIONS

TensorNode: _’O<: OpNode: >C<E

value: <Tensor> inputs: List<TensorNode>
gradient: <Tensor> outputs: List<TensorNode>

source: <OpNode> op: <Op>

. Vu¥

To store a computation graph in memory, we need
three classes of objects. The first two are shown here.

A TensorNode objects holds the tensor value at that
node. It holds the gradient of the tensor at that node
(to be filled by the backpropagation algorithm) and it
holds a pointer to the Operation Node that produced it
(which can be null for leaf nodes).

An OpNode object represents an instance of a
particular operation being applied in the computation.
It stores the particular op being used (mulitplication,
additions, etc) and the inputs and the outputs. In the
MLP example, we perform several matrix
mulitplications: each of these becomes a separate
OpNode in the computation graph, all recording an
instance of the matrix multiplication operation being
used. Each of them refers to a single object
representing this operation.

This is the third class: the Op.



DEFINING AN OPERATION

class

def

H*

def

*#

Op: sto’
/
forward(cont%xt, inputs):

given the inputs, compute the outputs ﬂ)rvvardf :A—B

backwards : BY — AY

given the gradient of the loss wrt to the ouputs

backward(context, outputs_gradient):

compute the gradient of the loss wrt to the inputs

If the difference between an Op and an OpNode is
unclear consider that a single neural network may

apply, say, a sigmoid operation many times. The Op
object for the sigmoid defines how to compute the
sigmoid operations (and its gradient). Then for each
place in the computation graph where the sigmoid is

applied, we create a separate OpNode object which
references the inputs and outputs specific to that
application of the sigmoid, together with a single

pointer to the single sigmoid Op. This is where we
actually define how to perform the computation.

An Op is defined by two functions.

The function forward computes the outputs given
the inputs (just like any function in any programming
language).

The function backward takes the gradient for the
outputs (the gradient of the loss wrt to the outputs)
and produces the gradient for the inputs.

Both functions are also given a context object. This
is a data structure (a dictionary or a list) to which the
forward can add any value which it needs to save for
the backward, we'll see an example of this later.

Note that the backward function does not compute the
local derivative as we did in the scalar
backpropagation: it computes the accumulated
gradient of the loss over the inputs (given the
accumulated gradient of the loss over the outputs).

BACKPROPAGATION

v

build a computation graph, perform
forward pass, bottom-up from leaves.

traverse the tree backwards breadth-first

call backward for each OpNode

breadth-first ensures that the output gradients are known

add the computed gradients to the tensor

nodes
VU

sum them with any gradients already present

We'll see how to implement ops later. First, let's see
how all this works put together. Using Ops, OpNodes

and TensorNodes, we can build a computation
graph (again, more on how we do that later). The

OpNodes reference the TensorNodes that are their

inputs and outputs and they reference the Ops that
contain the actual code for their forward and
backward.

Once we have this computation graph, computing our
model output and loss and performing
backpropagation becomes almost trivially easy. We
simply traverse the tree forwards from the inputs to
the loss calling all the forward functions, and then
backwards from the loss to the inputs, calling all the
backwards functions.

The only thing we need to keep track of is that when

we call forward() onan OpNode's Op, all the
ancestors of that OpNode have been called, so that we
have all its inputs. And, when we traverse the tree

backward, when we call backward() onan
OpNode's Op that all the descendants have been
called so that we have the gradients for all of its
outputs.

Note the last point: some TensorNodes will be inputs to
multiple operation nodes. By the multivariate chain
rule, we should sum the gradients they get from all the
OpNodes they feed into. We can achieve this easily by
just initializing the gradients to zero and adding the
gradients we compute to any that are already there.



BUILDING COMPUTATION GRAPHS IN CODE

Lazy execution: build your graph, compile it, feed data through.

Eager execution: perform forward pass, keep track of computation graph.

Vu¥

All this assumes that the computation graph is already
there. But how do we tell the system what our
computation graph should be? It turns out that the
nicest way to do this is to describe the computation
itself in code. This makes sense: code is a language
explicitly for describing computations, so it would be
nice to simply describe a computation as a piece of
Python code, and have the system build a computation
graph for us.

This can be done through the magic of operator
overloading. We simply change change what operators
like * and + mean, when they are applied to
TensorNode objects. There are two strategies
common: lazy and eager execution.

EXAMPLE: LAZY EXECUTION

a = TensorNode() value: 2
b = TensorNode() grad: 1
source: mult(a, b)
c=axb
m = Model(
in=(a, b),
loss=c) a b
value: 1 value: 2
m.train((1, 2)) grad: 2 grad: 1
VU

Here’s one example of how a lazy execution API might
look.

Note that when we’re building the graph, we’re not
telling it which values to put at each node. We're just
defining the shape of the computation, but not
performing the computation itself.

When we create the model, we define which nodes
are the input nodes, and which node is the loss node.
We then provide the input values and perform the
forward and backward passes.

BUILDING THE COMPUTATION GRAPH: LAZY EXECUTION

v

Tensorflow 1.x default, Keras default

Define the computation graph.
- Compileit.
- Iterate backward/forward over the data

Fast. Many possibilities for optimization. Easy to serialise models. Easy to make
training parallel.

Difficult to debug. Model must remain static during training.

Y Vu¥

In lazy execution, which was the norm during the early
years of deep learning, we build the computation
graph, but we don’t yet specify the values on the
tensor nodes. When the computation graph is
finished, we define the data, and we feed it through.

This is fast since the deep learning system can optimize
the graph structure during compilation, but it makes
models hard to debug: if something goes wrong during
training, you probably made a mistake while defining
your graph, but you will only get an error while passing
data through it. The resulting stack trace will never
point to the part of your code where you made the
mistake.

EXAMPLE: EAGER EXECUTION

C
a = TensorNode( ) | vatue: 2
b = TensorNode( ) | gred: 1
source: mult(a, b)
c=axb
c.backward()
a b
value: 1 value: 2
grad: 2 grad: 1
. VUu¥

In eager mode deep learning systems, we create a
node in our computation graph (a TensorNode) by
specifying what data it should contain. The resultis a
tensor object that stores both the data, and the
gradient over that data (which will be filled later).

Here we create the variables a and b. If we now apply
an operation to these, for instance to multiply their
values, the result is another variable c. Languages like
python allow us to overload the * operator it looks like
we’re just computing multiplication, but behind the
scenes, we are creating a computation graph that
records all the computations we’ve done.

We compute the data stored in ¢ by running the
computation immediately, but we also store
references to the variables that were used to create c,



and the operation that created it. We create the
computation graph on the fly, as we compute the
forward pass.

Using this graph, we can perform the backpropagation
from a given node that we designate as the loss node
(node c in this case). We work our way down the graph
computing the derivative of each variable with respect
to c. At the start the TensorNodes do not have their
grad’s filled in, but at the end of the backward, all
gradients have been computed.

Once the gradients have been computed, and the
gradient descent step has been performed, we clear
the computation graph. It's rebuilt from scratch for
every forward pass.

BUILDING THE COMPUTATION GRAPH: EAGER EXECUTION

PyTorch, Tensorflow 2.0 default, Keras option

- Build the computation graph on the fly during the forward pass.

Easy to debug, problems in the model occur as the module is executing.
Flexible: the model can be entirely different from one forward to the next.

More difficult to optimize. A little more difficult to serialize.

. Vu¥

In eager execution, we simply execute all operations
immediately on the data, and collect the computation
graph on the fly. We then execute the backward and
ditch the graph we’ve collected.

This makes debugging much easier, and allows for
more flexibility in what we can do in the forward pass.
It can, however be a little difficult to wrap your head
around. Since we’ll be using pytorch later in the
course, we’ll show you how eager execution works
step by step.

Buitding computatien-graphs

Working out backward functions
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WORKING OUT THE BACKWARD FUNCTION
S 1
class Plus(0p): A
?&—O—O—O
def forward(context, a, b): B

# a, b are matrices of the same size ol

v
return a + b A A5
oS oS
=Y e =T
W ok O Kl 9745
def backward(context, goutput): —Y s (A + Bla _ ¥ v 0A + B
T oAy e
return goutput, goutput -
—svl gy

CUOAy Y

AV=8Y  BY=sY

. VU¥

The final ingredient we need is a large collection of
operations with backward functions worked out. We’ll
show how to do this for a few examples.

First, an operation that sums two matrices element-
wise.

The recipe is the same as we saw in the last part:
1) Write out the scalar derivative for a single element.

2) Use the multivariate chain rule to sum over all
outputs.

3) Vectorize the result.

Note that when we draw the computation graph, we
can think of everything that happens between S and 1



as a single module: we are already given the gradient
of Ll over S, so it doesn’t matter if it’s one operation or
a million.

Again, we can draw the computation graph at any
granularity we like: very fine individual operations like
summing and multiplying or very coarse-grained
operations like entire NNs.

For this operation, the context object is not needed,
we can perform the backward pass without
remembering anything about the forward pass.

BACKWARD: A FEW MORE EXAMPLES

Sigmoid

Row-wise sum

Expand

Vu¥

To finish up, we’ll show you the implementation of
some more operations. You'll be asked to do a few of
these in the second homework exercise.

SIGMOID

v
class Sigmoid(Op):
def forward(context, x):
# x 1s a tensor of any shape
sigx =1/ (1 + (= x).exp())
context['sigx'] = sigx

return sigx

def backward(context, goutput):
sigx = context['sigx']

return goutput % sigx * (1 - sigx)

X Y L
O0——0—0—=0
v o_ v Vave

Xijk - Yobc ”X‘l)’k

abc

=Yy 00 (Xavc)
o abe OXijk

_ YV ()O’(Xijk)

ik 0Xijx
= Y50 (Xijie) (1 — 0 (Xiji))
= Y5 Vije (1= Yiji)

XV=vyV@Y®([1-Y)

This is a pretty simple derivation, but it shows two
things:

1) We can easily do a backward over functions that
output high dimensional tensors, but we should
sum over all dimensions of the output when we
apply the multivariate chain rule.

2) The backward function illustrates the utility of the
context object. To work out the backward, we need
to know the original input. We could just have
stored that for every operation, but as we see here,
we’ve done part of the computation already in the
forward (and in other backwards, like the sum we
saw earlier, the inputs aren’t necessary at all). If we
give the operation control over what information it
wants to store for the backward pass, we are

class RowSum(0p):

def forward(context, x):
# x 1s a matrix
sumd = x.sum(axis=1)
context['m'] = x.shape[1]
return sumd

def backward(context, gy):
n, m = gy.shape[@], context['m’]

return gy[:, Nonel.expand(n, m)

X y l
O0——0—0—=0
)1] OZ Xkl
XY = v Yk _ v L
5 %Uk X %yk X
Xt Xy
=D Wo =W
PTR R
=uy
XV = yVqT
VU¥

Note that the output is a vector, because we’ve
summed out one dimension. Therefore, when we
apply the multivariate chain rule, we sum over only
one dimension.

This is a sum like the earlier example, so we don’t need
to save any tensor values from the forward pass.
However, we do need to remember the size of the
dimension we summed out. Therefore, we use the
context to store this information. The None keyword in
the slice in the last line adds a singleton dimension: it
turns the shape from (n) into (n, 1) .

The expand function we use here is not available in
numpy, but it does exist in pytorch. In numpy we can

use repeat.



1
1 E. d(0p): Y
class Expand(Op X0 : 0 0 O
def forward(context, x, size): size o
# x is a scalar
return np.full(x, size=size) v YV ()Yab
X" = § ab
ox
ab
def backward(context, gy): ZYV 0x
return gy.sum(), None B 5 ab 0x
a
_ § v
- Yab
ab
VU#

Our final example includes a constant argument. We
take a scalar, and expand it to a matrix of the given
size, filled with the value x.

In this case, we do not care about the gradient for size
(and even if we did, integer values don’t yield
meaningful gradients without some extra work). We
consider this a constant.

This can be done in different ways. In pytorch, you
return None for the gradient for a constant (as we’ve
shown here).

In our toy system (vugrad), we consider all keyword
arguments constants.

Buitding computatien-graphs
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MODULES OR LAYERS

value:

grad: ?
nn.Linear nn.Linear

rw

L]
[°]

— 4

Vu¥

Most deep learning frameworks also have a way of
combining model parameters and computation into a
single unit, often called a module or a layer.

In this case a Linear module (as it is called in Pytorch)
takes care of implementing the computation of a
single layer of a neural network (sans activation) and
of remembering the weights and the bias.

Modules have a forward function which performs the
computation of the layer, but they don’t have a
backward function. They just chain together
operations, and the backpropagation calls the
backwards on the operations. In other words, it
doesn’t matter to the backpropagation whether we
use a module or apply all the operations by hand.

k = w.dot(x) + b

h = sigmoid(k)
compute forward pass

%) y = v.dot(h) + c and

build computation graph
) (0) T=(y - 1t) %2

-

.backward() # start backprop

pen and paper in the computer

worlk out forward and
backuward functions VU %

Which completes the picture we wanted to create: a
system where all we have to do is perform some
computations on some tensors, just like we would do

in numpy, and all the building of computation graphs
and all the backpropagating is handled for us
automatically.

So long as the forward and backward have been
defined for all the operations we want to compute,
either by us, or as part of a standard library, the system
will do the rest.



LECTURE RECAP

backpropagation: work out local gradients symbolically, global gradients
numerically. Work from back to front, applying the chain rule.

tensor backpropagation: assume scalar loss 1, always compute the
gradient of the loss.

automatic differentiation: Build computation graph on the fly.
Backpropagation as a breadth-first walk down from the loss.

. Vu¥

So

THANK YOU FOR YOUR ATTENTION

dlvu@peterbloem.nl
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TENSOR DETAILS

VU

| section-nv|Tensor details* |

These slides were cut to lighten the amount of
material covered in this lecture. They're not part of the
exam material, but the information is still useful if
you're working with DL systems. It’s good to skim them
quickly, so you know to come back here when you
encounter any of the issues we describe here.

TENSORS IN MEMORY: ROW MAJOR ORDERING

Tensor A
- P s [5[a]a]2]e]0]
2 ’0 shape: (2, 3)
row-major ordering
VU¥

It’s important to realize that even though we think of
tensors as multidimensional arrays, in memory, they
are necessarily laid out as a single line of numbers. The
Tensor object knows the shape that these numbers
should take, and uses that to compute whatever we
need it to compute.

We can do this in two ways: scanning along the rows
first and then the columns is called row-major
ordering. This is what numpy and pytorch both do. The
other option is (unsurprisingly) called column major
ordering. In higher dimensional tensors, the
dimensions further to the right are always scanned
before the dimensions to their left.

Imagine looping over all elements in a tensor with
shape (a, b, ¢, d) in four nested loops. If you want to



loop over the elements in the order they are in
memory, then the loop over d would be the innermost
loop, then ¢, then b and then a.

This allows us to perform some operations very
cheaply, but we have to be careful.

103

A=

Tensor A
513 |1 data:5‘3 1‘2‘6‘0‘*
2 6|0 shape: (2, 3)
5 3 T Tensor A’
1 2 data:
6|0 shape: (3, 2)

VU

Here is one such cheap operation: a reshape. This
changes the shape of the tensor, but not the data.

To do this cheaply, we can create a new tensor object
with the same data as the old one, but with a different
shape.

104

Tensor A
5131 data: | ° ‘ 31 ‘ 2 ‘ 6 ‘ 0 “
2|60 shape: (3, 2)
Tensor a’
olefefe]efa] |o
shape: (6, )
vu¥

EXAMPLE: NORMALIZE COLORS

images

n, h,

images
images

images

# this
images

images

108

W,

load_images(...)

c = images.size()

images.

images

images.

makes no

images.

images.

reshape (nxhxw, c)
/ images.max(dim=0)

reshape(n, h, w, c)
sense, but it is allowed.
reshape(nxh, wxc)

reshape(h, n, ¢, w)

VUf

Imagine that we wanted to scale a dataset of images in
such way that over the whole dataset, each color
channel has a maximal value of 1 (independent of the
other channels).

To do this, we need a 3-vector of the maxima per color
channel. Pytorch only allows us to take the maximum
in one direction, but we can reshape the array so that
all the directions we’re not interested in are collapsed
into one dimension.

Afterwards, we can reverse the reshape to get our
image dataset back.

We have to be careful: the last three lines in this slide
form a perfectly valid reshape, but the ¢ dimension in
the result does not contain our color values.



In general, you're fine if you collapse dimensions that
are next to each other, and uncollapse them in the
same order.

this case, we just keep a reference to the old tensor,

Tensor A and whenever a user requests the element (i, j) we
return (j, i) from the original tensor.
5131 data:‘5‘3 1‘2‘6‘0‘
A= . ) . .
I shape: (2, 3) NB: This isn’t precisely how pytorch does this, but the
effect is the same: we get a transposed tensor in
i E—— con'stant time, by viewing the same data in memory in
AT= a different way.
3 6 parent:
1|0 shape: reverse(parent.shape)
def get(i, j):
return parent.get(j, i)
106

original data.

5131 data:‘5‘3‘1‘2‘6‘0‘
A=
2|16 |0 shape: (3, 2)
5 3 Tensor A’
Al:, :2]=
2|6 parent:

shape: (2, 2)

def get(i, j):
return parent(i, j)
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NoNICONT CUoUs For s.ome operatlgns, however, the Qata needs to be
contiguous. That is, the tensor data in memory needs

Contiguous tensor: the data are directly laid out in row-major ordering for to be one uninterrupted string of data in row major
the shape with no gaps or shuffling required. ordering with no gaps. If this isn’t the case, pytorch

x = t?rchir?ndn(z, 3) will throw an exception like this.

X = Xl:, :

x.view(6) .

Traceback (most recent call last): You can fix this by calling . contiguous () on the
'F'{'untlmeError: view size is not compatible with input tensor's size and tensor. The price you pay is the |inear time and space
stride (at least one dimension spans across two contiguous subspaces). . .

Use .reshape(...) instead. complexity of copying the data.

X.contiguous (): make contiguous (by copying the data).
X.view(): reshape if possible without making contiguous.
X. reshape (): reshape, call contiguous () if necessary.

Vu¥




